• Keine Ergebnisse gefunden

Investigations on uptake and effects of iron oxide nanoparticles in vivo

1. Introduction

33.4. Future perspectives

3.4.5. Investigations on uptake and effects of iron oxide nanoparticles in vivo

The most important aspect for risk assessment and investigations on therapeutic potential of IONPs in biomedical application are in vivo studies. Though some publications suggest entry of IONPs into brain through the intact BBB (Jain et al., 2008; Wang et al., 2010; Yan et al., 2013), the data are not so clear due to limited resolution of the published microscopic images. Hence, different application modes should be used to investigate possible routes of entry, the amount of iron reaching the brain, and a time dependent distribution of IONPs within the brain. For such studies, fluorescent IONPs should be applied intravenously, intracerebrally or intranasally in rodents and the IONPs in brain and other tissues could be visualized in slices by fluorescence microscopy coupled with immunocytochemical staining, by Perls’ iron staining and/or by TEM after certain incubation periods.

For the brain, parameters of toxicity such as ROS generation or apoptosis as well as changes in morphology of the neural cell types should be analyzed after an IONP exposure, e.g. if microglia turned into the activated state as reported in mice after

intranasal application (Wang et al., 2011a). Moreover, behavioral studies on rats or mice are highly warranted to investigate whether IONP exposure may have a long-term effect on cognition since data on that issue are scarce (chapter 1.4). In order to study whether an altered neural iron content in IONP-treated brains promote neurodegenerative disorders, application of IONPs to animal models for Alzheimer’s and Parkinson’s disease (Bove and Perier, 2012; Dujardin et al., 2014) would be an option. In this context, analysis of the brain from IONP-treated animals for pathological alterations and characteristics of the neurodegenerative disorders should be performed.

In addition to potential adverse effects, IONPs might also be beneficial when applied as drug delivery system. As vehicle for therapeutics, IONPs may be used to treat disorders such as Alzheimer’s or Parkinson’s disease as reported recently for functionalized carbon nanotubes (Professor Dr. Kostas Kostarelos, personal communication). Iron deficiency in brain which causes disorders like restless legs syndrome is not easy to treat by peripheral application of low molecular weight iron due to poor permeability of the brain for iron (Hare et al., 2013). Due to the possibility to functionalize IONPs for good permeation of the BBB into the brain, IONPs might also be a valuable tool to treat iron deficiency.

3.5. R References

Albanese, A., Walkey, C. D., Olsen, J. B., Guo, H. B., Emili, A. & Chan, W. C. W.

(2014). Secreted biomolecules alter the biological identity and cellular interactions of nanoparticles. ACS Nano 8: 5515-5526.

Almeida, A., Almeida, J., Bolanos, J. P. & Moncada, S. (2001). Different responses of astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in astrocyte protection. Proc Natl Acad Sci USA 98: 15294-15299.

Arvidson, B. & Tjalve, H. (1986). Distribution of Cd-109 in the nervous-system of rats after intravenous-injection. Acta Neuropathol 69: 111-116.

Barateiro, A. & Fernandes, A. (2014). Temporal oligodendrocyte lineage progression: in vitro models of proliferation, differentiation and myelination. Biochim Biophys Acta 1843: 1917-1929.

Barua, S. & Rege, K. (2009). Cancer-cell-phenotype-dependent differential intracellular trafficking of unconjugated quantum dots. Small 5: 370-376.

Batista-Nascimento, L., Pimentel, C., Menezes, R. A. & Rodrigues-Pousada, C. (2012).

Iron and neurodegeneration: from cellular homeostasis to disease. Oxid Med Cell Longev 2012: 128647 (8 p.).

Bayraktar, O. A., Fuentealba, L. C., Alvarez-Buylla, A. & Rowitch, D. H. (2014).

Astrocyte development and heterogeneity. Cold Spring Harb Perspect Biol 7:

a020362 (17 p.).

