• Keine Ergebnisse gefunden

1. Lexicon – Geneetika. (http://geneetika.ee/lexicon/) [22.04.2019].

2. American Diabetes Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010;33:62–9.

3. Lubi, M. Diabeedi klassifikatsioon, diagnoosimine ja kompensatsiooni kriteeriumid. Eesti Arst 2006;85:362–5.

4. Knip M, Siljander H, Ilonen J, et al. Role of humoral beta-cell autoimmunity in type 1 diabetes.

Pediatr Diabetes 2016;17:17–24.

5. Verge CF, Gianani R, Kawasaki E, et al. Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes

1996;45:926–33.

6. Uibo R, Kisand K, Peterson P, et al. Immunoloogia. Tartu: Tartu Ülikooli kirjastus; 2015.

7. Noble JA. Immunogenetics of type 1 diabetes: A comprehensive review. J Autoimmun 2015;64:101–12.

8. Filippi CM, Herrath MG. Viral trigger for type 1 diabetes: pros and cons. Diabetes 2008;57:2863–71.

9. Pociot F, McDermott MF. Genetics of type 1 diabetes mellitus. Genes Immun 2002;3:235–49.

10. Filippi C, Herrath M. How viral infections affect the autoimmune process leading to type 1 diabetes. Cell Immunol 2005;233:125–32.

11. Viskari H, Oikarinen S, Hoppu S, et al. Live attenuated enterovirus vaccine (OPV) is not associated with islet autoimmunity in children with genetic susceptibility to type 1 diabetes:

prospective cohort study. Diabetologia 2018;61:203–9.

12. Tooley JE, Herold KC. Biomarkers in type 1 diabetes: application to the clinical trial setting.

Curr Opin Endocrinol Diabetes Obes 2014;21:287–92.

13. Sperling M. Type 1 diabetes: etiology and treatment. Totowa New Jersey: Humana Press;

2003.

14. Hummel S, Ziegler AG. Early determinants of type 1 diabetes: experience from the BABYDIAB and BABYDIET studies. Am J Clin Nutr 2011;94:1821–1823.

15. Antvorskov JC, Josefsen K, Engkilde K, et al. Dietary gluten and the development of type 1 diabetes. Diabetologia 2014;57:1770–80.

16. Borchers AT, Uibo R, Gershwin ME. The geoepidemiology of type 1 diabetes. Autoimmun Rev 2010;9:355–65.

17. Teeäär T, Liivak N, Heilman K, et al. Increasing incidence of childhood-onset type 1 diabetes mellitus among Estonian children in 1999–2006. Time trend analysis 1983–2006. Pediatr Diabetes 2010;11:107–10.

18. Tervise Arengu Instituut. Tervisestatistika ja terviseuuringute andmebaas. EH12:

Esmashaigestumus 100 000 elaniku kohta soo ja vanuserühma järgi.

38

(http://pxweb.tai.ee/PXWeb2015/pxweb/et/02Haigestumus/02Haigestumus__01Esmashaigestu mus/EH12.px/table/tableViewLayout2/?rxid=e6ca7e2f-f88e-42b8-9638-73480ab61601) [20.03.2019].

19. Patterson CC, Dahlquist GG, Gyürüs E, et al. Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective

registration study. Lancet 2009;373:2027–33.

20. Ludvigsson J. Increasing Incidence but Decreasing Awareness of Type 1 Diabetes in Sweden.

Diabetes Care 2017;40:143–4.

21. Patterson CC, Harjutsalo V, Rosenbauer J, et al. Trends and cyclical variation in the incidence of childhood type 1 diabetes in 26 European centres in the 25 year period 1989–2013: a multicentre prospective registration study. Diabetologia 2019;62:408–417.

22. Tuomi T. Type 1 and type 2 diabetes: what do they have in common? Diabetes 2005;54:40–5.

23. Uudelepp ML, Kohtla KTV. Haigusjuht: haruldane suhkruhaigus MODY 2. Eesti Arst 2006;85:46–8.

24. Kisand K, Uibo R. LADA and T1D in Estonian population – Two different genetic risk profiles. Gene 2012;497:285–91.

25. Reinehr T. Type 2 diabetes mellitus in children and adolescents. World J Diabetes 2013;4:270–

81.

26. Rajasalu T, Salur L. Laste ja täiskasvanute 1. tüüpi diabeet Eestis: HLA-DQB1 alleelid ja haigusseoselised autoantikehad. Eesti Arst. 2006;85:418–24.

