• Keine Ergebnisse gefunden

Katalüsaatormaterjalide kütuseelemendi testide tulemused

Im Dokument TARTU ÜLIKOOL (Seite 31-45)

3. Tulemused ja arutelu

3.3 Katalüsaatormaterjalide kütuseelemendi testide tulemused

Kuna Fe-N-Gra näitas parimat O2 redutseerumise elektrokatalüütilist aktiivsust võrreldes teiste katalüsaatormaterjalidega (RDE meetodil), otsustati seda testida ka reaalses kütuseelemendis.

Joonisel 13 on näha PEM kütuseelemendi voolu- ja võimsustiheduse kõveraid, mille puhul oli

32 katoodina kasutuses Fe-N-Gra ja anoodina Pt/C. Mõõtmine viidi läbi 80 °C juures ning membraanina kasutati Nafion NRE-211. Saavutatud maksimaalne võimsustihedus (Pmax) oli 182 mW cm–2, mis on pigem madal võrreldes varem kirjanduses avaldatud tulemustega [126], kuid see võib tuleneda sellest, et antud mõõtmise puhul ei olnud elektroodide ja membraani ettevalmistus eelnevalt optimeeritud. Avatud vooluringi pinge (open circuit voltage, OCV) oli üsna kõrge (0,82 V) ja kineetilises alas oli materjal aktiivne, kuid väiksematel potentsiaalidel kasvas vool väga aeglaselt optimeerimata katalüsaatori kihi ning kõrge massiülekande takistuse tõttu. Voolutihedus 0,8 V juures oli umbes 5,9 korda kõrgem (6,5 mA cm–2) võrreldes RDE mõõtmistel saadud jk väärtusega (1,11 mA cm–2). Siiski näitavad tulemused, et Fe-N-Gra on lootustandev katalüsaatormaterjal PEM kütuseelemendi katoodina.

Joonis 13. PEM kütuseelemendi polarisatsiooni- ja võimsustiheduse kõverad. Katoodil oli 4 mg cm–2 Fe-N-Gra. Temperatuur = 80 °C, 100% RH O2/H2, rõhk 1 baari.

AEM kütuseelemendi testimisel saadud voolu- ja võimsustihedused on toodud joonisel 14.

Nagu võis oodata ka RDE tulemustest, oli aktiivsus kütuseelemendis aluselistes tingimustes palju parem kui happelistes tingimustes. Voolutihedus 0,8 V juures oli 125 mA cm–2, RDE mõõtmiste puhul oli jk väärtus 0,8 V juures 4,14 mA cm–2. Eriti muljetavaldavad olid tulemused kõrgemal potentsiaalil, kus Fe-N-Gra jõudis väärtuseni 125 mA cm–2, võrreldes Pt/C katalüsaatoriga, mille puhul on selleks väärtuseks 174 mA cm–2. Saavutati võimsustihedus Pmax

= 243 mW cm–2, mis on hea tulemus võrreldes kirjanduses leiduvate tulemustega (vt tabel 5).

Oluline on ära märkida, et võrreldes Fe-N-Gra testimisel saadud tulemustega on saavutatud

33 veelgi paremaid tulemusi teiste anioonvahetusmembraanide ja ionomeeridega. Võrreldes tulemusi mitteväärismetalli sisaldavate katalüsaatoritega, mis kasutavad sama membraani (HMT-PMBI), on Fe-N-Gra tulemus siiani parim.

Joonis 14. AEM kütuseelemendi polarisatsiooni- ja võimsustiheduse kõverad. Katoodil 2 mg cm–2 Fe-N-Gra ja anoodil PtRu/C. Temperatuur = 60 °C, 100% RH O2/H2 0,2/0,3 NLPM ja rõhk 200 kPa.

Tabel 5. AEM kütuseelemendi tulemuste võrdlus erinevate mitte-väärismetallkatalüsaatoritega

Katalüsaator j0,8 V, mA cm–2

Pmax, mW cm–2

Kogus katoodil, mg cm–2

Temperatuur, ºC Membraan Ionomeer Viide

Fe-N-Gra 125 243 2,0 60 HMT-PMBI HMT-PMBI See töö

F,N,S-rGO 0 46 1,5 85 HMT-PMBI HMT-PMBI [127]

MH-DCNT 30 250 0,34 85 HMT-PMBI HMT-PMBI [128]

Pürolüüsitud

KB/FePc 32 186 2,0 60 °C HMT-PMBI HMT-PMBI [129]

Fe-LC-900 10 50 2,0 Pole märgitud FAA Pole märgitud [130]

