• Keine Ergebnisse gefunden

Is cytoplasmic E1 a prerequisite for cytoplasmic SUMOylation?

MATERIAL AND METHODS

6. Is cytoplasmic E1 a prerequisite for cytoplasmic SUMOylation?

ar

2 homolog from The amount of E1 in the cytoplasm is usually very small compared to the nucle pool. In light of the fact that SUMOylation is an essential cellular process, the differences in the levels of E1 enzyme raised the fundamental question, whether the E1’s intracellular distribution is important for cells. Possibly, the vast amount in the nucleus may be needed for nuclear SUMOylation or cells may only tolerate low amounts of E1 in the cytoplasm to avoid unspecific SUMOylation.

A previous study by the laboratory of Dohmen on the Uba

Saccharomyces cerevisiae revealed that a fragment of S.c.Uba21-554 lacking 82 amino acids at the C-terminus, overexpressed under Gal1-promoter, is able to rescue the deletion of endogenous UBA2, even though the fragment mislocalized to the cytoplasm (Dohmen et al. 1995). A more sensitive phenotypic analysis of the S.c.Uba21-602 fragment under the control of the natural UBA2 promoter was performed in the laboratory of Lima. Expression of the fragment that only lacked the last 34 residues of S.c.Uba2 (including both basic clusters according to the mapped NLS in human Uba2) fully rescued the deletion of endogenous UBA2 gene but resulted in slightly altered Smt3 conjugation pattern of cell lysate (Lois et al. 2005). In contrast to these studies, Del Olmo and his co-workers observed that partial

disruption of the UBA2 gene, resulting in S.c.Uba21-594 - a fragment lacking 42 C-terminal residues, leads to a 2fold slower growth and larger cells compared to wild type yeast strains (del Olmo et al. 1997).

In line with the previous findings by Dohmen and Lima, the data obtained with the

1 does indeed not

E2 NLS-mutant S.c.Uba2-∆NLS strongly suggest that a predominant cytoplasmic localization of the E1 does not alter the viability of yeast under normal or stress conditions (Fig. 33, 34). However, even the variant S.c.Uba2-∆NLS-NES, which contained a disrupted NLS and an additional NES, was partially detected in the nucleus of cells (Fig. 32). In line with this finding, the study of Dohmen demonstrated that the C-terminal deletion fragment of S.c.Uba2, which lacked both basic clusters corresponding to the mapped NLS in H.s.Uba2, localized to both nucleus and cytoplasm (Dohmen et al. 1995). Therefore it can be assumed, that a partial nuclear localization of Uba2 very likely also underlied the studies by Lima and Del Olmo, in which the intracellular localization of the Uba2 was not explicitly tested (del Olmo et al. 1997; Lois et al. 2005). Consequently, the residual nuclear amount of E1 enzyme may explain the consistent findings that yeast strains with predominantly cytoplasmic Uba2 were viable and had no significant changes in the Smt3-modification pattern.

To study the effect of E1 solely present in the cytoplasm, I already began cloning of an Uba2 variant with a cytoplasmic membrane anchor. Such a variant would exclude the localization of any residual E1 in the nucleus and would therefore allow the phenotypic analysis of exclusively cytoplasmically localized E1.

If it proves true that the intracellular localization of SUMO E

significantly influence SUMOylation in the nucleus or in the cytoplasm, what does this mean for the mechanisms underlying SUMOylation in these two compartments?

In the case of exclusively nuclear localized E1 (scenario A), SUMO-charged enzyme Ubc9 would have to be exported into the cytoplasm to provide sufficient SUMOylating activity for modification of cytoplasmic targets (Fig. 37). Subsequently, the empty Ubc9 would be imported into the nucleus for another round of loading with SUMO by the nuclear localized E1. In the artificially created situation of exclusively cytoplasmic localized E1 (scenario B; tested in yeast strains), Ubc9 would have to be loaded in the cytoplasm and be imported into the nucleus for ensuring sufficent SUMO modifying activity in the nuclear compartment. After transfer of SUMO to a nuclear target, the empty Ubc9 would be exported to the cytoplasm for another round of SUMO transfer. If it proves true that both scenarios A and B do not cause drastic

changes of SUMOylation in either compartment, it could be deduced that both uncharged Ubc9 as well as SUMO-charged Ubc9 can shuttle in and out of the nucleus. This attractive model has some precedence, as ubiquitin was reported to serve as an import signal for the class III ubiquitin E2 enzyme UbcM2 (Plafker et al.