Benjaminsen, R. V., Sun, H. H., Henriksen, J. R., Christensen, N. M., Almdal, K. &

Andresen, T. L. (2011). Evaluating nanoparticle sensor design for intracellular pH measurements. ACS Nano 5: 5864-5873.

Bertorelle, F., Wilhelm, C., Roger, J., Gazeau, F., Menager, C. & Cabuil, V. (2006).

Fluorescence-modified superparamagnetic nanoparticles: intracellular uptake and use in cellular imaging. Langmuir 22: 5385-5391.

Bickmeyer, U., Grube, A., Klings, K. W. & Kock, M. (2008). Ageladine A, a pyrrole-imidazole alkaloid from marine sponges, is a pH sensitive membrane permeable dye. Biochem Biophys Res Commun 373: 419-422.

Bickmeyer, U., Heine, M., Podbielski, I., Mund, D., Kock, M. & Karuso, P. (2010).

Tracking of fast moving neuronal vesicles with ageladine A. Biochem Biophys Res Commun 402: 489-494.

Blanchette, M., Tremblay, L., Lepage, M. & Fortin, D. (2014). Impact of drug size on brain tumor and brain parenchyma delivery after a blood-brain barrier disruption.

J Cereb Blood Flow Metab 34: 820-826.

Blouin, C. M. (2013). Endocytose sans clathrin – La voie est libre! Med Sci (Paris) 29:

890-896.

Bove, J. & Perier, C. (2012). Neurotoxin-based models of Parkinson's disease.

Neuroscience 211: 51-76.

Brown, G. C. & Neher, J. J. (2012). Eaten alive! Cell death by primary phagocytosis:

'phagoptosis'. Trends Biochem Sci 37: 325-332.

Burlacu, A., Jinga, V., Gafencu, A. V. & Simionescu, M. (2001). Severity of oxidative stress generates different mechanisms of endothelial cell death. Cell Tissue Res 306: 409-416.

Canton, I. & Battaglia, G. (2012). Endocytosis at the nanoscale. Chem Soc Rev 41: 2718-2739.

Correale, J. (2014). The role of microglial activation in disease progression. Mult Scler 20: 1288-1295.

Dadras, A., Riazi, G. H., Afrasiabi, A., Naghshineh, A., Ghalandari, B. & Mokhtari, F.

(2013). In vitro study on the alterations of brain tubulin structure and assembly affected by magnetite nanoparticles. J Biol Inorg Chem 18: 357-369.

Dawson, K. A., Salvati, A. & Lynch, I. (2009). Nanoparticles reconstruct lipids. Nat Nanotechnol 4: 84-85.

De Bock, M., Decrock, E., Wang, N., Bol, M., Vinken, M., Bultynck, G. & Leybaert, L.

(2014). The dual face of connexin-based astroglial Ca2+ communication: a key player in brain physiology and a prime target in pathology. Biochim Biophys Acta 1843: 2211-2232.

deBlaquiere, J. & Burgess, A. W. (1999). Affinity purification of plasma membranes. J Biomol Tech 10: 64-71.

DeKroon, R. M. & Armati, P. J. (2001). The endosomal trafficking of apolipoprotein E3 and E4 in cultured human brain neurons and astrocytes. Neurobiol Dis 8: 78-89.

Deng, M., Huang, Z., Zou, Y., Yin, G., Liu, J. & Gu, J. (2014). Fabrication and neuron cytocompatibility of iron oxide nanoparticles coated with silk-fibroin peptides.

Colloids Surf B Biointerfaces 116C: 465-471.

Doherty, G. J. & McMahon, H. T. (2009). Mechanisms of endocytosis. Annu Rev Biochem 78: 857-902.

dos Santos, T., Varela, J., Lynch, I., Salvati, A. & Dawson, K. A. (2011). Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS One 6: e24438 (10 p.).

Du, L. B., Suo, S. Q. G. W., Wang, G. Q., Jia, H. Y., Liu, K. J., Zhao, B. L. & Liu, Y.

(2013). Mechanism and cellular kinetic studies of the enhancement of antioxidant activity by using surface-functionalized gold nanoparticles. Chemistry 19: 1281-1287.