Fe-N-comp-0.5 25 160 2,6 60 Tokuyama A201 Tokuyama AS4 [131]

Fe-NMG 100 218 2,625 60 Tokuyama A201 Tokuyama AS4 [132]

Fe/N/C

nanotorud 75 485 2,0 60 aQAPS-S8 aQAPS-S14 [133]

MCS 250 1100 1,45 60 aQAPS-S8 aQAPS-S14 [134]

N-C-CoOx 300 1050 2,4 65 LDPE-BTMA ETFE [135]

CF-VC 60 1350 2,4 70 ETFE-BTMA ETFE [136]

34

Kokkuvõte

Käesolevas magistritöös uuriti hapniku redutseerumist raua ja lämmastikuga ning väävli ja lämmastikuga dopeeritud süsinikmaterjalidel. Raua ja lämmastikuga dopeeritud materjalide valmistamiseks kasutati süsinikuallikana grafeenoksiidi või kommertsiaalselt kättesaadavat grafeeni, lämmastikuallikana 1,10-fenantroliini ja rauaallikana raud(II)atsetaati. Väävli ja lämmastikuga dopeeritud materjalid sünteesiti kasutades süsinikuallikana kommertsiaalset grafeeni ning lämmastiku- ja väävliallikana tiosemikarbasiidi või tritiotsüanuurhapet.

Materjalide dopeerimiseks kasutati erinevaid meetodeid: märg- ja kuivmeetodit. Märgmeetodi puhul (kasutati nii Fe,N kui ka S,N dopeerimisel) dispergeeriti kõik lähteained solvendis, segu kuivatati ning pürolüüsiti 800 °C juures N2 keskkonnas 1 h jooksul. Kuivmeetodi jaoks jahvatati kõik lähteained kuulveskis 2 h kiirusel 400 p min–1 ning pürolüüsiti samades tingimustes.

Pöörleva ketaselektroodi meetodil saadud tulemused näitasid, et kõik sünteesitud materjalid olid hapniku redutseerumisel aktiivsemad kui dopeerimata materjalid. Hapniku redutseerumisreaktsiooni uuringud aluselises keskkonnas Fe-N-Gra puhul näitasid palju suuremat aktiivsust võrreldes Fe-N dopeeritud GO-ga. Nagu selgus erinevate füüsikaliste mõõtmismeetodite tulemustest, siis tuleneb erinevus Fe-N-Gra suuremast eripinnast, mikro-/mesopooride suhtest ja suuremast hulgast Fe-Nx lämmastikuvormist võrreldes Fe-N-GO materjaliga. 57Fe Mössbaueri spektroskoopia andmed näitasid, et raua ja lämmastikuga dopeeritud grafeenis oli peaaegu pool rauast aktiivses Fe-Nx vormis. Samas Fe-N-Gra katalüsaatormaterjaliga happelises keskkonnas läbi viidud hapniku redutseerumise mõõtmised ei näidanud võrreldes aluselise keskkonna tulemustega nii suurt elektrokatalüütilist aktiivsust.

S,N-dopeeritud materjalidel puhul näitasid XPS tulemused, et kõik dopeeritud materjalid sisaldasid väävlit ja lämmastikku ning suurima sisaldusega lämmastikuvormiks oli püridiinne lämmastik. Samuti on huvitav märkida, et kuivdopeerimise puhul oli üleminevate elektronide arvuks O2 molekuli kohta 4, seega võib see meetod olla ka S,N-dopeerimiseks sobivam.

Aktiivseimat materjali, Fe-N-Gra, testiti ka prooton- ja anioonvahetusmembraaniga kütuseelemendi tingimustes. Sarnaselt RDE meetodil saadud tulemustele, polnud ka prootonvahetusmembraaniga kütuseelemendi testi tulemus parim. Samas anioonvahetusmembraaniga saadud tulemused olid väga paljulubavad. Nimelt, maksimaalseks võimsustiheduseks saadi 243 mW cm–2 , mis on küllaltki kõrge võrreldes kirjanduses avaldatud tulemustega.

35

Oxygen reduction on nitrogen doped and iron or sulphur-containing graphene based materials

Roberta Sibul

Summary

In this work, oxygen reduction reaction was studied on iron and nitrogen or sulphur and nitrogen doped carbon materials. To produce iron and nitrogen doped catalyst materials, graphene oxide or commercial graphene were used as carbon sources, 1,10-phenanthroline as a nitrogen source and iron(II)acetate as iron source. To synthesise S,N doped materials, commercial graphene was used as a carbon source, thiosemicarbazide and thiocyanuric acid were employed as nitrogen and sulphur sources. For the doping procedure both wet and dry methods were used.