2004). Nuclear import of UbcM2 and interaction with its import receptor importin 11 were shown to depend on the charging of UbcM2 with ubiquitin.

Interestingly, the transport receptor importin 13 that has been shown to mediate

Figure 37: Working model of the nucleocytoplasmic transport of Ubc9. In the case of exclusively nuclear E1 the E2 Ubc9 is loaded with SUMO inside of the nucleus. Ubc9-SUMO is exported into the cytoplasm where it is required for SUMOylation of cytoplasmic targets.

Subsequently, empty Ubc9 is imported to be again loaded with SUMO for another round of SUMOylation.

nuclear import of Ubc9 has also been reported to mediate nuclear export of the eukaryotic initiation factor eIF1A (Mingot et al. 2001). This unusual double function would make importin 13 a potential candidate to mediate shuttling of Ubc9. However, since the presence of RanGTP has been shown to interfere with Ubc9/importin 13 complex formation, an alternative mechanism at least for the export of empty Ubc9 would be likely. Furthermore it would be interesting to analyze whether and how the according transport receptor(s) can distinguish between the empty and SUMO-charged form of Ubc9.

7. Perspectives

Generally, the SUMO E1 enzyme Aos1/Uba2 is unequally distributed between the nuclear and the cytoplasmic compartment. The presented work provides a detailed picture of the generation of the major nuclear pool. However, intensive studies will be needed to clarify the potential roles of active nuclear export, inhibition of nuclear import or cytoplasmic retention in the generation of the cytoplasmic pool of Aos1/Uba2.

Interestingly, preliminary results indicate that the intracellular localization of Aos1/Uba2 might not be of key importance for SUMOylation, raising the possibility that Ubc9 may play a critical role providing activated SUMO in different cellular compartments. If this proves true, it will be very interesting to further investigate the mechanisms underlying the intracellular localization of the E2 Ubc9. Here, it would be particularly interesting to study the mechanisms underlying SUMOylation of targets in the plasma membrane of synapses. The long distance from the nucleus, where most E1 and E2 is located, points towards an additional yet unknown mechanism that assures the local presence of sufficient SUMOylating activity. There, detailed analysis will be needed to elucidate whether cell type-specific or signal-triggered differences in the intracellular localization of the SUMO E1 and E2 enyzems exist.

REFERENCES

Adam, S. A., Marr, R. S. and Gerace, L. (1990). "Nuclear protein import in

permeabilized mammalian cells requires soluble cytoplasmic factors." J Cell Biol 111(3): 807-16.

Amerik, A. Y. and Hochstrasser, M. (2004). "Mechanism and function of deubiquitinating enzymes." Biochim Biophys Acta 1695(1-3): 189-207.

Anckar, J., Hietakangas, V., Denessiouk, K., Thiele, D. J., et al. (2006). "Inhibition of DNA binding by differential sumoylation of heat shock factors." Mol Cell Biol 26(3): 955-64.

Andrews, E. A., Palecek, J., Sergeant, J., Taylor, E., et al. (2005). "Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage." Mol Cell Biol 25(1): 185-96.

Arts, G. J., Fornerod, M. and Mattaj, I. W. (1998). "Identification of a nuclear export receptor for tRNA." Curr Biol 8(6): 305-14.

Askjaer, P., Bachi, A., Wilm, M., Bischoff, F. R., et al. (1999). "RanGTP-regulated interactions of CRM1 with nucleoporins and a shuttling DEAD-box helicase."

Mol Cell Biol 19(9): 6276-85.

