• Keine Ergebnisse gefunden

5 MATERIAL UND METHODEN

5.3 Methoden

5.3.5 Kernresonanzspektroskopie (NMR)

Direktinjektion

Der Probeneinlass über Direktinjektion (Spritzenpumpe) erfolgte im Allgemeinen mit den nachfolgenden Einstellungen (lowflow-Methode):

Kapillarspannung (Capillary voltage): ± 3800 V (polaritätsabh.) End plate offset: ± 500 V (polaritätsabh.) Vernebelungsgas (Nebulizer gas): 5 psi

Trockengas (Dry gas): 5 L/min Trockengastemperatur (Dry heat): 300 °C

Eventuelle Abweichungen von diesen Parametern werden im Ergebnisteil des betreffenden Kapitels genannt.

Die Parameter „Target mass“ (TM) und „Compound stability“ (CS) wurden abhängig von der untersuchten Lipidklasse sowie der Stabilität des Mutterions variiert. Dabei dient der Parameter „Target mass“ dazu, die Empfindlichkeit im Bereich des gewählten m/z Wertes zu verbessern. Der Parameter „Compound stability“ stellt ein Maß für die Stärke der Fragmentierung dar, die bereits im Transferbereich zwischen Ionenquelle und Ionenfalle durch Kollisionsinduzierten Dissoziation (Skimmer-CID) erfolgt. Die CS-Werte können zwischen 10 und 1000 liegen, wobei in dieser Arbeit zumeist CS-Werte zwischen 30-100 gewählt wurden.

Durch Tandem-MS-Experimente (analog MS/MS-oder MSn-Experimente) werden Ionen eines bestimmten m/z-Werts in der Ionenfalle isoliert, um diese anschließend zu fragmentieren. Dies gelingt durch eine zusätzliche Wechselspannung auf den Endkappen der Ionenfalle, wodurch die isolierten Ionen angeregt und Stöße mit Inertgas (z. B. Helium) induziert werden. Hierbei stellt der Parameter „Amplitude“ (A) ein Maß für die Stärke der Fragmentierung dar. Aus den erhaltenen Fragmentionen kann wiederum ein Fragment ausgewählt werden, das isoliert und fragmentiert wird. Da jeder dieser Schritte mit einem Intensitätsverlust einhergeht, ist die Anzahl an möglichen Fragmentierungs-schritten begrenzt.

Kopplung mit HPLC

Bei Anwendung von HPLC-MS-Kopplung sind die massenspektrometrischen Parameter bei der jeweiligen HPLC-Methode genannt.

Tabelle 33: Aufnahmebedingungen für die 1D-NMR-Experimente.

Parameter Abk. 1H (Übersicht) 1H (Quantifizierung) Anzahl Datenpunkte TD 32768-65536 32768 Spektrenbreite [ppm] SW 8.976 8.976 Mitte des Spektrums [ppm] O1p 3.500 3.500

Anzahl Dummy Scans DS 8 8

Anzahl Scans NS 64-256 64

Wartezeit [s] D1 3 22

Pulslänge [μs] P1 9.7 8.5

Pulsleistung [dB] PL1 4.0 2.0 Akquisitionszeit [s] AQ 6.081 3.04 Empfängerleistung RG 128-256 256-512

Tabelle 34: Aufnahmebedingungen für die 2D-NMR-Experimente.

Parameter Abk. HSQC HSQC-

TOCSY HMBC Anzahl Datenpunkte in F2 TD (F2) 4096 4096 4096 Anzahl Datenpunkte in F1 TD (F1) 1024 1024 1024 Spektrenbreite in F2 [ppm] SW (F2) 8.01 8.01 8.01 Spektrenbreite in F1 [ppm] SW (F1) 150.0 200.0 200.0 Mitte des Spektrums in F2 [ppm] O1p 4.00 4.00 4.00 Mitte des Spektrums in F1 [ppm] O2p 75.0 100.0 100.0 Anzahl Dummy Scans DS 32 32 32

Anzahl Scans NS 8 16 16

Wartezeit [s] D1 3.0 2.0 2.0

Pulslänge [μs] P1 9.4-9.7 9.7 9.7

Pulsleistung [dB] PL1 4.0 4.0 4.0

Mischzeit [ms] D9 - 20 60

Empfängerleistung RG 16-32k 32k 32k

Die Quantifizierung erfolgte mittels externem NMR-Standard Trimethylsilyl-propionat-Natriumsalz (TSP), auf den auch kalibriert wurde (0,00 ppm). Die Konzentrationsbestimmung der Standardkapillaren wurde vierfach mit den Substanzen Vanillin, N-Hydroxysuccinimid und Cholesterol durchgeführt.

Über die T1-Zeit-Bestimmung eines Standardgemisches mittels eines Inversion-Recovery-Experiments ließ sich die Wartezeit (ca. 5xT1) für das 1 H-Quantifi-zierungsexperiment berechnen. So ist sichergestellt, dass die Kerne vor dem nächsten Scan vollständig ausrelaxiert sind.

