• Keine Ergebnisse gefunden

Introduction to the included publications

The following chapters present three peer reviewed publications having CSD as main topic or FXD-CSD is used as core method to derive the FXD-CSD of the samples under investigation. At present, the manuscript underlying Chapter 2 is in print. It was submitted at 5th of May 2018, reviewed positive at 25th of May 2018 and was accepted at the 23rd of July 2018.

Chapter 2: “A fast X-ray diffraction-based method for a determination of crystal size distributions (FXD-CSD)”, accepted for publication in the Journal of Applied Crystallography, constitutes the main part of this thesis and provides a comprehensive description of the method. Starting with an overview of other methods used to derive CSDs or mean crystal sizes, including non-X-ray diffraction-based approaches, all theoretical aspects and applied intensity corrections are presented. The fundamental functionality and the application range of FXD-CSD is shown by presenting the analysis and results of five samples.

The measurements are carried out with the diffractometer setup described in Section 1.5 using a molybdenum X-ray tube. Most valuable here are the results of four corundum crystal size fractions.

These samples have been specifically prepared (Chapter 2, Section 2.4) for this purpose and their CSD was determined in advance. This allowed their utilization both as a reference material and as a sample to crosscheck the obtained results.

For this publication the fxd-csd software, written by me, was used. This is including the data reduction, data evaluation and the CSD determination. The samples were produced, prepared and measured by me. My contribution to the manuscript preparation comprises drafting, figure preparation and partially the literature search. The final preparation and proofreading were carried out with the aid of Prof. Dr.

W.F. Kuhs and PD Dr. Helmut Klein.

Chapter 3: “Determination of crystal size distributions in alumina ceramics by a novel X-ray diffraction procedure”, published in 2017 the Journal of the American Ceramic Society, presents an application example, investigating the microstructure of a polycrystalline material. Again, the diffractometer setup described in Section 1.5 with a molybdenum X-ray tube was used. Here we were able to analyze the microstructural evolution of four alumina substrates with different time spans of sintering. The CSD of all samples was determined and good evidence for abnormal grain growth was found.

My contributions to this publication are the sample preparation, the diffraction measurements, the data analysis (using the fxd-csd software), the figure preparation and the drafting of the manuscript.

The samples were provided by PD. Dr. Helmut Klein. Finalizing the manuscript was done with the input and correction of my supervisors Prof. Dr. W.F. Kuhs and PD. Dr. Helmut Klein.

Chapter 4: The publication, “Time Resolved Coarsening of Clathrate Crystals: The Case of Gas Hydrates”, published 2016 in the Journal Crystal Growth & Design, constitutes a fundamental research paper. FXD-CSD is the core method used to determine the CSD evolution of gas hydrates. The analyzed data was collected at the European Synchrotron Research Facility (ESRF) in Grenoble, France. The obtained results show the coarsening and the CSD evolution over time and it is shown that they are in accordance with X-ray tomography data of comparable samples.

1-20 The presented data was analyzed with a preliminary version of fxd-csd, which was used by Marwen Chaouachi for the data reduction and to calculate the diffraction geometry dependent intensity corrections. The data evaluation and intensity scaling were done manually by Marwen. I was attending the beam times and as part of the crew assisting Marwen carrying out the measurements. I was involved in writing the manuscript by drafting the data reduction section.

1.9 References

Als-Nielsen, J. & McMorrow, D. (2011). Elements of Modern X-ray Physics Hoboken, NJ, USA: John Wiley & Sons, Inc.

Apetz, R. & Bruggen, M. P. B. (2003). J. Am. Ceram. Soc. 86, 480–486.

Asta, M., Beckermann, C., Karma, A., Kurz, W., Napolitano, R., Plapp, M., Purdy, G., Rappaz, M. &

Trivedi, R. (2009). Acta Mater. 57, 941–971.

Avrami, M. (1939). J. Chem. Phys. 7, 1103–1939.

Avrami, M. (1940). J. Chem. Phys. 8, 212–224.

Avrami, M. (1941). J. Chem. Phys. 9, 177–184.

Bennett, D. W. (2010). Understanding single-crystal X-ray crystallography Weilheim: Wiley-VCH.

Borchardt-Ott, W. (1997). Kristallographie Berlin, Heidelberg: Springer-Verlag.

Bunge, H.-J. (1993). Texture analysis in materials science. Mathematical Methods London:

Butterwoth & Co.

Bunge, H. J., Wcislak, L., Klein, H., Garbe, U. & Schneider, J. R. (2003). J. Appl. Crystallogr. 36, 1240–

1255.

Carniglia, S. C. (1972). J. Am. Ceram. Soc. 55, 243–249.

Chantikul, P., Bennison, S. J. & Lawn, B. R. (1990). J. Am. Ceram. Soc. 73, 2419–2427.

Chaouachi, M. (2015). Microstructure of Gas Hydrates in Sedimentary Matrices. PhD. Thesis. Georg-August-Universität of Göttingen.

Dey, N., Hsia, K. J. & Socie, D. F. (1997). Acta Mater. 54, 4117–4129.

Feltham, P. (1969). Scr. Metall. 3, 853–854.