Azuma, Y., Tan, S. H., Cavenagh, M. M., Ainsztein, A. M., et al. (2001). "Expression and regulation of the mammalian SUMO-1 E1 enzyme." FASEB J 15(10):

1825-7.

Baake, M., Bauerle, M., Doenecke, D. and Albig, W. (2001). "Core histones and linker histones are imported into the nucleus by different pathways." Eur J Cell Biol 80(11): 669-77.

Baba, D., Maita, N., Jee, J. G., Uchimura, Y., et al. (2005). "Crystal structure of thymine DNA glycosylase conjugated to SUMO-1." Nature 435(7044): 979-82.

Baboshina, O. V. and Haas, A. L. (1996). "Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2EPF and RAD6 are recognized by 26 S proteasome subunit 5." J Biol Chem 271(5): 2823-31.

Bailey, D. and O'Hare, P. (2004). "Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1." J Biol Chem 279(1): 692-703.

Bayer, P., Arndt, A., Metzger, S., Mahajan, R., et al. (1998). "Structure determination of the small ubiquitin-related modifier SUMO-1." J Mol Biol 280(2): 275-86.

Belaya, K., Tollervey, D. and Kos, M. (2006). "FLIPing heterokaryons to analyze nucleo-cytoplasmic shuttling of yeast proteins." RNA 12(5): 921-30.

Ben-Saadon, R., Zaaroor, D., Ziv, T. and Ciechanover, A. (2006). "The polycomb protein Ring1B generates self atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity." Mol Cell 24(5): 701-11.

Benson, M. D., Li, Q. J., Kieckhafer, K., Dudek, D., et al. (2007). "SUMO modification regulates inactivation of the voltage-gated potassium channel Kv1.5." Proc Natl Acad Sci U S A 104(6): 1805-10.

Bergink, S. and Jentsch, S. (2009). "Principles of ubiquitin and SUMO modifications in DNA repair." Nature 458(7237): 461-7.

Bernier-Villamor, V., Sampson, D. A., Matunis, M. J. and Lima, C. D. (2002).

"Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1." Cell 108(3): 345-56.

Besnault-Mascard, L., Leprince, C., Auffredou, M. T., Meunier, B., et al. (2005).

"Caspase-8 sumoylation is associated with nuclear localization." Oncogene 24(20): 3268-73.

Birnboim, H. C. and Doly, J. (1979). "A rapid alkaline extraction procedure for screening recombinant plasmid DNA." Nucleic Acids Res 7(6): 1513-23.

Boggio, R. and Chiocca, S. (2005). "Gam1 and the SUMO pathway." Cell Cycle 4(4):

533-5.

Boggio, R., Passafaro, A. and Chiocca, S. (2007). "Targeting SUMO E1 to ubiquitin ligases: a viral strategy to counteract sumoylation." J Biol Chem 282(21):

15376-82.

Bohnsack, R. N. and Haas, A. L. (2003). "Conservation in the mechanism of Nedd8 activation by the human AppBp1-Uba3 heterodimer." J Biol Chem 278(29):

26823-30.

Bonifacino, Dasso, Harford, Lippincott-Schwartz, et al. (2000). Current Protocols in Cell Biology, John Whiley & Sons.

Bossis, G., Chmielarska, K., Gartner, U., Pichler, A., et al. (2005). "A fluorescence resonance energy transfer-based assay to study SUMO modification in solution." Methods Enzymol 398: 20-32.

Bossis, G. and Melchior, F. (2006). "Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes." Mol Cell 21(3): 349-57.

Bossis, G. and Melchior, F. (2006). "SUMO: regulating the regulator." Cell Div 1: 13.

Brownawell, A. M. and Macara, I. G. (2002). "Exportin-5, a novel karyopherin,

mediates nuclear export of double-stranded RNA binding proteins." J Cell Biol 156(1): 53-64.

Chaikam, V. and Karlson, D. T. "Response and transcriptional regulation of rice SUMOylation system during development and stress conditions." BMB Rep 43(2): 103-9.