In case of wet method (for Fe,N and S,N doping) all the materials were dispersed in the solvent, the mixture was dried and thereafter pyrolysed at 800 °C in N2 atmosphere for 1 h. For the dry synthesis method all the starting materials were ball-milled for 2 h at 400 rpm and pyrolysed in N2 flow at 800 °C for 1 h.

The rotating disc electrode results showed that all the doped catalyst materials were more active towards the oxygen reduction than undoped materials. The oxygen reduction studies for Fe-N-Gra in alkaline conditions exhibited much higher activity compared to Fe-N-GO. As shown by different physico-chemical methods, this is due to a higher specific surface area, micro/mesoporous nature and larger amount of Fe-Nx moieties in Gra compared to Fe-N-GO. 57Fe Mössbauer spectroscopy presented that almost half of the iron in Fe-N-Gra was in an active Fe-Nx form. Fe-N-Gra in acidic conditions did not show as good electrocatalytic activity as in alkaline media. The XPS analysis of S,N-doped materials showed that all the synthesised catalyst materials contained sulphur and nitrogen and the highest amount of nitrogen form in these catalysts was pyridinic nitrogen. It must also be noted that the number of electrons transferred per O2 molecule was four in case of the materials which were doped using dry ball-milling. This means that the dry method could be more beneficial for producing sulphur and nitrogen doped catalysts.

Fe-N-Gra as the most active catalyst material was also tested in anion and proton exchange membrane fuel cells. Similarly to the results obtained by RDE, the proton exchange membrane fuel cell test did not give the best results. But the anion exchange membrane fuel cell test the performance was very promising. Namely, the peak power density (Pmax) for Fe-N-Gra was 243 mW cm–2, which is a quite good result compared to the ones published in literature.

36

Kasutatud kirjandus

[1] D. Papageorgopoulos, Fuel Cell R&D Overview, in: US Department of Energy Annual Merit Review, Crystal City, Virginia, 2019.

[2] H. Nazir, C. Louis, S. Jose, J. Prakash, N. Muthuswamy, M.E.M. Buan, C. Flox, S. Chavan, X. Shi, P. Kauranen, T. Kallio, G. Maia, K. Tammeveski, N. Lymperopoulos, E. Carcadea, E.

Veziroglu, A. Iranzo, A.M. Kannan, Is the H2 economy realizable in the foreseeable future?

Part I: H2 production methods, Int. J. Hydrogen Energy, 45 (2020) 13777-13788.

[3] P.P. Edwards, V.L. Kuznetsov, W.I.F. David, N.P. Brandon, Hydrogen and fuel cells:

Towards a sustainable energy future, Energy Policy, 36 (2008) 4356-4362.

[4] I. Staffell, D. Scamman, A.V. Abad, P. Balcombe, P.E. Dodds, P. Ekins, N. Shah, K.R.

Ward, The role of hydrogen and fuel cells in the global energy system, Energy Environ. Sci., 12 (2019) 463-491.

[5] W. Vielstich, A. Lamm, H.A. Gasteiger, Handbook of Fuel Cells: Fundamentals, Technology, Applications, Wiley, New York, 2003.

[6] A. Sarapuu, E. Kibena-Põldsepp, M. Borghei, K. Tammeveski, Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal–nitrogen–carbon catalysts for alkaline membrane fuel cells, J. Mater. Chem. A, 6 (2018) 776-804.

[7] C. Song, J. Zhang, Electrocatalytic Oxygen Reduction Reaction, Springer, London, 2008.

[8] W. Xing, G. Yin, J. Zhang, Electrochemical Oxygen Reduction Reaction: Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, Elsevier, 2014.

[9] N. Ramaswamy, S. Mukerjee, Alkaline Anion-Exchange Membrane Fuel Cells: Challenges in Electrocatalysis and Interfacial Charge Transfer, Chem. Rev., 119 (2019) 11945-11979.

[10] M. Shao, Q. Chang, J.-P. Dodelet, R. Chenitz, Recent Advances in Electrocatalysts for Oxygen Reduction Reaction, Chem. Rev., 116 (2016) 3594-3657.

[11] Y. Nie, L. Li, Z.D. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction, Chem. Soc. Rev., 44 (2015) 2168-2201.

[12] C. Sealy, The problem with platinum, Mater. Today, 11 (2008) 65-68.