German, R. M. (2010). Crit. Rev. Solid State Mater. Sci. 35, 263–305.

Gottstein, G. (2014). Materialwissenschaft und Werkstofftechnik Berlin, Heidelberg: Springer Berlin Heidelberg.

Hall, E. O. (1951). Proc. Phys. Soc. Sect. B. 64, 747–753.

Hammond, C. (2009). The Basics of Crystallography and Diffraction New York: Oxford University Press.

He, B. B. (2009). Two-Dimensional X-Ray Diffraction Hoboken: J. Wiley & Sons, Inc.

Hemes, S. (2009). Röntgenographische Untersuchungen der Kristallitgrößen und

Kristallitgrößenverteilungen von Gashydraten. Diploma Thesis. Georg-August-Universität Göttingen.

Hillert, M. (1965). Acta Metall. 13, 227–238.

Hosford, W. F. (1993). Oxford Engineering Science Series, Vol. 32, edited by A.L. Cullen, L.C. Woods, J.M. Brady, C. Brennen, W.R. Eatock Taylor, M.Y. Hussaini, T. V Jones & J. Van Bladel, p. 248. New York: Oxford University Press.

Humphreys, F. J. & Hatherly, M. (1995). Recrystallisation and related Annealing Phenomena New York: Pergamon - Elsevier Science Inc.

Jansen, M. (2010). Messung von Kristallitgrößenverteilungen über Einzelreflexe in Debye-Scherrer-Ringen: Gashydrate. B.Sc. Thesis. Georg-August-Universität of Göttingen.

1-21 Johnson, W. A. & Mehl, R. F. (1939). Transactions of the AIME, Vol. 135, pp. 416–442. American Intitute of Mining and Metallurgigcal Engineers.

Klapp, S. A., Hemes, S., Klein, H., Bohrmann, G., MacDonald, I. & Kuhs, W. F. (2010). Mar. Geol. 274, 85–94.

Klapp, S. A., Klein, H. & Kuhs, W. F. (2007). Geophys. Res. Lett. 34, L13608.

Klapp, S. A., Klein, H. & Kuhs, W. F. (2009). Geological Society, London, Special Publications, Vol. 319, 161–170.

Kolmogorow, A. (1937). Izv. Akad. Nauk SSSR Ser. Mat. 1, 355–359.

Krell, A., Blank, P., Ma, H., Hutzler, T., Bruggen, M. P. B. van & Apetz, R. (2003). J. Am. Ceram. Soc. 86, 12–18.

Kurzydeowski, K. J. (1990). Scr. Metall. 24, 879–883.

Kurzydeowski, K. J. & Bucki, J. J. (1993). Mater. Sci. 41, 3141–3146.

Lasaga, A. C. (1998). Kinetic Theory in the Earth Sciences Princeton: Princeton University Press.

Lehto, P., Remes, H., Saukkonen, T., Hänninen, H. & Romanoff, J. (2014). Mater. Sci. Eng. A. 592, 28–

39.

Lipson, H., Langford, J. I. & Hu, H.-C. (2006). Int. Tables Crystallogr. C, 596.

Louat, N. P. (1974). Acta Metall. 22, 721–724.

Nützmann, K. (2013). Crystallite Size Distributions of CH 4 -CO 2 Gas Hydrates from Diffraction Data (Including the Effect of Absorption). MSc. Thesis. Georg-August-University of Göttingen.

Nye, F. J. (1957). Physical properties of crystals New York: Oxford University Press.

Orowan, E. (1949). Reports Prog. Phys. 12, 309–232.

Petch, N. J. (1953). J. Iron Steel Inst. 174, 25–28.

Raeisinia, B., Sinclair, C. W., Poole, W. J. & Tomé, C. N. (2008). Model. Simul. Mater. Sci. Eng. 16, 025001.

Rodriguez-Navarro, A. B. (2006). J. Appl. Crystallogr. 39, 905–909.

Rodriguez-Navarro, A. B., Alvarez-Lloret, P., Ortega-Huertas, M. & Rodriguez-Gallego, M. (2006). J.

Am. Ceram. Soc. 89, 2233–2238.

Spieß, L., Teichert, G., Schwarzer, R., Behnken, H. & Genzel, C. (2009). Moderne Röntgenbeugung Wiesbaden: Vieweg+Teubner.

Stracke, S. (2010). Messung von Kristallitgrößenverteilungen über Einzelreflexe in Debye-Scherrer-Ringen: Eis Ih. B.Sc. Thesis. Georg-August-Universität of Göttingen.

Stracke, S. (2013). Kristallinität und Zusammensetzung von Methanhydrat bei der Bildung aus Eis Ih.

M.Sc. Thesis. Georg-August-Universität of Göttingen.

Swanson, P. L., Fairbanks, C. J., Lawn, B. R., Mai, Y.-W. & Hockey, B. J. (1987). J. Am. Ceram. Soc. 70, 279–289.

Underwood, E. E. (1970). Quantitative stereology Reading: Addison-Wesley Publisching Company, Inc.

Yu, T. & Shi, H. (2010). J. Phys. D. Appl. Phys. 43, 165401.

2-22

Publication - A fast X-ray diffraction-based method for