Chelsky, D., Ralph, R. and Jonak, G. (1989). "Sequence requirements for synthetic peptide-mediated translocation to the nucleus." Mol Cell Biol 9(6): 2487-92.

Cheng, C. H., Lo, Y. H., Liang, S. S., Ti, S. C., et al. (2006). "SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae." Genes Dev 20(15): 2067-81.

Cheng, T. S., Chang, L. K., Howng, S. L., Lu, P. J., et al. (2006). "SUMO-1 modification of centrosomal protein hNinein promotes hNinein nuclear localization." Life Sci 78(10): 1114-20.

Chi, N. C., Adam, E. J. and Adam, S. A. (1995). "Sequence and characterization of cytoplasmic nuclear protein import factor p97." J Cell Biol 130(2): 265-74.

Chi, N. C. and Adam, S. A. (1997). "Functional domains in nuclear import factor p97 for binding the nuclear localization sequence receptor and the nuclear pore."

Mol Biol Cell 8(6): 945-56.

Coligan, Dunn, Ploegh, Speicher, et al. (2003). Current Protocols in Protein Science, John Whiley & Sons.

Conti, E. and Kuriyan, J. (2000). "Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signals by karyopherin alpha." Structure 8(3): 329-38.

Coussen, F. and Choquet, D. (2007). "Neuroscience: wrestling with SUMO." Nature 447(7142): 271-2.

Cronshaw, J. M., Krutchinsky, A. N., Zhang, W., Chait, B. T., et al. (2002). "Proteomic analysis of the mammalian nuclear pore complex." J Cell Biol 158(5): 915-27.

Dadke, S., Cotteret, S., Yip, S. C., Jaffer, Z. M., et al. (2007). "Regulation of protein tyrosine phosphatase 1B by sumoylation." Nat Cell Biol 9(1): 80-5.

Dang, C. V. and Lee, W. M. (1988). "Identification of the human c-myc protein nuclear translocation signal." Mol Cell Biol 8(10): 4048-54.

del Olmo, M., Mizrahi, N., Gross, S. and Moore, C. L. (1997). "The Uba2 and Ufd1 proteins of Saccharomyces cerevisiae interact with poly(A) polymerase and affect the polyadenylation activity of cell extracts." Mol Gen Genet 255(2): 209-18.

Desterro, J. M., Rodriguez, M. S. and Hay, R. T. (1998). "SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation." Mol Cell 2(2): 233-9.

Desterro, J. M., Rodriguez, M. S., Kemp, G. D. and Hay, R. T. (1999). "Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1." J Biol Chem 274(15): 10618-24.

Desterro, J. M., Thomson, J. and Hay, R. T. (1997). "Ubch9 conjugates SUMO but not ubiquitin." FEBS Lett 417(3): 297-300.

Di Bacco, A., Ouyang, J., Lee, H. Y., Catic, A., et al. (2006). "The SUMO-specific protease SENP5 is required for cell division." Mol Cell Biol 26(12): 4489-98.

Dingwall, C., Sharnick, S. V. and Laskey, R. A. (1982). "A polypeptide domain that specifies migration of nucleoplasmin into the nucleus." Cell 30(2): 449-58.

Dohmen, R. J., Stappen, R., McGrath, J. P., Forrova, H., et al. (1995). "An essential yeast gene encoding a homolog of ubiquitin-activating enzyme." J Biol Chem 270(30): 18099-109.

Donaghue, C., Bates, H. and Cotterill, S. (2001). "Identification and characterisation of the Drosophila homologue of the yeast Uba2 gene." Biochim Biophys Acta 1518(1-2): 210-4.

Duncan, L. M., Piper, S., Dodd, R. B., Saville, M. K., et al. (2006). "Lysine-63-linked ubiquitination is required for endolysosomal degradation of class I molecules."

EMBO J 25(8): 1635-45.

Engelsma, D., Bernad, R., Calafat, J. and Fornerod, M. (2004). "Supraphysiological nuclear export signals bind CRM1 independently of RanGTP and arrest at Nup358." EMBO J 23(18): 3643-52.