[13] L.M. Dai, Y.H. Xue, L.T. Qu, H.J. Choi, J.B. Baek, Metal-Free Catalysts for Oxygen Reduction Reaction, Chem. Rev., 115 (2015) 4823-4892.

[14] A. Martin, A. Escarpa, Graphene: The cutting-edge interaction between chemistry and electrochemistry, TrAC, Trends Anal. Chem., 56 (2014) 13-26.

[15] T. Kuila, S. Bose, A.K. Mishra, P. Khanra, N.H. Kim, J.H. Lee, Chemical functionalization of graphene and its applications, Prog. Mater. Sci, 57 (2012) 1061-1105.

[16] E.P. Randviir, D.A.C. Brownson, C.E. Banks, A decade of graphene research: production, applications and outlook, Mater. Today, 17 (2014) 426-432.

[17] S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature, 442 (2006) 282-286.

[18] S. Park, R.S. Ruoff, Chemical methods for the production of graphenes, Nat. Nanotechnol., 4 (2009) 217-224.

[19] M.S. Goh, M. Pumera, Multilayer graphene nanoribbons exhibit larger capacitance than their few-layer and single-layer graphene counterparts, Electrochem. Commun., 12 (2010) 1375-1377.

[20] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.

Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306 (2004) 666-669.

37 [21] S.S. Shams, L.S. Zhang, R.H. Hu, R.Y. Zhang, J. Zhu, Synthesis of graphene from biomass: A green chemistry approach, Mater. Lett., 161 (2015) 476-479.

[22] H.Y. He, J. Klinowski, M. Forster, A. Lerf, A new structural model for graphite oxide, Chem. Phys. Lett., 287 (1998) 53-56.

[23] A. Lerf, H.Y. He, M. Forster, J. Klinowski, Structure of graphite oxide revisited, J. Phys.

Chem. B, (1998) 4477-4482.

[24] A. Iwan, M. Malinowski, G. Pasciak, Polymer fuel cell components modified by graphene:

Electrodes, electrolytes and bipolar plates, Renew. Sust. Energ. Rev., 49 (2015) 954-967.

[25] J.B. Hou, Y.Y. Shao, M.W. Ellis, R.B. Moore, B.L. Yi, Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries, Phys.

Chem. Chem. Phys., 13 (2011) 15384-15402.

[26] E. Yeager, Electrocatalysts for O2 reduction, Electrochim. Acta, 29 (1984) 1527-1537.

[27] J. Lilloja, E. Kibena-Põldsepp, M. Merisalu, P. Rauwel, L. Matisen, A. Niilisk, E.S.F.

Cardoso, G. Maia, V. Sammelselg, K. Tammeveski, An Oxygen Reduction Study of Graphene-Based Nanomaterials of Different Origin, Catalysts, 6 (2016) 108.

[28] S. Ratso, N.R. Sahraie, M.T. Sougrati, M. Käärik, M. Kook, R. Saar, P. Paiste, Q. Jia, J.

Leis, S. Mukerjee, F. Jaouen, K. Tammeveski, Synthesis of highly-active Fe–N–C catalysts for PEMFC with carbide-derived carbons, J. Mater. Chem. A, 6 (2018) 14663-14674.

[29] J.I. Ozaki, S.I. Tanifuji, N. Kimura, A. Furuichi, A. Oya, Enhancement of oxygen reduction activity by carbonization of furan resin in the presence of phthalocyanines, Carbon, 44 (2006) 1324-1326.

[30] R. Sibul, E. Kibena-Põldsepp, S. Ratso, M. Kook, M. Käärik, M. Merisalu, P. Paiste, J.

Leis, V. Sammelselg, K. Tammeveski, Nitrogen-doped carbon-based electrocatalysts synthesised by ball-milling, Electrochem. Commun., 93 (2018) 39-43.

[31] S. Ratso, M.T. Sougrati, M. Käärik, M. Merisalu, M. Rähn, V. Kisand, A. Kikas, P. Paiste, J. Leis, V. Sammelselg, F. Jaouen, K. Tammeveski, Effect of Ball-Milling on the Oxygen Reduction Reaction Activity of Iron and Nitrogen Co-doped Carbide-Derived Carbon Catalysts in Acid Media, ACS Appl. Energy Mater., 2 (2019) 7952-7962.

[32] D.H. Deng, X.L. Pan, L.A. Yu, Y. Cui, Y.P. Jiang, J. Qi, W.X. Li, Q.A. Fu, X.C. Ma, Q.K.

Xue, G.Q. Sun, X.H. Bao, Toward N-Doped Graphene via Solvothermal Synthesis, Chem.

Mater., 23 (2011) 1188-1193.