Dujardin, S., Colin, M. & Buee, L. (2014). Animal models of tauopathies and their implications for research/translation into the clinic. Neuropathol Appl Neurobiol, in press.

Fauconnier, N., Pons, J. N., Roger, J. & Bee, A. (1997). Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J Colloid Interface Sci 194: 427-433.

Ferrati, S., Mack, A., Chiappini, C., Liu, X. W., Bean, A. J., Ferrari, M. & Serda, R. E.

(2010). Intracellular trafficking of silicon particles and logic-embedded vectors.

Nanoscale 2: 1512-1520.

Fleischer, C. C., Kumar, U. & Payne, C. K. (2013). Cellular binding of anionic nanoparticles is inhibited by serum proteins independent of nanoparticle composition. Biomater Sci 1: 975-982.

Geppert, M., Hohnholt, M., Grunwald, I., Baumer, M. & Dringen, R. (2009).

Accumulation of iron oxide nanoparticles by cultured astrocytes. J Neurochem 110: 71-71.

Geppert, M., Hohnholt, M. C., Nurnberger, S. & Dringen, R. (2012). Ferritin up-regulation and transient ROS production in cultured brain astrocytes after loading with iron oxide nanoparticles. Acta Biomater 8: 3832-3839.

Geppert, M., Hohnholt, M. C., Thiel, K., Nurnberger, S., Grunwald, I., Rezwan, K. &

Dringen, R. (2011). Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes. Nanotechnology 22: 145101 (11 p.).

Geppert, M., Petters, C., Thiel, K. & Dringen, R. (2013). The presence of serum alters the properties of iron oxide nanoparticles and lowers their accumulation by cultured brain astrocytes. J Nanopart Res 15: 1349-1363.

Gnanaprakash, G., Mahadevan, S., Jayakumar, T., Kalyanasundaram, P., Philip, J. & Raj, B. (2007). Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles. Mater Chem Phys 103: 168-175.

Grabrucker, A. M., Garner, C. C., Boeckers, T. M., Bondioli, L., Ruozi, B., Forni, F., Vandelli, M. A. & Tosi, G. (2011). Development of novel Zn2+ loaded nanoparticles designed for cell-type targeted drug release in CNS neurons: in vitro evidences. PLoS One 6 (11 p.).

Gramowski, A., Flossdorf, J., Bhattacharya, K., Jonas, L., Lantow, M., Rahman, Q., Schiffmann, D., Weiss, D. G. & Dopp, E. (2010). Nanoparticles induce changes of the electrical activity of neuronal networks on microelectrode array neurochips.

Environ Health Perspect 118: 1363-1369.

Hare, D., Ayton, S., Bush, A. & Lei, P. (2013). A delicate balance: iron metabolism and diseases of the brain. Front Aging Neurosci 5: 34 (19 p.).

Hasany, S., Ahmed, I., Rajan, J. & Rehman, A. (2012). Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci Technol 2:

148-158.

He, N. B. & Hui, S. W. (1985). Electron-microscopic observation of domain movement in reconstituted erythrocyte-membranes. Proc Natl Acad Sci USA 82: 7304-7308.

Hohnholt, M., Geppert, M. & Dringen, R. (2010). Effects of iron chelators, iron salts, and iron oxide nanoparticles on the proliferation and the iron content of oligodendroglial OLN-93 cells. Neurochem Res 35: 1259-1268.

Hohnholt, M. C. & Dringen, R. (2011). Iron-dependent formation of reactive oxygen species and glutathione depletion after accumulation of magnetic iron oxide nanoparticles by oligodendroglial cells. J Nanopart Res 13: 6761-6774.

Hohnholt, M. C., Blumrich, E. M. & Dringen, R. (2014). Multiassay analysis of the toxic potential of hydrogen peroxide on cultured neurons. J Neuroscr res, in press.