27. Yoon J-W, Jun H-S. Autoimmune Destruction of Pancreatic b Cells. American Journal of Therapeutics 2005;12:580–591.

28. Tillmann V, Grünberg H. Laste diabeetilise ketoatsidoosi ravijuhend.

(https://www.kliinikum.ee/infokeskus/mk_files/ravijuhis.php?juhis=3203) [12.05.2019].

29. World Health Organization. Definition and diagnosis of Diabetes Mellitus and intermediate hyperglycmia: report of a WHO/IDF consultation; 2006.

(http://www.who.int/diabetes/publications/Definition and diagnosis of diabetes_new.pdf) [28.03.2019].

30. Ambos A, Raie E, Kiudma T, et al. 2. tüüpi diabeedi Eesti ravijuhend. Eesti Arst 2016;95:465–

73.

31. Lehtme R. C-peptiid (S,P-C-pept). (https://kliinikum.ee/yhendlabor/pildid/kasiraamat/BC/c-peptiid.pdf) [10.04.2019].

32. Zhang L, Eisenbarth GS. Prediction and prevention of Type 1 diabetes mellitus. J Diabetes 2011;3:48–57.

33. Knip M, Korhonen S, Kulmala P, et al. Prediction of type 1 diabetes in the general population.

Diabetes Care 2010;33:1206–12.

34. Bravis V, Kaur A, Walkey HC, et al. Relationship between islet autoantibody status and the clinical characteristics of children and adults with incident type 1 diabetes in a UK cohort. BMJ

39 Open 2018;8:e020904.

35. Orban T, Sosenko JM, Cuthbertson D, et al. Pancreatic islet autoantibodies as predictors of type 1 diabetes in the Diabetes Prevention Trial-Type 1. Diabetes Care 2009;32:2269–74.

36. Lampasona V, Liberati D. Islet Autoantibodies. Curr Diab Rep 2016;16:53.

37. Fenalti G, Buckle AM. Structural biology of the GAD autoantigen. Autoimmun Rev 2010;9:148–52.

38. Steck AK, Eisenbarth GS. Genetic Similarities Between Latent Autoimmune Diabetes and Type 1 and Type 2. Diabetes 2008;57:1433–7.

39. Palmer JP, Asplin CM, Clemons P, et al. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science 1983;222:1337–9.

40. Decochez, K. IA-2 antibodies. Diapedia 2014. (https://doi.org/10.14496/dia.21042821251.14) [12.02.2019].

41. Wenzlau JM, Juhl K, Yu L, et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci USA 2007;104:17040–5.

42. Arvan P, Pietropaolo M, Ostrov D, et al. Islet autoantigens: structure, function, localization, and regulation. Cold Spring Harb Perspect Med 2012;2:a007658.

43. Tein J-Y, MacKinnon DP. Estimating Mediated Effects with Survival Data. Tokyo: Springer Japan; 2003.

44. Vaziri-Sani F, Oak S, Radtke J, et al. ZnT8 autoantibody titers in type 1 diabetes patients decline rapidly after clinical onset. Autoimmunity 2010;43:598–606.

45. Cernea S, Dobreanu M. Diabetes and beta cell function: from mechanisms to evaluation and clinical implications. Biochem medica 2013;23:266–80.

46. Hughes JW, Riddlesworth TD, DiMeglio LA, et al. Autoimmune Diseases in Children and Adults With Type 1 Diabetes From the T1D Exchange Clinic Registry. J Clin Endocrinol Metab 2016;101:4931–7.

47. Krzewska A, Ben-Skowronek I. Effect of Associated Autoimmune Diseases on Type 1 Diabetes Mellitus Incidence and Metabolic Control in Children and Adolescents. Biomed Res Int 2016;2016:1–12.

48. Barker JM. Type 1 Diabetes-Associated Autoimmunity: Natural History, Genetic Associations, and Screening. J Clin Endocrinol Metab 2006;91:1210–7.

49. Steinberg L, Lamborn SD, Dornbusch SM, et al. Impact of Parenting Practices on Adolescent Achievement: Authoritative Parenting, School Involvement, and Encouragement to Succeed.

Child Dev 1992;63:1266.

50. Redondo MJ, Steck AK, Pugliese A. Genetics of type 1 diabetes. Pediatr Diabetes 2018;19:346–53.

51. Ilonen J, Kiviniemi M, Lempainen J, et al. Genetic susceptibility to type 1 diabetes in childhood – estimation of HLA class II associated disease risk and class II effect in various phases of islet autoimmunity. Pediatr Diabetes 2016;17:8–16.