[33] M.M. Liu, R.Z. Zhang, W. Chen, Graphene-Supported Nanoelectrocatalysts for Fuel Cells:

Synthesis, Properties, and Applications, Chem. Rev., 114 (2014) 5117-5160.

[34] A.A. Gewirth, J.A. Varnell, A.M. DiAscro, Nonprecious Metal Catalysts for Oxygen Reduction in Heterogeneous Aqueous Systems, Chem. Rev., 118 (2018) 2313-2339.

[35] L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, Z. Hu, Boron-Doped Carbon Nanotubes as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction, Angew. Chem., 123 (2011) 7270-7273.

[36] Z.-W. Liu, F. Peng, H.-J. Wang, H. Yu, W.-X. Zheng, J. Yang, Phosphorus-Doped Graphite Layers with High Electrocatalytic Activity for the O2 Reduction in an Alkaline Medium, Angew. Chem. Int. Ed., 50 (2011) 3257-3261.

[37] K.N. Wood, R. O'Hayre, S. Pylypenko, Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications, Energy Environ. Sci., 7 (2014) 1212-1249.

[38] Z. Yang, Z. Yao, G.F. Li, G.Y. Fang, H.G. Nie, Z. Liu, X.M. Zhou, X. Chen, S.M. Huang, Sulfur-Doped Graphene as an Efficient Metal-free Cathode Catalyst for Oxygen Reduction, ACS Nano, 6 (2012) 205-211.

[39] I.Y. Jeon, S. Zhang, L.P. Zhang, H.J. Choi, J.M. Seo, Z.H. Xia, L.M. Dai, J.B. Baek, Edge-Selectively Sulfurized Graphene Nanoplatelets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction: The Electron Spin Effect, Adv. Mater., 25 (2013) 6138-6145.

38 [40] S. Inamdar, H.S. Choi, P. Wang, M.Y. Song, J.S. Yu, Sulfur-containing carbon by flame synthesis as efficient metal-free electrocatalyst for oxygen reduction reaction, Electrochem.

Commun., 30 (2013) 9-12.

[41] J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and Nitrogen Dual-Doped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance, Angew. Chem. Int. Ed., 51 (2012) 11496-11500.

[42] S.Y. Wang, E. Iyyamperumal, A. Roy, Y.H. Xue, D.S. Yu, L.M. Dai, Vertically Aligned BCN Nanotubes as Efficient Metal-Free Electrocatalysts for the Oxygen Reduction Reaction:

A Synergetic Effect by Co-Doping with Boron and Nitrogen, Angew. Chem. Int. Ed., 50 (2011) 11756-11760.

[43] S.Y. Wang, L.P. Zhang, Z.H. Xia, A. Roy, D.W. Chang, J.B. Baek, L.M. Dai, BCN Graphene as Efficient Metal-Free Electrocatalyst for the Oxygen Reduction Reaction, Angew.

Chem. Int. Ed., 51 (2012) 4209-4212.

[44] X. Wang, J. Wang, D.L. Wang, S.O. Dou, Z.L. Ma, J.H. Wu, L. Tao, A.L. Shen, C.B.

Ouyang, Q.H. Liu, S.Y. Wang, One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction, Chem. Commun., 50 (2014) 4839-4842.

[45] J.L. Zhu, C.Y. He, Y.Y. Li, S. Kang, P.K. Shen, One-step synthesis of boron and nitrogen-dual-self-doped graphene sheets as non-metal catalysts for oxygen reduction reaction, J. Mater.

Chem. A, 1 (2013) 14700-14705.

[46] V. Mazánek, S. Matějková, D. Sedmidubský, M. Pumera, Z. Sofer, One-Step Synthesis of B/N Co-doped Graphene as Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction: Synergistic Effect of Impurities, Chem. Eur. J., 24 (2018) 928-936.

[47] T. Oh, K. Kim, J. Kim, Controllable active sites and facile synthesis of cobalt nanoparticle embedded in nitrogen and sulfur co-doped carbon nanotubes as efficient bifunctional electrocatalysts for oxygen reduction and evolution reactions, J. Energy Chem., 38 (2019) 60-67.

[48] K. Parvez, S.B. Yang, Y. Hernandez, A. Winter, A. Turchanin, X.L. Feng, K. Mullen, Nitrogen-Doped Graphene and Its Iron-Based Composite As Efficient Electrocatalysts for Oxygen Reduction Reaction, ACS Nano, 6 (2012) 9541-9550.