Hohnholt, M. C., Geppert, M. & Dringen, R. (2011). Treatment with iron oxide nanoparticles induces ferritin synthesis but not oxidative stress in oligodendroglial cells. Acta Biomater 7: 3946-3954.

Ivanov, A. I. (2008). Pharmacological inhibition of endocytic pathways: is it specific enough to be useful? Methods Mol Biol 440: 15-33.

Iversen, T. G., Frerker, N. & Sandvig, K. (2012). Uptake of ricinB-quantum dot nanoparticles by a macropinocytosis-like mechanism. J Nanobiotechnology 10: 33 (11 p.).

Jain, T. K., Reddy, M. K., Morales, M. A., Leslie-Pelecky, D. L. & Labhasetwar, V.

(2008). Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 5: 316-327.

Jedlovszky-Hajdu, A., Bombelli, F. B., Monopoli, M. P., Tombacz, E. & Dawson, K. A.

(2012). Surface coatings shape the protein corona of SPIONs with relevance to their application in vivo. Langmuir 28: 14983-14991.

Jenkins, S. I., Pickard, M. R., Furness, D. N., Yiu, H. H. & Chari, D. M. (2013).

Differences in magnetic particle uptake by CNS neuroglial subclasses:

implications for neural tissue engineering. Nanomedicine (Lond) 8: 951-968.

Jordan, A., Scholz, R., Maier-Hauff, K., van Landeghem, F. K. H., Waldoefner, N., Teichgraeber, U., Pinkernelle, J., Bruhn, H., Neumann, F., Thiesen, B., von Deimling, A. & Felix, R. (2006). The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 78: 7-14.

Kaltz, A. (2011). Herstellung und Charakterisierung von fluoreszenzmarkierten Eisenoxid-Nanopartikeln. Bachelor thesis, University of Bremen, Germany.

Kenzaoui, B. H., Angeoni, S., Overstolz, T., Niedermann, P., Bernasconi, C. C., Liley, M. & Juillerat-Jeanneret, L. (2013). Transfer of ultrasmall iron oxide nanoparticles from human brain-derived endothelial cells to human glioblastoma cells. ACS Appl Mater Interfaces 5: 3581-3586.

Kim, J. S., Yoon, T. J., Yu, K. N., Noh, M. S., Woo, M., Kim, B. G., Lee, K. H., Sohn, B. H., Park, S. B., Lee, J. K. & Cho, M. H. (2006). Cellular uptake of magnetic

nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J Vet Sci 7: 321-326.

Kozler, P., Riljak, V. & Pokorny, J. (2013). Both water intoxication and osmotic BBB disruption increase brain water content in rats. Physiol Res 62: S75-S80.

Lesniak, A., Salvati, A., Santos-Martinez, M. J., Radomski, M. W., Dawson, K. A. &

Aberg, C. (2013). Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 135: 1438-1444.

Levy, M., Lagarde, F., Maraloiu, V. A., Blanchin, M. G., Gendron, F., Wilhelm, C. &

Gazeau, F. (2010). Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology 21: 395103 (11 p.).

Li, P., Fang, L. B., Zhou, H., Zhang, W., Wang, X., Li, N., Zhong, H. B. & Tang, B.

(2011a). A new ratiometric fluorescent probe for detection of Fe2+ with high sensitivity and its intracellular imaging applications. Chemistry 17: 10520-10523.

Li, Y. H., Li, X. L., Wong, Y. S., Chen, T. F., Zhang, H. B., Liu, C. R. & Zheng, W. J.

(2011b). The reversal of cisplatin-induced nephrotoxicity by selenium nanoparticles functionalized with 11-mercapto-1-undecanol by inhibition of ROS-mediated apoptosis. Biomaterials 32: 9068-9076.

Mahmoudi, M., Abdelmonem, A. M., Behzadi, S., Clement, J. H., Dutz, S., Ejtehadi, M.

R., Hartmann, R., Kantner, K., Linne, U., Maffre, P., Metzler, S., Moghadam, M.