40

52. Karvonen M, Viik-Kajander M, Moltchanova E, et al. Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group. Diabetes Care 2000;23:1516–26.

53. Hussen HI, Yang D, Cnattingius S, et al. Type I diabetes among children and young adults: the role of country of birth, socioeconomic position and sex. Pediatr Diabetes 2013;14:138–48.

54. Maahs DM, West NA, Lawrence JM, et al. Epidemiology of type 1 diabetes. Endocrinol Metab Clin North Am 2010;39:481–97.

55. Secrest AM, Costacou T, Gutelius B, et al. Associations between socioeconomic status and major complications in type 1 diabetes: the Pittsburgh epidemiology of diabetes complication (EDC) Study. Ann Epidemiol 2011;21:374–81.

56. Salur L, Oikarinen S, Tauriainen S, et al. Human Vaccines Enterovirus infections in young infants: Are children still protected by maternal antibodies? Hum Vaccin 2011;7:966–71.

41

Type One Diabetes Associated Autoantibodies, Genetical and Environmental Risk Factors in Estonia

Hanna Sepp

Summary

Diabetes mellitus is a group of metabolic diseases characterized by continuous increased plasma glucose levels resulting from defects in insulin secretion and/or function. Three major types of diabetes are type 1 diabetes (T1D), type 2 diabetes (T2D) and gestation diabetes (GDM). Most cases of T1D (~95%) result from a cellular-mediated autoimmune destruction of the β-cells of the pancreas (2). The trigger of the disease is still unknown but several associations with human leukocyte antigen (HLA) and some environmental factors, for instance enteroviruses, have been described. Also, common characteristic features of autoimmunity are autoantibodies against islet cells, insulin, GAD65 and ZnT8.

Type 1 diabetes can be diagnosed at any age, however, it is more common among those who are under 30-years old. At the same time, during last decade the incidence and prevalence of T1D have been increased, especially among children under 5-years old (19). According to the National Institute of Health Development of Estonia, the incidence rate of T1D in Estonia in 2016 was 43.0 per 100 000 persons. Distribution of incidence between age groups 1–4, 5–9, 10–14, 15–19, 20–24 and 25–34 years old was 10.7, 41.7, 44.3, 38.5, 40.0 and 39.5 per 100 000 persons, respectively (18).

This Master’s Thesis introduces a case-control study with the aim to describe and compare the spectrum of autoantibodies, HLA risk alleles and enterovirus antibodies of patients with newly diagnosed T1D based on the data from study of “Immune Mechanisms in Diabetes”.

A study population of these Master’s Thesis was formed during the period of 1 October 2004 until 31 October 2018. In total, 480 volunteers were involved in the study. Cases included (n=209) patients with newly diagnosed T1D who joined the study within two months of diagnose. They attended a medical appointment in one of the following clinical centers: Internal Medicine Clinic of Tartu University Hospital, Children’s Clinic of Tartu University Hospital, North Estonia Medical Centre, East Tallinn Central Hospital, Tallinn Children´s Hospital and Kuressaare Hospital. The control group (n=271) was formed as a convenient sample of volunteered persons without T1D, including employees and students of Tartu University, and patients who received microsurgical surgery in Children’s Clinic of Tartu University Hospital.

The data analysis included comparing T1D associated characteristics; 1) between cases vs. controls; and 2) between younger (age of under 19-years old) vs. older cases (age of

19-42

years old and older). Data analysis methods like the Mann-Whitney test, χ2-test or Fisher’s exact test and logistic regression modelling were conducted using statistical software STATA/IC 14.2.

In our study, those participants whose first-degree relatives had T1D had higher risk to T1D. These cases also had a higher risk of autoimmune endocrine comorbidities (OR=13,02 95% CI 2,83–59,78) and non-autoimmune endocrine comorbidities (OR=2,31 95% CI 0,38–

14,93). The odd ratio to have enterovirus antibodies was 2,82 times higher among cases than controls.

While comparing the distribution of HLA haplotypes between younger and older cases we found that risk-conferring HLA haplotype (DR3/DR4) was more frequent among younger than older cases, with prevalence of 33% and 18%, respectively. At the same time all types of autoantibodies were presented more commonly among younger than older cases. Moreover, for younger cases, the risk of single autoantibody was 4,36 (95% CI 1,09–17,37) times higher, the risk of two autoantibodies was 12,86 (95% CI 3,41–48,49) times higher and the risk of three autoantibodies was 18,00 (95% CI 4,86–67,26) times higher than for older cases.