Zur Datenverarbeitung wurden die Programme Topspin 1.3 (Bruker) und MestReC 4.9.9.9 bzw. MestReNova (Mestrelab Research) verwendet.

Die aufgenommenen FIDs (free induction decay) wurden mittels einer linear prediction auf 64k aufgefüllt und mit einer Exponentialfunktion apodisiert. Die Phasenkorrektur erfolgte manuell, während für die Basislinienkorrektur der Witthaker Smoother verwendet wurde.

Die Zuordnung der Signale in den NMR-Spektren wurde anhand verschiedener 2D NMR-Experimente und durch den Vergleich mit aufgenommenen Referenzspektren von Standardsubstanzen (siehe Anhang II Charakterisierung von Standardsubstanzen) sowie durch Abgleich mit Literaturdaten vorgenommen (Sparling 89, Willker 98, Willmann 07).

Literaturverzeichnis

Abidi, S.L. Separation procedures for phosphatidylserines, J Chrom B 717, 279–

293 (1998).

Alpert, A.J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds, J Chrom499, 177-196 (1990).

Alvarez, J.G.; Touchstone, J.C. Separation of acidic and neutral lipids by aminopropyl-bonded silica gel column chromatography, J Chrom 577, 142-145 (1992).

Ågren, J.J.; Kuksis, A. Analysis of Diastereomeric DAG Naphthylethylurethanes by Normal-Phase HPLC with On-line Electrospray MS, Lipids 37, 613–619 (2002).

Bathen, T.F.; Krane, J.; Engan, T.; Bjerve, K.S.; Axelson, D. Quantification of plasma lipids and apolipoproteins by use of proton NMR spectroscopy, multivariate and neural network analysis, NMR Biomed 13, 271–288 (2000).

Barroso, B.; Bischoff, R. LC-MS analysis of phospholipids and lysophospholipids in human bronchoalveolar lavage fluid, J Chrom B 841, 21-28 (2005).

Baylin, A.; Campos, H. The use of fatty acid biomarkers to reflect dietary intake, Curr Opin Lipidol17, 22-27 (2006).

Becart, J.; Chevalier, C.; Biesse, JP. Quantitative Analysis of Phospholipids by HPLC with a Light Scattering Evaporating Detector - Application to Raw Materials for Cosmetic Use, Journal High Resol Chromatogr 13, 126-129 (1990).

Bergström, S.; Danielsson, H.; Samuelsson, B. The enzymatic formation of prostaglandin E2 from arachidonic acid Prostaglandins and related factors 32, Biochim Biophys Acta – General Subjects90, 207-210 (1964).

Berridge, M.J. Inositol trisphosphate and calcium signalling, Nature 361, 315-325 (1993).

Bjerve, K.S.; Daae, L.N.W.; Bremer, J. The Selective Loss of Lysophospholipids in Some Commonly Used Lipid-Extraction Procedures, Anal Biochem 58, 238-245 (1974).

Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification, Can J Biochem Physiol 37, 911-917 (1959).

Bracht, K. Biomarker: Indikatoren für Diagnose und Therapie. In:

Pharmazeutische Zeitung online, Ausgabe 12/2009 (http://www.pharmazeutische–zeitung.de/index.php?id=29346) – abgerufen 09.10.2012.

Brouwers, J.F.H.M.; Gadella, B.M.; van Golde, L.M.G.; Tielens, A.G.M.

Quantitative analysis of phosphatidylcholine molecular species using HPLC and light scattering detection, J Lipid Res 39, 344–353 (1998).

Brügger, B.; Erben, G.; Sandhoff, R.; Wieland, F.T.; Lehmann, W.D.

Quantitative analysis of biological membrane lipids at the lowpicomole level

by nano-electrospray ionization tandem mass spectrometry, Proc Natl Acad Sci USA 94, 2339–2344 (1997).

Byrdwell, W.C. Atmospheric Pressure Chemical Ionization Mass Spectrometry for Analysis of Lipids, Lipids 36, 327-346 (2001).

Byrdwell, W.C.Neff, W.E. Dual parallel electrospray ionization and atmospheric pressure chemical ionization mass spectrometry (MS), MS/MS and MS/MS/MS for the analysis of triacylglycerols and triacylglycerol oxidation products, Rapid Commun Mass Spectrom16, 300-319, (2002).

Byrdwell, W.C.Dual parallel mass spectrometry for lipid and vitamin D analysis, J Chrom A1217, 3992-4003 (2010).

Caldwell, J.D.; Moe, B.D.; Hoang, J.; Nguyen, T. Sex hormone binding globulin stimulates female sexual receptivity, Brain Res 874, 24–29(2000).