K., Pfeiffer, C., Rezaei, M., Ruiz-Lozano, P., Serpooshan, V., Shokrgozar, M. A., Nienhaus, G. U. & Parak, W. J. (2013). Temperature: the "ignored" factor at the nanobio interface. ACS Nano 7: 6555-6562.

Maldonado-Baez, L., Williamson, C. & Donaldson, J. G. (2013). Clathrin-independent endocytosis: a cargo-centric view. Exp Cell Res 319: 2759-2769.

Malvindi, M. A., De Matteis, V., Galeone, A., Brunetti, V., Anyfantis, G. C., Athanassiou, A., Cingolani, R. & Pompa, P. P. (2014). Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering.

PLoS One 9: e85835 (11 p.).

Massart, R. (1981). Preparation of aqueous magnetic liquids in alkaline and acidic media.

IEEE Trans Magn 17: 1247-1248.

Mattson, M. P., Zhang, Y. & Bose, S. (1993). Growth-factors prevent mitochondrial dysfunction, loss of calcium homeostasis, and cell injury, but not ATP depletion in hippocampal-neurons deprived of glucose. Exp Neurol 121: 1-13.

McCormack, P. L. (2012). Ferumoxytol: in iron deficiency anaemia in adults with chronic kidney disease. Drugs 72: 2013-2022.

Mejias, R., Gutierrez, L., Salas, G., Perez-Yague, S., Zotes, T. M., Lazaro, F. J., Morales, M. P. & Barber, D. F. (2013). Long term biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles support their use in biomedical applications. J Control Release 171: 225-233.

Mejias, R., Perez-Yague, S., Roca, A. G., Perez, N., Villanueva, A., Canete, M., Manes, S., Ruiz-Cabello, J., Benito, M., Labarta, A., Batlle, X., Veintemillas-Verdaguer, S., Morales, M. P., Barber, D. F. & Serna, C. J. (2010). Liver and brain imaging through dimercaptosuccinic acid-coated iron oxide nanoparticles. Nanomedicine (Lond) 5: 397-408.

Monopoli, M. P., Aberg, C., Salvati, A. & Dawson, K. A. (2012). Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7: 779-786.

Napoli, I. & Neumann, H. (2009). Microglial clearance function in health and disease.

Neuroscience 158: 1030-1038.

Nel, A. E., Madler, L., Velegol, D., Xia, T., Hoek, E. M., Somasundaran, P., Klaessig, F., Castranova, V. & Thompson, M. (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8: 543-557.

Neumann, H., Kotter, M. R. & Franklin, R. J. M. (2009). Debris clearance by microglia:

an essential link between degeneration and regeneration. Brain 132: 288-295.

Neuwelt, E. A., Varallyay, P., Bago, A. G., Muldoon, L. L., Nesbit, G. & Nixon, R.

(2004). Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours. Neuropathol Appl Neurobiol 30: 456-471.

Ng, E. L. & Tang, B. L. (2008). Rab GTPases and their roles in brain neurons and glia.

Brain Res Rev 58: 236-246.

Nie, Z., Liu, K. J., Zhong, C. J., Wang, L. F., Yang, Y., Tian, Q. & Liu, Y. (2007).

Enhanced radical scavenging activity by antioxidant-functionalized gold nanoparticles: a novel inspiration for development of new artificial antioxidants.

Free Radic Biol Med 43: 1243-1254.

Oberheim, N. A., Goldman, S. A. & Nedergaard, M. (2012). Heterogeneity of astrocytic form and function. Methods Mol Biol 814: 23-45.

Overly, C. C., Lee, K. D., Berthiaume, E. & Hollenbeck, P. J. (1995). Quantitative measurement of intraorganelle pH in the endosomal lysosomal pathway in neurons by using ratiometric imaging with pyranine. Proc Natl Acad Sci USA 92:

3156-3160.

Pais, T. F., Figueiredo, C., Peixoto, R., Braz, M. H. & Chatterjee, S. (2008). Necrotic neurons enhance microglial neurotoxicity through induction of glutaminase by a MyD88-dependent pathway. J Neuroinflammation 5: 43 (12 p.).