In conclusion, both autoimmune and non-autoimmune comorbidities were more frequent among cases than controls. They also had higher probability for enterovirus antibodies.

All type of autoantibodies, as well as the tendency to have a different type of autoantibody at the same time, were more characteristic to younger cases. Risk-conferring HLA haplotype (DR3/DR4) was more frequent among younger than older cases.

43

Tänuavaldus

Käesoleva magistritöö autor soovib tänada:

 Juhendajaid immunoloogia professor Raivo Uibot ja biostatistika assistenti Heti Pisarevi

 Eelretsensenti Ene Indermittet

 Tartu Ülikooli bio- ja siirdemeditsiini instituudi immunoloogia osakonna spetsialisti Kaja Metsküla autoantikehade määramise eest

 Tartu Ülikooli bio- ja siirdemeditsiini instituudi immunoloogia osakonna spetsialisti Ija Talja enteroviiruste vastaste antikehade määramise eest

 Teisi TÜ bio- ja siirdemeditsiini instituudi immunoloogia õppetooli labori spetsialiste (sh Kristi Alnek, Helis Janson-Tasa, Astrid Oras, Katrin Pruul jt)

 Teisi TÜ bio- ja siirdemeditsiini instituudi immunoloogia õppetooli töötajaid abi ja mõistmise eest nii magistritöö kui kogu magistri õpingute jooksul

 Tänan koostöö eest:

kõiki uuringus osalenud vabatahtlikke, arste ja kliinikuid

SA TÜK Sisekliinik (Dr Gusseva, Dr Tuisk, Dr Matjus, Dr Salu, Dr Tammiksaar, Dr Reppo, Dr Lubi)

SA TÜK Kirurgiakliinik (Dr Varik)

ITK endokrinoloogiakeskus (Dr Jakovlev, Dr Merandi, Dr Verrev) SA PERH (Dr Rudenko, Dr Ambos)

Kuressaare Haigla SA (Dr Nemvalts) SA TLA (Dr Einberg, Dr Heilman)

SA TÜK Lastekliinik (Dr Peet, Dr Heilman).

 Tänan oma lähedasi kannatlikkuse, toetuse ja mõistmise eest magistriõpingute jooksul

44

Elulugu

I. Üldandmed 1. Ees- ja perekonnanimi: Hanna Sepp

2. Sünniaeg ja -koht: 26.11.1992, Põlva 3. Kodakondsus: Eesti

4. E-post: hanna.sepp@gmail.com 5. Haridus:

2017– … Tartu Ülikool, rahvatervishoiu magistriõpe

2013–2017 Tartu Tervishoiu Kõrgkool, bioanalüütika, rakenduskõrgharidus 2009–2010 Põlva Ühisgümnaasium

2000–2009 Põlva Keskkool 6. Keelteoskus:

eesti keel emakeel inglise keel kesktase 7. Töökogemus:

2017 veebruar–… Spetsialist, Tartu Ülikooli bio- ja siirdemeditsiini instituut, immunoloogia õppetool,

2019 veebruar–mai Praktikant, Maailma Terviseorganisatsioon (World Health Organization – WHO)

2016 juuli–august Abilaborant, SA Pärnu Haigla 2015 august Nooremõde, AS Põlva Haigla 2014 juuli–august Nooremõde, AS Põlva Haigla

II. Teaduslik ja arendustegevus

1. Sepp H. „Uriini mikrobioloogilise analüüsi juhend Tartu Tervishoiu Kõrgkooli mikrobioloogia laboris kasutamiseks“ Eesti Bioanalüütikute Ühingu 25. aastapäeva konverents, 11.11.2017; Tartu, Eesti.

2. Osalemine projektis IUT20-43 Diabeedi immuunmehhanismid, spetsialist, 2017–…

III. Erialane enesetäiendus

1. Osalemine koolitusel „Data Carpentry Workshop“, Elixir Estonia, 19–20.11.2018 2. Osalemine Eesti Bioanalüütikute Ühingu 25. aastapäeva konverentsil, 11.11.2017 3. Osalemine Tartu Ülikooli immunoloogia õppetooli teadusseminaridel.

Kuupäev: 15.05.2019

45

Lisad