Carrasco-Pancorbo, A.Navas-Iglesias, N.Cuadros-Rodríguez, L. From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part I: Modern lipid analysis, Trends in Analytical Chemistry 28, 263-278 (2009).

Chen, S. Partial characterization of molecular species of phosphatidylserine from human plasma by high-performance liquid chromatography and fast atom bombardment mass spectrometry, J Chrom B661, 1-5 (1994).

Chen, S.-H.; Chuang, Y.-J. Analysis of fatty acids by column liquid chromatography, Anal ChimActa465, 145–155 (2002).

Choi, G.T.Y.; Casu, M.; Gibbons, W.A. N.m.r. lipid profiles of cells, tissues and body fluids, Biochem J290, 717-721(1993).

Chojnacki, T; Dallner, G. The biological role of dolichol, Biochem J 251, 1-9 (1988).

Christie, W.W. Detectors for high-performance liquid chromatography of lipids with special reference to evaporative light-scattering detection, in: Advances in Lipid Methodology – One, 239-271, Oily press, Ayr (1992).

Christie, W.W. Preparation of lipid extracts from tissues, in: Advances in Lipid Methodology - Two, 195-213, Oily press, Dundee (1993).

Christie, W.W. Structural analysis of fatty acids; in: Advances in Lipid Methodology - Four, 119-169, Oily press, Dundee (1997).

Christie, W.W.; Han, X. Lipid Analysis - Isolation, Separation, Identification and Lipidomic Analysis, Fourth Edition, The Oily Press, Bridgwater England (2010).

Christie, W.W. LIPIDOMICS - A PERSONAL VIEW, in: Lipid Library online (2011) http://lipidlibrary.aocs.org/topics/lipomics/index.htm - abgerufen am 27.10.12.

Clegg, G.A.; Dole, M. Molecular beams of macroions. III. Zein and polyvinylpyrrolidone, Biopolymers 10, 821-826 (1971).

Cui, Z.; Thomas, M.J. Phospholipid profiling by tandem mass spectrometry, J Chrom B877, 2709-2715 (2009).

Damassa, D.A.; Cates, J.M. Sex Hormone-Binding Globulin and Male Sexual Development, Neuroscience and Biobehavioral Reviews, 19, 165-175,

DeLong, C.J.; Baker, P.R.S.; Samuel, M.; Cui, Z.; Thomas, M.J. Molecular species composition of rat liver phospholipids by ESI-MS/MS: the effect of chromatography,J Lipid Res42, 1959–1968 (2001).

Dole, M.; Mack, L.L.; Hines, R.L.; Mobley, R.C.; Ferguson, L.D.; Alice, M.B.

Molecular beams of macroions, J Chem Phys 49, 2240-2249 (1968).

Donato, P.; Cacciola, F.; Cichello, F.; Russo, M.; Dugo, P.; Mondello, L.

Determination of phospholipids in milk samples by means of hydrophilic interaction liquid chromatography coupled to evaporative light scattering and mass spectrometry detection, J Chrom A1218, 6476– 6482 (2011).

Dorschel, C.A. Characterization of the TAG of Peanut Oil by Electrospray LC-MS-MS, JAOCS 79, 749–753 (2002).

Downes, C. P.; Gray, A.; Lucocq, J.M. Probing phosphoinositide functions in signalling and membrane trafficking, Trends Cell Biol15, 259–268 (2005).

Dugo, P.; Kumm, T.; Fazio, A.; Dugo, G.; Mondello, L. Determination of beef tallow in lard through a multidimensional off-line non-aqueous reversed phase–argentation LC method coupled to mass spectrometry, J Sep Sci 29, 567 – 575 (2006).

Dugo, P.; Kumm, T.; Chiofalo, B.; Cotroneo, A.; Mondello, L. Separation of triacylglycerols in a complex lipidic matrix by using comprehensive two-dimensional liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometric detection, J Sep Sci29, 1146 – 1154 (2006).

Dunphy, J.T.; Linder, M.E. Signalling functions of protein palmitoylation, Biochim Biophys Acta1436, 245-261(1998).

Egberts, J.; Buiskool, R. Isolation of the acidic phospholipid phosphatidylglycerol from pulmonary surfactant by sorbent extraction chromatography, Clin Chem 34, 163-164 (1988).

Elfman-Börjesson, I.; Härröd, M. Analysis of Non-Polar Lipids by HPLC on a Diol Column, J High Resol Chromatogr 20, 516-518 (1997).

Enke, C.G. A Predictive Model for Matrix and Analyte Effects in Electrospray Ionization of Singly-Charged Ionic Analytes, Anal Chem 69, 4885-4893 (1997).

Estrada, R.; Stolowich, N.; Yappert, M.C. Influence of temperature on 31P NMR chemical shifts of phospholipids and their metabolites I. In chloroform–

methanol–water, Anal Biochem 380, 41–50 (2008).

Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill Jr., A.H.;

Murphy, R.C.; Raetz, C.R.H.; Russell, D.W.; Seyama, Y.; Shaw, W.;

Shimizu, T.; Spener, F.; van Meer, G.; VanNieuwenhze, M.S.; White, S.H.; Witztum, J.L.; Dennis, E.A. A comprehensive classification system for lipids, J Lipid Res 46, 839-862 (2005).

Fahy, E.; Subramaniam, S.; Murphy, R.C.; Nishijima, M.; Raetz, C.R.H.;

Shimizu, T.; Spener, F.; van Meer, G.; Wakelam, M.J.O.; Dennis, E.A.

Update of the LIPID MAPS comprehensive classification system for lipids, J Lipid Res 50, 9-14 (2009).

Fan, T.W.-M.; Lane, A.N.: Structure-based Profiling of Metabolites and Isotopomers by NMR, Prog Nucl Magn Reson Spectrosc52, 69-117 (2008).

Fay, L.; Richli, U. Location of double bonds in polyunsaturated fatty acids by gas chromatography-mass spectrometry after 4,4-dimethyloxazoline derivatization, J Chrom A 541, 89-98 (1991).

Fedarko Roberts, M.; Bothner-By, A.A., Dennis, E.A. Magnetic Nonequivalence within the Fatty Acyl Chains of Phospholipids in Membrane Models: 1H Nuclear Magnetic Resonance Studies of the Į-Methylene Groups, J Am Chem Soc 17, 935-942 (1978).

Fenn, J.B.; Mann, M.; Meng, C.K.; Wong, S.F.; Whitehouse, C.M. Electrospray Ionisation for Mass Spectrometry of Large Biomolecules, Science 246, 64-71 (1989).

Feste, A.S.; Khan, I. Separation of glucooligosaccharides and polysaccharide hydrolysates by gradient elution hydrophilic interaction chromatography with pulsed amperometric detection, J Chrom 630, 129-139 (1993).

Foglia, T.A.; Jones, K.C. Quantitation of Neutral Lipid Mixtures Using High Performance Liquid Chromatography with Light Scattering Detection, Journal of Liquid Chromatography & Related Technologies 20, 1829-1838 (1997).

Folch, F.; Lees, M.; Stanley, G.H. Sloane A simple method for the isolation and purificationof total lipids from animal tissue; J Biol Chem 226, 497-509 (1957).

Fuchs, B.; Süß, R.; Nimptsch, A.; Schiller, J. MALDI-TOF-MS Directly Combined with TLC: A Review of the Current State, Chromatographia 69, 95-105 (2009).

Fuchs, B.; Schiller, J. Application of MALDI-TOF mass spectrometry in lipidomics, Eur J Lipid Sci Technol 111, 83–98 (2009).

Fuchs, B.; Süß, R.; Teuber, K.; Eibisch, M.; Schiller, J. Lipid analysis by thin-layer chromatography—A review of the current state, J Chrom A 1218, 2754–2774 (2011).

Gawrisch, K.; Eldho, N.V.; Polozov, I.V. Novel NMR tools to study structure and dynamics of biomembranes, Chem Phys Lipids116, 135–151(2002).

Graeve, M.; Janssen, D. Improved separation and quantification of neutral and polar lipid classes by HPLC–ELSD using a monolithic silica phase:

Application to exceptional marine lipids, J Chrom B877,1815–1819 (2009).

Greene, E.R.; Huang, S. ; Serhan, C.N.; Panigrahy, D. Regulation of inflammation in cancer by eicosanoids, Prostaglandins & other Lipid Mediators 96, 27-36 (2011).

Gross, J.H. Mass spectrometry A Textbook, Springer Verlag, Berlin, Heidelberg (2004).

Hamilton, J.G.; Comal, K. Rapid Separation of Neutral Lipids, Free Fatty Acids and Polar Lipids Using Prepacked Silica Sep-Pak Columns, Lipids 23, 1146-1149 (1988).

Han, X.; Abendschein, D.R.; Kelley, J.G.; Gross, R.W. Diabetes-induced changes in specific lipid molecular species in rat myocardium, Biochem J

Han, X.; Gross, R.W. Quantitative Analysis and Molecular Species Fingerprinting of Triacylglyceride Molecular Species Directly from Lipid Extracts of Biological Samples by Electrospray Ionization Tandem Mass Spectrometry, Anal Biochem295, 88–100 (2001).

Han, X.; Gross, R.W. Shotgun Lipidomics: Electrospray Ionization Mass Spectrometric Analysis and Quantitation of Cellular Lipidomes Directly From Crude Extracts of Biological Samples, Mass Spectrom Rev 24, 367-412 (2005).

Hanahan, D.J. Platelet activating factor: A biologically active phosphoglyceride, Ann Rev Biochem55, 483-509 (1986).

Hara, A.; Radin, N.S. Lipid Extraction of Tissues with a Low-Toxicity Solvent, Anal Biochem 90, 420-426 (1978).