[49] T. Sharifi, G. Hu, X.E. Jia, T. Wagberg, Formation of Active Sites for Oxygen Reduction Reactions by Transformation of Nitrogen Functionalities in Nitrogen-Doped Carbon Nanotubes, ACS Nano, 6 (2012) 8904-8912.

[50] E. Haque, S. Sarkar, M. Hassan, M.S. Hossain, A.I. Minett, S.X. Dou, V.G. Gomes, Tuning graphene for energy and environmental applications: Oxygen reduction reaction and greenhouse gas mitigation, J. Power Sources, 328 (2016) 472-481.

[51] T. Xing, Y. Zheng, L.H. Li, B.C.C. Cowie, D. Gunzelmann, S.Z. Qiao, S.M. Huang, Y.

Chen, Observation of Active Sites for Oxygen Reduction Reaction on Nitrogen-Doped Multilayer Graphene, ACS Nano, 8 (2014) 6856-6862.

[52] J.Y. Chen, X. Wang, X.Q. Cui, G.M. Yang, W.T. Zheng, Amorphous carbon enriched with pyridinic nitrogen as an efficient metal-free electrocatalyst for oxygen reduction reaction, Chem. Commun., 50 (2014) 557-559.

[53] G. Jo, J. Sanetuntikul, S. Shanmugam, Boron and phosphorous-doped graphene as a metal-free electrocatalyst for the oxygen reduction reaction in alkaline medium, RSC Adv., 5 (2015) 53637-53643.

[54] C.Z. Zhang, N. Mahmood, H. Yin, F. Liu, Y.L. Hou, Synthesis of Phosphorus-Doped Graphene and its Multifunctional Applications for Oxygen Reduction Reaction and Lithium Ion Batteries, Adv. Mater., 25 (2013) 4932-4937.

39 [55] C.H. You, S.J. Liao, H.L. Li, S.Y. Hou, H.L. Peng, X.Y. Zeng, F.F. Liu, R.P. Zheng, Z.Y.

Fu, Y.W. Li, Uniform nitrogen and sulfur co-doped carbon nanospheres as catalysts for the oxygen reduction reaction, Carbon, 69 (2014) 294-301.

[56] J.J. Li, Y.M. Zhang, X.H. Zhang, J.Z. Huang, J.C. Han, Z.H. Zhang, X.J. Han, P. Xu, B.

Song, S, N Dual-Doped Graphene-like Carbon Nanosheets as Efficient Oxygen Reduction Reaction Electrocatalysts, ACS Appl. Mater. Interfaces, 9 (2017) 398-405.

[57] G. Wu, A. Santandreu, W. Kellogg, S. Gupta, O. Ogoke, H.G. Zhang, H.L. Wang, L.M.

Dai, Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: From nitrogen doping to transition-metal addition, Nano Energy, 29 (2016) 83-110.

[58] H. Tan, J. Tang, J. Kim, Y.V. Kaneti, Y.-M. Kang, Y. Sugahara, Y. Yamauchi, Rational design and construction of nanoporous iron- and nitrogen-doped carbon electrocatalysts for oxygen reduction reaction, J. Mater. Chem. A, 7 (2019) 1380-1393.

[59] Y.Y. Shao, J.P. Dodelet, G. Wu, P. Zelenay, PGM-Free Cathode Catalysts for PEM Fuel Cells: A Mini-Review on Stability Challenges, Adv. Mater., 31 (2019) 1807615.

[60] J. Sanetuntikul, C. Chuaicham, Y.W. Choi, S. Shanmugam, Investigation of hollow nitrogen-doped carbon spheres as non-precious Fe-N4 based oxygen reduction catalysts, J.

Mater. Chem. A, 3 (2015) 15473-15481.

[61] C. Lo Vecchio, A.S. Arico, G. Monforte, V. Baglio, EDTA-derived Co-N-C and Fe-N-C electro-catalysts for the oxygen reduction reaction in acid environment, Renewable Energy, 120 (2018) 342-349.

[62] K.F. Ping, A. Braschinsky, M. Alam, R. Bhadoria, V. Mikli, A. Mere, J. Aruväli, P. Paiste, S. Vlassov, M. Kook, M. Rähn, V. Sammelselg, K. Tammeveski, N. Kongi, P. Starkov, Fused Hybrid Linkers for Metal-Organic Framework-Derived Bifunctional Oxygen Electrocatalysts, ACS Appl. Energy Mater., 3 (2020) 152-157.

[63] J. Li, Q. Jia, S. Mukerjee, M.-T. Sougrati, G. Drazic, A. Zitolo, F. Jaouen, The Challenge of Achieving a High Density of Fe-Based Active Sites in a Highly Graphitic Carbon Matrix, Catalysts, 9 (2019) 144.