Pamenter, M. E., Perkins, G. A., McGinness, A. K., Gu, X. Q., Ellisman, M. H. &

Haddad, G. G. (2012). Autophagy and apoptosis are differentially induced in neurons and astrocytes treated with an in vitro mimic of the ischemic penumbra.

PLoS One 7: e51469 (12 p.).

Peng, Y. K., Lui, C. N., Lin, T. H., Chang, C., Chou, P. T., Yung, K. K. & Tsang, S. C.

(2014). Multifunctional silica-coated iron oxide nanoparticles: a facile four-in-one system for in situ study of neural stem cell harvesting. Faraday Discuss, in press.

Peters, D. G. & Connor, J. R. (2014). Introduction to cells comprising the nervous system. Adv Neurobiol 9: 33-45.

Petri-Fink, A., Steitz, B., Finka, A., Salaklang, J. & Hofmann, H. (2008). Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs):

colloidal stability, cytotoxicity, and cellular uptake studies. Eur J Pharm Biopharm 68: 129-137.

Pickard, M. R. & Chari, D. M. (2010). Robust uptake of magnetic nanoparticles (MNPs) by central nervous system (CNS) microglia: implications for particle uptake in mixed neural cell populations. Int J Mol Sci 11: 967-981.

Pickard, M. R., Jenkins, S. I., Koller, C. J., Furness, D. N. & Chari, D. M. (2010).

Magnetic nanoparticle labeling of astrocytes derived for neural transplantation.

Tissue Eng Part C Methods 17: 89-99.

Pinkernelle, J., Calatayud, P., Goya, G. F., Fansa, H. & Keilhoff, G. (2012). Magnetic nanoparticles in primary neural cell cultures are mainly taken up by microglia.

BMC Neurosci 13: 32-48.

Pisanic, T. R., 2nd, Blackwell, J. D., Shubayev, V. I., Finones, R. R. & Jin, S. (2007).

Nanotoxicity of iron oxide nanoparticle internalization in growing neurons.

Biomaterials 28: 2572-2581.

Pyrgiotakis, G., Blattmann, C. O. & Demokritou, P. (2014). Real-time nanoparticle-cell interactions in physiological media by atomic force microscopy. ACS Sustain Chem Eng 2: 1681-1690.

Qaddoumi, M. G., Gukasyan, H. J., Davda, J., Labhasetwar, V., Kim, K. J. & Lee, V. H.

L. (2003). Clathrin and caveolin-1 expression in primary pigmented rabbit conjunctival epithelial cells: role in PLGA nanoparticle endocytosis. Mol Vis 9:

559-568.

Rivet, C. J., Yuan, Y., Borca-Tasciuc, D. A. & Gilbert, R. J. (2012). Altering iron oxide nanoparticle surface properties induce cortical neuron cytotoxicity. Chem Res Toxicol 25: 153-161.

Roberts, R. C., Roche, J. K. & McCullumsmith, R. E. (2014). Localization of excitatory amino acid transporters EAAT1 and EAAT2 in human postmortem cortex: a light and electron microscopic study. Neuroscience 277: 522-540.

Sahay, G., Alakhova, D. Y. & Kabanov, A. V. (2010). Endocytosis of nanomedicines. J Control Release 145: 182-195.

Sakulkhu, U., Maurizi, L., Mahmoudi, M., Motazacker, M., Vries, M., Gramoun, A., Ollivier Beuzelin, M. G., Vallee, J. P., Rezaee, F. & Hofmann, H. (2014). Ex situ evaluation of the composition of protein corona of intravenously injected superparamagnetic nanoparticles in rats. Nanoscale 6: 11439-11450.

Saleem, M., Abdullah, R., Ali, A., Park, B. J., Choi, E. H., Hong, I. S. & Lee, K. H.

(2014). Facile synthesis, cytotoxicity and bioimaging of Fe3+ selective fluorescent chemosensor. Bioorg Med Chem 22: 2045-2051.