Hawthorne, J.N.; Ansell, G.B. Phospholipids, Vol.4, Chapter 6, Elsevier Biomedical Press (1982).

Hemström, P.; Irgum, K. Hydrophilic interaction chromatography, J Sep Sci 29, 1784-1821(2006).

Hertzel, A.V.; Thompson, B.R.; Wiczer, B.M.; Bernlohr, D.A. Lipid metabolism in adipose tissue. In: Biochemistry of Lipids, Lipoproteins and Membranes.

Editors: Vance, D.E. and Vance, J.E., Elsevier, Amsterdam, 277-304 (2008).

Hers, H.G. Effects of glucocorticoids on carbohydrate metabolism, Agents and Actions17, 248-254 (1985).

Hodge, A.M.; English, D.R.; O`Dea, K.; Sinclair, A.J.; Makrides, M.; Gibson, R.A.; Giles, G.G. Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid, Am J Clin Nutr 86, 189-197 (2007).

Hofmann, A.F.; Borgström, B. The Intraluminal Phase of Fat Digestion in Man:

The Lipid Content of the Micellar and Oil Phases of Intestinal Content Obtained during Fat Digestion and Absorption, J Clin Invest 43, 247-257 (1964).

Holcࡅapek, M. Lísa, M. Jandera, P. Kabátová, N. Quantitation of triacylglycerols in plant oils using HPLC with APCI-MS, evaporative light-scattering, and UV detection, J Sep Sci28, 1315–1333 (2005).

Holcࡅapek, M.Velıғnská, H.Lísa, M.Cࡅ esla, P. Orthogonality of silver-ion and non-aqueous reversed-phase HPLC/MS in the analysis of complex natural mixtures of triacylglycerols, J Sep Sci 32, 3672–3680 (2009).

Hoving, E.B.; Muskiet, F.A.J.; Christie, W.W. Separation of cholesterol esters by silver ion chromatography using high-performance liquid chromatography or solid-phase extraction columns packed with a bonded sulphonic acid phase, J Chrom 565, 103-110 (1991).

Hradec, J.; Dufek, P. Isolation and quantitation of phosphatidylcholine by reversed-phase liquid–liquid extraction, J Chrom B 703, 259-262 (1997).

Hsu, F.-F.; Turk, J. Structural Characterization of Triacylglycerols as Lithiated Adducts by Electrospray Ionization Mass Spectrometry using Low-Energy Collisionally Activated Dissociation on a Triple Stage Quadrupole Instrument, J Am Soc Mass Spectrom 10, 587-599 (1999).

Hsu, F.-F.; Turk, J. Charge-Driven Fragmentation Processes in Diacyl Glycerophosphatidic Acids Upon Low Energy Collisional Activation. A Mechanistic Proposal, J Am Soc Mass Spectrom11, 797-803 (2000).

Hsu, F.-F.; Turk, J. Electrospray Ionization with Low-Energy Collisionally Activated Dissociation Tandem Mass Spectrometry of Complex Lipids:

Structural Characterization and Mechanisms of Fragmentation. In: Byrdwell, W.C.(Hrsg.). Modern Methods for Lipid Analysis, AOCS Press, Champaign, Illinois, 61-178 (2005).

Hsu, F.-F.; Turk, J. Differentiation of 1-O-alk-1´-enyl-2-acyl and 1-O-alkyl-2-acyl Glycerophospholipids by Multiple-Stage Linear Ion-Trap Mass Spectrometry with Electrospray Ionization, J Am Soc Mass Spectrom 18, 2065–2073 (2007).

Hsu, F.-F.; Turk, J. Elucidation of the Double-Bond Position of Long-Chain Unsaturated Fatty Acids by Multiple-Stage Linear Ion-Trap Mass Spectrometry with Electrospray Ionization, J Am Soc Mass Spectrom 19, 1673-1680 (2008).

Hvattum, E.; Røsjø, C.; Gjøen, T.; Rosenlund, G.; Ruyter, B. Effect of soybean oil and fish oil on individual molecular species of Atlantic salmon head kidney phospholipids determined by normal-phase liquid chromatography coupled to negative ion electrospray tandem mass spectrometry, J Chrom B 748, 137–149 (2000).

Ikegami, T.; Tomomatsu, K.; Takubo, H.; Horie, K.; Tanaka, N. Separation efficiencies in hydrophilic interaction chromatography, J Chrom A1184, 474–

503 (2008).

Isaac, G; Bylund, D.; Månsson, J.-E.; Markides, K.E.; Bergquist, J. Analysis of phosphatidylcholine and sphingomyelin molecular species from brain extracts using capillary liquid chromatography electrospray ionization mass spectrometry, J Neurosci Methods 128, 111-119 (2003).

Jandera, P. Stationary and mobile phases in hydrophilic interaction chromatography: a review, Anal Chim Acta 692, 1–25 (2011).