[64] K. Artyushkova, I. Matanovic, B. Halevi, P. Atanassov, Oxygen Binding to Active Sites of Fe–N–C ORR Electrocatalysts Observed by Ambient-Pressure XPS, J. Phys. Chem. C, 121 (2017) 2836-2843.

[65] Q.Y. Jia, N. Ramaswamy, U. Tylus, K. Strickland, J.K. Li, A. Serov, K. Artyushkova, P.

Atanassov, J. Anibal, C. Gumeci, S.C. Barton, M.T. Sougrati, F. Jaouen, B. Halevi, S.

Mukerjee, Spectroscopic insights into the nature of active sites in iron-nitrogen-carbon electrocatalysts for oxygen reduction in acid, Nano Energy, 29 (2016) 65-82.

[66] J.H. Zagal, M.T.M. Koper, Reactivity Descriptors for the Activity of Molecular MN4 Catalysts for the Oxygen Reduction Reaction, Angew. Chem. Int. Ed., 55 (2016) 14510-14521.

[67] M. Lefevre, E. Proietti, F. Jaouen, J.P. Dodelet, Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells, Science, 324 (2009) 71-74.

[68] F. Jaouen, J. Herranz, M. Lefèvre, J.-P. Dodelet, U.I. Kramm, I. Herrmann, P. Bogdanoff, J. Maruyama, T. Nagaoka, A. Garsuch, J.R. Dahn, T. Olson, S. Pylypenko, P. Atanassov, E.A.

Ustinov, Cross-Laboratory Experimental Study of Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction, ACS Appl. Mater. Interfaces, 1 (2009) 1623-1639.

[69] A. Zitolo, V. Goellner, V. Armel, M.T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F.

Jaouen, Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials, Nat. Mater., 14 (2015) 937-942.

[70] K. Strickland, E. Miner, Q. Jia, U. Tylus, N. Ramaswamy, W. Liang, M.-T. Sougrati, F.

Jaouen, S. Mukerjee, Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination, Nat. Commun., 6 (2015) 7343.

40 [71] D.H. Deng, L. Yu, X.Q. Chen, G.X. Wang, L. Jin, X.L. Pan, J. Deng, G.Q. Sun, X.H. Bao, Iron Encapsulated within Pod-like Carbon Nanotubes for Oxygen Reduction Reaction, Angew.

Chem. Int. Ed., 52 (2013) 371-375.

[72] Y. Hu, J.O. Jensen, W. Zhang, L.N. Cleemann, W. Xing, N.J. Bjerrum, Q.F. Li, Hollow Spheres of Iron Carbide Nanoparticles Encased in Graphitic Layers as Oxygen Reduction Catalysts, Angew. Chem. Int. Ed., 53 (2014) 3675-3679.

[73] W.X. Yang, X.J. Liu, X.Y. Yue, J.B. Jia, S.J. Guo, Bamboo-like Carbon Nanotube/Fe3C Nanoparticle Hybrids and Their Highly Efficient Catalysis for Oxygen Reduction, J. Am.

Chem. Soc., 137 (2015) 1436-1439.

[74] W.-J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhanf, L.-J. Zhang, J.-Q. Wang, J.-S. Hu, Z. Wei, L.-J. Wan, Understanding the High Activity of Fe–N–C Electrocatalysts in Oxygen Reduction:

Fe/Fe3C Nanoparticles Boost the Activity of Fe–Nx, J. Am. Chem. Soc., 138 (2016) 3570–3578.

[75] J.H. Kim, Y.J. Sa, H.Y. Jeona, S.H. Joo, Roles of Fe−Nx and Fe−Fe3 C@C Species in Fe−N/C Electrocatalysts for Oxygen Reduction Reaction, ACS Appl. Mater. Interfaces, 9 (2017) 9567–9575.

[76] H. Peng, X. Xie, K. Sun, M. Zhang, R. Zhao, G. Ma, Z. Lei, Urea-assisted synthesis of a Fe nanoparticle modified N-doped three-dimensional porous carbon framework for a highly efficient oxygen reduction reaction, New J. Chem., 17 (2020) 6932-6939.

[77] Y. Li, J. Yang, J.P. Huang, Y.Z. Zhou, K. Xu, N. Zhao, X.N. Cheng, Soft template-assisted method for synthesis of nitrogen and sulfur co-doped three-dimensional reduced graphene oxide as an efficient metal free catalyst for oxygen reduction reaction, Carbon, 122 (2017) 237-246.