Fabbro, M. and Henderson, B. R. (2003). "Regulation of tumor suppressors by nuclear-cytoplasmic shuttling." Exp Cell Res 282(2): 59-69.

Finley, D. (2009). "Recognition and processing of ubiquitin-protein conjugates by the proteasome." Annu Rev Biochem 78: 477-513.

Fischer, U., Huber, J., Boelens, W. C., Mattaj, I. W., et al. (1995). "The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs." Cell 82(3): 475-83.

Fitzgerald, M. E. and Drohat, A. C. (2008). "Coordinating the initial steps of base excision repair. Apurinic/apyrimidinic endonuclease 1 actively stimulates thymine DNA glycosylase by disrupting the product complex." J Biol Chem 283(47): 32680-90.

Fornerod, M., Ohno, M., Yoshida, M. and Mattaj, I. W. (1997). "CRM1 is an export receptor for leucine-rich nuclear export signals." Cell 90(6): 1051-60.

Fraser, A. G., Kamath, R. S., Zipperlen, P., Martinez-Campos, M., et al. (2000).

"Functional genomic analysis of C. elegans chromosome I by systematic RNA interference." Nature 408(6810): 325-30.

Fried, H. and Kutay, U. (2003). "Nucleocytoplasmic transport: taking an inventory."

Cell Mol Life Sci 60(8): 1659-88.

Gallouzi, I. E. and Steitz, J. A. (2001). "Delineation of mRNA export pathways by the use of cell-permeable peptides." Science 294(5548): 1895-901.

Garcia-Dominguez, M. and Reyes, J. C. (2009). "SUMO association with repressor complexes, emerging routes for transcriptional control." Biochim Biophys Acta 1789(6-8): 451-9.

Geetha, T., Jiang, J. and Wooten, M. W. (2005). "Lysine 63 polyubiquitination of the nerve growth factor receptor TrkA directs internalization and signaling." Mol Cell 20(2): 301-12.

Geiss-Friedlander, R. and Melchior, F. (2007). "Concepts in sumoylation: a decade on." Nat Rev Mol Cell Biol 8(12): 947-56.

Gill, G. (2005). "Something about SUMO inhibits transcription." Curr Opin Genet Dev 15(5): 536-41.

Giorgino, F., de Robertis, O., Laviola, L., Montrone, C., et al. (2000). "The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells." Proc Natl Acad Sci U S A 97(3): 1125-30.

Golebiowski, F., Matic, I., Tatham, M. H., Cole, C., et al. (2009). "System-wide changes to SUMO modifications in response to heat shock." Sci Signal 2(72):

ra24.

Gong, L., Li, B., Millas, S. and Yeh, E. T. (1999). "Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex." FEBS Lett 448(1): 185-9.

Gong, L., Millas, S., Maul, G. G. and Yeh, E. T. (2000). "Differential regulation of sentrinized proteins by a novel sentrin-specific protease." J Biol Chem 275(5):

3355-9.

Gong, L. and Yeh, E. T. (2006). "Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3." J Biol Chem 281(23): 15869-77.

Gorlich, D., Pante, N., Kutay, U., Aebi, U., et al. (1996). "Identification of different roles for RanGDP and RanGTP in nuclear protein import." EMBO J 15(20):

5584-94.

Guo, D., Li, M., Zhang, Y., Yang, P., et al. (2004). "A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes." Nat Genet 36(8): 837-41.

Haas, A. L. and Rose, I. A. (1982). "The mechanism of ubiquitin activating enzyme. A kinetic and equilibrium analysis." J Biol Chem 257(17): 10329-37.

Haas, A. L., Warms, J. V., Hershko, A. and Rose, I. A. (1982). "Ubiquitin-activating enzyme. Mechanism and role in protein-ubiquitin conjugation." J Biol Chem 257(5): 2543-8.