Jenkins, C.M.; Cedars, A.; Gross, R.W. Eicosanoid signalling pathways in the heart, Cardiovasc Res 82, 240–249 (2009).

Joh, Y.G.; Elenkov, I.J.; Stefanov, K.L.; Popov, S.S.; Dobson G.; Christie, W.W. Novel di-, tri-, and tetraenoic fatty acids with bis-methylene-interrupted double-bond systems from the sponge Haliclona cinerea, Lipids 32, 13-17 (1997).

Kamleh, A.; Barrett, M.P.; Wildridge, D.; Burchmore, R.J.S.; Scheltema, R.A.;

Watson, D.G. Metabolomic profiling using Orbitrap Fourier transform mass spectrometry with hydrophilic interaction chromatography: a method with wide applicability to analysis of biomolecules, Rapid Commun Mass Spectrom22, 1912-1918 (2008).

Kaluzny, M.A.; Duncan, L.A.; Merrit M.V. and Epps D.E. Rapid separation of lipid classes in high yield and purity using bonded phase columns, J Lipid Res26, 135-140 (1985).

Karlsson, A.Å; Michelsen, P.; Larsen, Å.; Odham, G. Normal-phase Liquid

Phospholipids Utilizing Electrospray Mass Spectrometry/Tandem Mass Spectrometry, Rapid Commun Mass Spectrom10,775-780 (1996).

Karlsson, G.; Winge, S.; Sandberg, H. Separation of monosaccharides by hydrophilic interaction chromatography with evaporative light scattering detection, J Chrom A1092, 246–249 (2005).

Katz-Brull, R.; Seger, D.; Rivenson-Segal, D.; Rushkin, E.; Degani, H.

Enhanced Choline Metabolism and Reduced Choline-Ether-Phospholipid Synthesis, Cancer Res 62, 1966-1970 (2002).

Kebarle, P.; Peschke, M. On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions, Anal Chim Acta 406, 11–

35 (2000).

Khaselev, N.; Murphy, R.C. Electrospray Ionization Mass Spectrometry of Lysoglycerophosphocholine Lipid Subclasses, J Am Soc Mass Spectrom11, 283–291 (2000).

Kim, H-Y.; Salem Jr., N. Separation of lipid classes by solid phase extraction, J Lipid Res 31, 2285-2289 (1990).

Koivusalo, M.; Haimi, P.; Heikinheimo, L.; Kostiainen, R.; Somerharju, P.

Quantitative determination of phospholipid compositions by ESI-MS: effects of acyl chain length, unsaturation, and lipid concentration on instrument response, J Lipid Res 42, 663–672 (2001).

Kromidas, S. HPLC richtig optimiert, Wiley-VCH, Weinheim, Kap.1, 3-154, (2006).

Kurantz, M.J.; Maxwell, R.J.; Kwoczak, R.; Taylor, F. Rapid and sensitive method for the quantitation of non-polar lipids by high-performance thin-layer chromatography and fluorodensitometry, J Chrom 549, 387-399 (1991).

Laaksonen, D.E.; Lakka, T.A.; Lakka, H.-M.; Nyyssönen, K.; Rissanen, T.;

Niskanen, L.K.; Salonen, J.T. Serum fatty acid composition predicts development of impaired fasting glycaemia and diabetes in middle-aged men,Diabet Med19, 456–464 (2002).

Lane, D.M.; Boatman, K.K.; McConathy, W.J. Serum lipids and apolipoproteins in women with breast masses, Breast Cancer Res Treat 34, 161-169 (1995).

Latorre, A.; Rigol, A.; Lacorte, S.; Barceló, D. Comparison of gas chromatography–mass spectrometry and liquid chromatography–mass spectrometry for the determination of fatty and resin acids in paper mill process waters, J Chrom A991, 205–215 (2003).

Lehmann, W.D.; Koester, M.; Erben, G.; Keppler, D. Characterization and Quantification of Rat Bile Phosphatidylcholine by Electrospray–Tandem Mass Spectrometry, Anal Biochem 246, 102–110 (1997).

Lemaigre, F.P.; Rousseau, G.G. Transcriptional control of genes that regulate glycolysis and gluconeogenesis in adult liver, Biochem J303, 1-14 (1994).

Liebisch, G.; Drobnik, W.; Lieser, B.; Schmitz, G. High-Throughput Quantification of Lysophosphatidylcholine by Electrospray Ionization Tandem Mass Spectrometry, Clin Chem 48, 2217–2224 (2002).

Lin, J.-T.; McKeon, T.A.; Stafford, A.E. Gradient reversed-phase high-performance liquid chromatography of saturated, unsaturated and

oxygenated free fatty acids and their methyl esters, J Chrom A 699, 85-91(1995).

Lin, J.H.; Liu, D.Y.; Yang, M.H.; Lee, M.H. Ethyl acetate/ethyl alcohol mixtures as an alternative to Folch reagent for extracting animal lipids, J Agric Food Chem52, 4984-4986 (2004).