Schaub, N. J., Rende, D., Yuan, Y., Gilbert, R. J. & Borca-Tasciuc, D. A. (2014).

Reduced astrocyte viability at physiological temperatures from magnetically activated iron oxide nanoparticles. Chem Res Toxicol 27: 2023-2035.

Shukla, S., Jadaun, A., Arora, V., Sinha, R. K., Biyani, N. & Jain, V. K. (2014). In vitro toxicity assessment of chitosan oligosaccharide coated iron oxide nanoparticles.

Toxicol Rep, in press.

Smith, J. A., Das, A., Ray, S. K. & Banik, N. L. (2012a). Role of pro-inflammatory cytokines released from microglia in neurodegenerative diseases. Brain Res Bull 87: 10-20.

Smith, P. J., Giroud, M., Wiggins, H. L., Gower, F., Thorley, J. A., Stolpe, B., Mazzolini, J., Dyson, R. J. & Rappoport, J. Z. (2012b). Cellular entry of nanoparticles via serum sensitive clathrin-mediated endocytosis, and plasma membrane permeabilization. Int J Nanomedicine 7: 2045-2055.

Soenen, S. J. H., Himmelreich, U., Nuytten, N. & De Cuyper, M. (2011). Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling.

Biomaterials 32: 195-205.

Stehle, J. H., Saade, A., Rawashdeh, O., Ackermann, K., Jilg, A., Sebesteny, T. &

Maronde, E. (2011). A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 51: 17-43.

Stenken, J. A. & Poschenrieder, A. J. (2015). Bioanalytical chemistry of cytokines - a review. Anal Chim Acta 853C: 95-115.

Sun, Z. Z., Yathindranath, V., Worden, M., Thliveris, J. A., Chu, S., Parkinson, F. E., Hegmann, T. & Miller, D. W. (2013). Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models. Int J Nanomedicine 8: 961-970.

Swanson, R. A., Farrell, K. & Stein, B. K. (1997). Astrocyte energetics, function, and death under conditions of incomplete ischemia: a mechanism of glial death in the penumbra. Glia 21: 142-153.

Taschner, C. A., Wetzel, S. G., Tolnay, M., Froehlich, J., Merlo, A. & Radue, E. W.

(2005). Characteristics of ultrasmall superparamagnetic iron oxides in patients with brain tumors. AJR Am J Roentgenol 185: 1477-1486.

Tenuta, T., Monopoli, M. P., Kim, J., Salvati, A., Dawson, K. A., Sandin, P. & Lynch, I.

(2011). Elution of labile fluorescent dye from nanoparticles during biological use.

PLoS One 6: e25556 (6 p.).

Thomsen, L. B., Linemann, T., Pondman, K. M., Lichota, J., Kim, K. S., Pieters, R. J., Visser, G. M. & Moos, T. (2013). Uptake and transport of superparamagnetic iron oxide nanoparticles through human brain capillary endothelial cells. ACS Chem Neurosci 4: 1352-1360.

Tysiak, E., Asbach, P., Aktas, O., Waiczies, H., Smyth, M., Schnorr, J., Taupitz, M. &

Wuerfel, J. (2009). Beyond blood brain barrier breakdown - in vivo detection of occult neuroinflammatory foci by magnetic nanoparticles in high field MRI. J Neuroinflammation 6: 20 (8 p.).

Urrutia, P. J., Mena, N. P. & Núñez, M. T. (2014). The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol 5: 38 (12 p.).

van Landeghem, F. K. H., Maier-Hauff, K., Jordan, A., Hoffmann, K. T., Gneveckow, U., Scholz, R., Thiesen, B., Bruck, W. & von Deimling, A. (2009). Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30: 52-57.

Verkhratsky, A. & Parpura, V. (2010). Recent advances in (patho)physiology of astroglia.

Acta Pharmacol Sin 31: 1044-1054.

Virgintino, D., Monaghan, P., Robertson, D., Errede, M., Bertossi, M., Ambrosi, G. &

Roncali, L. (1997). An immunohistochemical and morphometric study on astrocytes and microvasculature in the human cerebral cortex. Histochem J 29:

655-660.