Haglund, K., Di Fiore, P. P. and Dikic, I. (2003). "Distinct monoubiquitin signals in receptor endocytosis." Trends Biochem Sci 28(11): 598-603.

Haglund, K., Sigismund, S., Polo, S., Szymkiewicz, I., et al. (2003). "Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation." Nat Cell Biol 5(5): 461-6.

Hang, J. and Dasso, M. (2002). "Association of the human SUMO-1 protease SENP2 with the nuclear pore." J Biol Chem 277(22): 19961-6.

Hardeland, U., Steinacher, R., Jiricny, J. and Schar, P. (2002). "Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates

enzymatic turnover." EMBO J 21(6): 1456-64.

Harreman, M. T., Kline, T. M., Milford, H. G., Harben, M. B., et al. (2004). "Regulation of nuclear import by phosphorylation adjacent to nuclear localization signals."

J Biol Chem 279(20): 20613-21.

Hatfield, P. M. and Vierstra, R. D. (1992). "Multiple forms of ubiquitin-activating enzyme E1 from wheat. Identification of an essential cysteine by in vitro mutagenesis." J Biol Chem 267(21): 14799-803.

Hay, R. T. (2005). "SUMO: a history of modification." Mol Cell 18(1): 1-12.

Hayashi, N., Shirakura, H., Uehara, T. and Nomura, Y. (2006). "Relationship between SUMO-1 modification of caspase-7 and its nuclear localization in human

neuronal cells." Neurosci Lett 397(1-2): 5-9.

Hershko, A. and Ciechanover, A. (1998). "The ubiquitin system." Annu Rev Biochem 67: 425-79.

Hicke, L. and Dunn, R. (2003). "Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins." Annu Rev Cell Dev Biol 19: 141-72.

Hochstrasser, M. (2000). "Evolution and function of ubiquitin-like protein-conjugation systems." Nat Cell Biol 2(8): E153-7.

Hochstrasser, M. (2001). "SP-RING for SUMO: new functions bloom for a ubiquitin-like protein." Cell 107(1): 5-8.

Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G., et al. (2002). "RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO." Nature 419(6903): 135-41.

Hood, J. K. and Silver, P. A. (1998). "Cse1p is required for export of Srp1p/importin-alpha from the nucleus in Saccharomyces cerevisiae." J Biol Chem 273(52):

35142-6.

Hsiao, H. H., Meulmeester, E., Frank, B. T., Melchior, F., et al. (2009).

""ChopNSpice," a mass spectrometric approach that allows identification of endogenous small ubiquitin-like modifier-conjugated peptides." Mol Cell Proteomics 8(12): 2664-75.

Hu, T., Guan, T. and Gerace, L. (1996). "Molecular and functional characterization of the p62 complex, an assembly of nuclear pore complex glycoproteins." J Cell Biol 134(3): 589-601.

Huang, D. T., Hunt, H. W., Zhuang, M., Ohi, M. D., et al. (2007). "Basis for a ubiquitin-like protein thioester switch toggling E1-E2 affinity." Nature 445(7126): 394-8.

Hutten, S. and Kehlenbach, R. H. (2006). "Nup214 is required for CRM1-dependent nuclear protein export in vivo." Mol Cell Biol 26(18): 6772-85.

Hutten, S. and Kehlenbach, R. H. (2007). "CRM1-mediated nuclear export: to the pore and beyond." Trends Cell Biol 17(4): 193-201.

Ikeda, F. and Dikic, I. (2008). "Atypical ubiquitin chains: new molecular signals.

'Protein Modifications: Beyond the Usual Suspects' review series." EMBO Rep 9(6): 536-42.

Jackson, P. K. (2001). "A new RING for SUMO: wrestling transcriptional responses into nuclear bodies with PIAS family E3 SUMO ligases." Genes Dev 15(23):

3053-8.

Jakel, S. and Gorlich, D. (1998). "Importin beta, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells." EMBO J 17(15): 4491-502.

Janke, C., Magiera, M. M., Rathfelder, N., Taxis, C., et al. (2004). "A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more

markers and promoter substitution cassettes." Yeast 21(11): 947-62.