Lindon, J.C.; Nicholson, J.K.; Holmes, E.; Everett, J.R. Metabonomics:

Metabolic Processes Studied by NMR Spectroscopy of Biofluids, Concepts Magn Reson12, 289-320 (2000).

Lísa, M.; Cífková, E.; Holþapek, M. Lipidomic profiling of biological tissues using off-line two-dimensional high-performance liquid chromatography–mass spectrometry,J Chrom A1218, 5146– 5156 (2011).

Lísa, M.; Velínská, H.; Holþapek, M. Regioisomeric Characterization of Triacylglycerols Using Silver-Ion HPLC/MS and Randomization Synthesis of Standards, Anal Chem 81, 3903–3910 (2009).

Liu, J.; Lee, T.; E. Bobik Jr., E.; Guzman-Harty, M.; Hastilow, C. Quantitative Determination of Monoglycerides and Diglycerides by High-Performance Liquid Chromatography and Evaporative Light-Scattering Detection, JAOCS 70, 343-347 (1993).

Liu, L.; Hammond, E.G. Phenylethyl Esters of Fatty Acids for the Analytical Resolution of Petroselinate and Oleate, JAOCS 72 (6), 749-751 (1995).

Liu, Q.-T.; Kinderlerer, J.L. Preparative thin-layer chromatographic separation and subsequent gas chromatographic–mass spectrometric analysis of monoacylglycerols derived from butter oil by fungal degradation, J Chrom A 855, 617–624 (1999).

Löffler, Petrides, Heinrich, Biochemie&Pathobiochemie, 8.Auflage, Springer Medizin Verlag, Heidelberg, Kap. 12: 397-425, Kap. 16: 515-535, Kap.18:

553-582 (2007).

Lutzke, B.S.; Braughler, J.M. An improved method for the identification and quantitation of biological lipids by HPLC using laser light-scattering detection, J Lipid Res 31, 2127-2130 (1990).

Mahrous, E.A.; Lee, R.B.; Lee, R.E. A rapid approach to lipid profiling of mycobacteria using 2D HSQC NMR maps, J Lipid Res49, 455–463 (2008).

Marangoni, F.; Colombo, C.; Galli, C. A method for the direct evaluation of fatty acid status in a drop of blood from a fingertip in humans: applicability to nutritional and epidemiological studies, Anal Biochem 326, 267-272 (2004).

Marcato, B.; Cecchin, G. Analysis of mixtures containing free fatty acids and mono-, di- and triglycerides by high-performance liquid chromatography coupled with evaporative light-scattering detection, J Chrom A 730, 83-90 (1996).

Matyash, V.; Liebisch, G.; Kurzchalia, T. V.; Shevchenko, A.; Schwudke, D.

Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics, J Lipid Res49, 1137–1146 (2008).

Mehta, A.; Oeser, A.M.; Carlson, M.G. Rapid quantitation of free fatty acids in human plasma by high-performance liquid chromatography, J Chrom B 719,

Merchant, T.E.; Kasimos, J.N.; Vroom, T.; de Bree, E.; Iwata, J.L.; de Graaf, P.W.; Glonek, T. Malignant breast tumor phospholipid profiles using 31P magnetic resonance, Cancer Letters176, 159–167 (2002).

Meyer, V.R. Praxis der Hochleistungsflüssigchromatographie, Aktualisierte 9.

Auflage, Wiley-VCH, Weinheim (2004).

Milne, S.; Ivanova, P.; Forrester, J.; Brown, H.A. Lipidomics: An analysis of cellular lipids by ESI-MS, Methods39, 92–103 (2006).

Mitchell, T.W.; Pham, H.; Thomas, M.C.; Blanksby, S.J. Identification of double bond position in lipids: From GC to OzID, J Chrom B 877, 2722–2735 (2009).

Momchilova, Sv.; Nikolova-Damyanova, B.; Christie, W.W. Silver ion high-performance liquid chromatography of isomeric cis and trans-octadecenoic acids - Effect of the ester moiety and mobile phase composition, J Chrom A 793, 275–282 (1998).

Murphy, R.C.; Fiedler, J.; Hevko, J. Analysis of non-volatile lipids by mass spectrometry, Chem Rev101, 479-526 (2001).

Myher, J.J.; Kuksis, A.; Marai, L.; Yeung, S.K.F. Microdetermination of Molecular Species of Oligo- and Polyunsaturated Diacylglycerols by Gas Chromatography-Mass Spectrometry of Their tert-Butyl Dimethylsilyl Ethers, Anal Chem 50, 557-561(1978).

Myher, J.J.; Kuksis, A.; Pind, S. Molecular Species of Glycerophospholipids and Sphingomyelins of Human Plasma: Comparison to Red Blood Cells, Lipids 24, 408- 418 (1989).