[78] W.S. Hummers, R.E. Offeman, Preparation of Graphitic Oxide, J. Am. Chem. Soc., 80 (1958) 1339-1339.

[79] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed, Wiley, New York, 2001.

[80] R.E. Davis, G.L. Horvath, C.W. Tobias, The solubility and diffusion coefficient of oxygen in potassium hydroxide solutions, Electrochim. Acta, 12 (1967) 287-297.

[81] S. Gottesfeld, I.D. Raistrick, S. Srinivasan, Oxygen reduction kinetics on a platinum RDE coated with a recast Nafion film, J. Electrochem. Soc., 134 (1987) 1455-1462.

[82] D.R. Lide, CRC Handbook of Physics and Chemistry, CRC Press, Boca Raton, 2001.

[83] R. Jäger, P.E. Kasatkin, E. Härk, P. Teppor, T. Romann, R. Härmas, I. Tallo, U. Mäeorg, U. Joost, P. Paiste, K. Kirsimäe, E. Lust, The effect of N precursors in Fe-N/C type catalysts based on activated silicon carbide derived carbon for oxygen reduction activity at various pH values, J. Electroanal. Chem., 823 (2018) 593-600.

[84] M. Bron, S. Fiechter, P. Bogdanoff, H. Tributsch, Thermogravimetry/Mass Spectrometry Investigations on the Formation of Oxygen Reduction Catalysts for PEM Fuel Cells on the Basis of Heat‐Treated Iron Phenanthroline Complexes, Fuel Cells From Fundamentals to Systems, 2 (2003) 137-142.

[85] H. Dong, X.W. Liu, T. Xu, Q.Y. Wang, X.H. Chen, S.N. Chen, H.L. Zhang, P. Liang, X.

Huang, X.Y. Zhang, Hydrogen peroxide generation in microbial fuel cells using graphene-based air-cathodes, Bioresour. Technol., 247 (2018) 684-689.

[86] M.A. Molina-García, N.V. Rees, "Metal-free" electrocatalysis: Quaternary-doped graphene and the alkaline oxygen reduction reaction, Appl. Catal., A, 553 (2018) 107-116.

[87] E.S.F. Cardoso, G.V. Fortunato, I. Palm, E. Kibena-Põldsepp, A.S. Greco, J.L.R. Júnior, A. Kikas, V. Kisand, M. Merisalu, V. Sammelselg, K. Tammeveski, G. Maia, Effects of N and O groups for oxygen reduction reaction on one- and two-dimensional carbonaceous materials, Electrochim. Acta, 344 (2020) 136052.

[88] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61 (2000) 14095-14107.

41 [89] F. Charreteur, S. Ruggeri, F. Jaouen, J.P. Dodelet, Increasing the activity of Fe/N/C catalysts in PEM fuel cell cathodes using carbon blacks with a high-disordered carbon content, Electrochim. Acta, 53 (2008) 6881-6889.

[90] M.T. Sougrati, V. Goellner, A.K. Schuppert, L. Stievano, F. Jaouen, Probing active sites in iron-based catalysts for oxygen electro-reduction: A temperature-dependent Fe-57 Mössbauer spectroscopy study, Catal. Today, 262 (2016) 110-120.

[91] T. Mineva, I. Matanovic, P. Atanassov, M.-T. Sougrati, L. Stievano, M. Clémancey, A.

Kochem, J.-M. Latour, F. Jaouen, Understanding Active Sites in Pyrolyzed Fe–N–C Catalysts for Fuel Cell Cathodes by Bridging Density Functional Theory Calculations and 57Fe Mössbauer Spectroscopy, ACS Catal., 9 (2019) 9359-9371.

[92] S. Wagner, H. Auerbach, C.E. Tait, I. Martinaiou, S.C.N. Kumar, C. Kübel, I. Sergeev, H.C. Wille, J. Behrends, J.A. Wolny, V. Schünemann, U.I. Kramm, Elucidating the Structural Composition of a Fe-N-C Catalyst by Nuclear-and Electron-Resonance Techniques, Angew.

Chem. Int. Ed., 58 (2019) 10486-10492.

[93] X.R. Zhang, Y.Q. Wang, Y.H. Du, M. Qing, F. Yu, Z.Q. Tian, P.K. Shen, Highly active

[93] X.R. Zhang, Y.Q. Wang, Y.H. Du, M. Qing, F. Yu, Z.Q. Tian, P.K. Shen, Highly active

Im Dokument TARTU ÜLIKOOL (Seite 31-45)