Wang, F. J., Yu, L., Monopoli, M. P., Sandin, P., Mahon, E., Salvati, A. & Dawson, K. A.

(2013). The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes. Nanomedicine 9: 1159-1168.

Wang, J., Chen, Y., Chen, B., Ding, J., Xia, G., Gao, C., Cheng, J., Jin, N., Zhou, Y., Li, X., Tang, M. & Wang, X. M. (2010). Pharmacokinetic parameters and tissue distribution of magnetic Fe3O4 nanoparticles in mice. Int J Nanomedicine 5: 861-866.

Wang, Y., Wang, B., Zhu, M. T., Li, M., Wang, H. J., Wang, M., Ouyang, H., Chai, Z.

F., Feng, W. Y. & Zhao, Y. L. (2011a). Microglial activation, recruitment and phagocytosis as linked phenomena in ferric oxide nanoparticle exposure. Toxicol Lett 205: 26-37.

Wang, Z. J., Tiruppathi, C., Cho, J., Minshall, R. D. & Malik, A. B. (2011b). Delivery of nanoparticle-complexed drugs across the vascular endothelial barrier via caveolae.

IUBMB Life 63: 659-667.

Wankhede, M., Bouras, A., Kaluzova, M. & Hadjipanayis, C. G. (2012). Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy. Expert Rev Clin Pharmacol 5: 173-186.

Weinstein, J. S., Varallyay, C. G., Dosa, E., Gahramanov, S., Hamilton, B., Rooney, W.

D., Muldoon, L. L. & Neuwelt, E. A. (2010). Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 30: 15-35.

Wislocki, G. B. & Leduc, E. H. (1952). Vital staining of the hematoencephalic barrier by silver nitrate and Trypan Blue, and cytological comparisons of the

neurohypophysis, pineal body, area postrema, intercolumnar tubercle and supraoptic crest. J Comp Neurol 96: 371-413.

Wong, B. X. & Duce, J. A. (2014). The iron regulatory capability of the major protein participants in prevalent neurodegenerative disorders. Front Pharmacol 5: 81 (10 p.).

Wu, H. Y., Chung, M. C., Wang, C. C., Huang, C. H., Liang, H. J. & Jan, T. R. (2013a).

Iron oxide nanoparticles suppress the production of IL-1beta via the secretory lysosomal pathway in murine microglial cells. Part Fibre Toxicol 10: 46-56.

Wu, Y. L., Putcha, N., Ng, K. W., Leong, D. T., Lim, C. T., Loo, S. C. J. & Chen, X. D.

(2013b). Biophysical responses upon the interaction of nanomaterials with cellular interfaces. Acc Chem Res 46: 782-791.

Xue, Y., Wu, J. & Sun, J. (2012). Four types of inorganic nanoparticles stimulate the inflammatory reaction in brain microglia and damage neurons in vitro. Toxicol Lett 214: 91-98.

Yan, F., Wang, Y., He, S. Z., Ku, S. T., Gu, W. & Ye, L. (2013). Transferrin-conjugated, fluorescein-loaded magnetic nanoparticles for targeted delivery across the blood-brain barrier. J Mater Sci Mater Med 24: 2371-2379.

Yu, X. W., Hu, Z. L., Ni, M., Fang, P., Zhang, P. W., Shu, Q., Fan, H., Zhou, H. Y., Ni, L., Zhu, L. Q., Chen, J. G. & Wang, F. (2014). Acid-sensing ion channels promote the inflammation and migration of cultured rat microglia. Glia, in press.

Zhang, Y. & Barres, B. A. (2010). Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20: 588-594.

Zhao, Y. N., Sun, X. X., Zhang, G. N., Trewyn, B. G., Slowing, I. I. & Lin, V. S. Y.

(2011). Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface functionality effects. ACS Nano 5: 1366-1375.

4. A Appendix

4.1. Curriculum vitae ... 115 4.2. List of publications ... 117