Nagy, K.Jakab, A.Fekete, J.Vékey, K. An HPLC-MS Approach for Analysis of Very Long Chain Fatty Acids and Other Apolar Compounds on Octadecyl-Silica Phase Using Partly Miscible Solvents, Anal Chem 76, 1935-1941 (2004).

Nehen, F. MR-spektroskopische Metabolitenanalyse von Biopsatproben für die Tumordiagnose, Disseration Universität Bremen, Fachbereich 2, 21.09.2011, http://nbn-resolving.de/urn:nbn:de:gbv:46-00102260-12.

Nelson, D.; Cox, M. Lehninger Biochemie, 3.,vollständig überarbeitete und erweiterte Auflage, 1.,korrigierter Nachdruck, Springer-Verlag, Berlin Heidelberg, Kap. 17: 645-674, Kap. 21: 833-886, Kap. 23: 941-984 (2001, 2005).

Neumaier, M.; Dorn-Beineke, A. Blut: Gerinnung und Fibrinolyse. In: Schartl, M.;

Gessler, M.; von Eckardstein, A. (Hrsg.) Biochemie und Molekularbiologie des Menschen. Elsevier, München, Kap. 25: 788-792 (2009).

Nikolova-Damyanova, B. Retention of lipids in silver ion high-performance liquid chromatography: Facts and assumptions, J Chrom A 1216, 1815–1824 (2009).

Ogiso, H.; Suzuki, T.; Taguchi, R. Development of a reverse-phase liquid chromatography electrospray ionization mass spectrometry method for lipidomics, improving detection of phosphatidic acid and phosphatidylserine, Anal Biochem 375, 124-131 (2008).

Olofsson, S-O.; Boström, P.; Andersson, L.; Rutberg, M.; Levin, M.; Perman, J.; Borén, J. Triglyceride containing lipid droplets and lipid droplet-associated proteins, Curr Opin Lipidol 19, 441-447 (2008).

Olofsson, S-O.; Boström, P.; Andersson, L.; Rutberg, M.; Perman, J.;

Borén, J. Lipid droplets as dynamic organelles connecting storage and efflux of lipids, Biochim Biophys Acta1791, 448-458 (2009).

Olsson, N.U.; Harding, A.J.; Harper, C.; Salem Jr., N. High-performance Liquid chromatography method with light scattering detection for measurements of lipid class composition: analysis of brains from alcoholics, J Chrom B 681, 213-218 (1996).

Osono, Y.; Woollett, L.A.; Marotti, K.R.; Melchior, G.W.; Dietschy, J.M.

Centripetal cholesterol flux from extra hepatic organs to the liver is independent of the concentration of high density lipoprotein-cholesterol in plasma, Proc Natl Acad Sci USA93, 4114-4119 (1996).

Parker, P. J. The ubiquitous phosphoinositides, Biochem Soc Trans 32, 893–898 (2004).

Patton, G.M.; Fasulo, J.M.; Robins, S.J. Separation of phospholipids and individual molecular species of phospholipids by high-performance liquid chromatography, J Lipid Res 23, 190-196 (1982).

Paulick, M.G.; Bertozzi, C.R. The Glycosylphosphatidylinositol Anchor: A Complex Membrane-Anchoring Structure for Proteins, Biochem 47, 6991–

7000 (2008).

Pelikánová, T.; Kohout, M.; Válek, J. Baše, J.; Stefka, Z. Fatty Acid Composition of Serum Lipids and Erythrocyte Membranes in Type 2 (Non-Insulin-Dependent) Diabetic Men, Metabolism40, 175-180 (1991).

Pelikánová, T.; Kazdová, L.; Chvojková, S.; Base, J. Serum Phospholipid Fatty Acid Composition and Insulin Action in Type 2 Diabetic Patients, Metabolism 50, 1472-1478 (2001).

Peterson, B.L.; Cummings, B. A review of chromatographic methods for the assessment of phospholipids in biological samples, Biomed Chromatogr 20, 227-243 (2005).

Pinkart, H.C.; Devereux, R.; Chapman, P.J.Rapid separation of microbial lipids using solid phase extraction columns,Journal of Microbiological Methods 34, 9-15 (1998).

Podlaha, O.; Töregård, B. A System for Identification of Triglycerides in Reversed Phase HPLC Chromatograms Based on Equivalent Carbon Numbers, Journal of High Resolution Chromatography & Chromatography Communications5, 553-558 (1982).

Prasad, M.R.; Lovell, M.A.; Yatin, M.; Dhillon, H.; Markesbery, W.R. Regional Membrane Phospholipid Alterations in Alzheimer´s Disease, Neurochem Res23, 81-88 (1998).

Pulfer, M.; Murphy, R.C. Elektrospray Mass Spectrometry of Phospholipids, Mass Spectrom Rev22, 332-364 (2003).

Quehenberger, O.; Armando, A.M.; Brown, A.H.; Milne, S.B.; Myers, D.S.;