Jin, L., Williamson, A., Banerjee, S., Philipp, I., et al. (2008). "Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex." Cell 133(4):

653-65.

Johnson, E. S. (2004). "Protein modification by SUMO." Annu Rev Biochem 73: 355-82.

Johnson, E. S. and Blobel, G. (1997). "Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p." J Biol Chem 272(43): 26799-802.

Johnson, E. S. and Gupta, A. A. (2001). "An E3-like factor that promotes SUMO conjugation to the yeast septins." Cell 106(6): 735-44.

Johnson, E. S., Schwienhorst, I., Dohmen, R. J. and Blobel, G. (1997). "The

ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer." EMBO J 16(18): 5509-19.

Jones, D. H. and Matus, A. I. (1974). "Isolation of synaptic plasma membrane from brain by combined flotation-sedimentation density gradient centrifugation."

Biochim Biophys Acta 356(3): 276-87.

Junn, E., Taniguchi, H., Jeong, B. S., Zhao, X., et al. (2005). "Interaction of DJ-1 with Daxx inhibits apoptosis signal-regulating kinase 1 activity and cell death." Proc Natl Acad Sci U S A 102(27): 9691-6.

Kadare, G., Toutant, M., Formstecher, E., Corvol, J. C., et al. (2003). "PIAS1-mediated sumoylation of focal adhesion kinase activates its

autophosphorylation." J Biol Chem 278(48): 47434-40.

Kaffman, A. and O'Shea, E. K. (1999). "Regulation of nuclear localization: a key to a door." Annu Rev Cell Dev Biol 15: 291-339.

Kagey, M. H., Melhuish, T. A., Powers, S. E. and Wotton, D. (2005). "Multiple activities contribute to Pc2 E3 function." EMBO J 24(1): 108-19.

Kagey, M. H., Melhuish, T. A. and Wotton, D. (2003). "The polycomb protein Pc2 is a SUMO E3." Cell 113(1): 127-37.

Kalderon, D., Richardson, W. D., Markham, A. F. and Smith, A. E. (1984). "Sequence requirements for nuclear location of simian virus 40 large-T antigen." Nature 311(5981): 33-8.

Kang, J. S., Saunier, E. F., Akhurst, R. J. and Derynck, R. (2008). "The type I TGF-beta receptor is covalently modified and regulated by sumoylation." Nat Cell Biol 10(6): 654-64.

Kataoka, N., Bachorik, J. L. and Dreyfuss, G. (1999). "Transportin-SR, a nuclear import receptor for SR proteins." J Cell Biol 145(6): 1145-52.

Kehlenbach, R. H. (2009). Nuclear transport. Austin, Tex., Landes Bioscience.

Kehlenbach, R. H., Assheuer, R., Kehlenbach, A., Becker, J., et al. (2001).

"Stimulation of nuclear export and inhibition of nuclear import by a Ran mutant deficient in binding to Ran-binding protein 1." J Biol Chem 276(17): 14524-31.

Kehlenbach, R. H., Dickmanns, A., Kehlenbach, A., Guan, T., et al. (1999). "A role for RanBP1 in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export." J Cell Biol 145(4): 645-57.

Kerscher, O., Felberbaum, R. and Hochstrasser, M. (2006). "Modification of proteins by ubiquitin and ubiquitin-like proteins." Annu Rev Cell Dev Biol 22: 159-80.

Kim, H. T., Kim, K. P., Lledias, F., Kisselev, A. F., et al. (2007). "Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages." J Biol Chem 282(24): 17375-86.

Kim, H. T., Kim, K. P., Uchiki, T., Gygi, S. P., et al. (2009). "S5a promotes protein degradation by blocking synthesis of nondegradable forked ubiquitin chains."

Kim, H. T., Kim, K. P., Uchiki, T., Gygi, S. P., et al. (2009). "S5a promotes protein degradation by blocking synthesis of nondegradable forked ubiquitin chains."