• Keine Ergebnisse gefunden

Introduction to the following chapters

A comparison of different extraction methods with respect to bacteriohopanepolyols (BHPs) is discussed in Chapter 2 (“Test of microwave, ultrasound and Bligh & Dyer extraction for quantitative extraction of bacteriohopanepolyols (BHPs) from marine sediments”). All methods are applicable for the extraction of BHPs and microwave extraction was the method preferentially used in the following chapters. [Own contribution: First author; reprocessing of samples, measurements, interpretation, discussion, writing.]

In chapter 3, the general distribution of biomarkers in the stratified central Baltic Sea water column was analyzed with samples collected in the Landsort Deep (“Biomarkers in the stratified water column of the Landsort Deep (Baltic Sea)”).

[Own contribution: First author; reprocessing of samples, measurements, interpretation, discussion, writing.]

19

First results on aerobic methanotrophy in the Baltic Sea Gotland Deep are presented in Chapter 4 (“Aerobic methanotrophy within the pelagic redox-zone of the Gotland Deep (central Baltic Sea)”). Interdisciplinary methods performed on water samples collected in summer 2008 gave information about the amount of methane consumed and the bacteria involved in the suboxic zone. [Own contribution: Co-Author; partial reprocessing of samples, contribution to interpretation, discussion, writing.]

In Chapter 5 (“Biomarkers for aerobic methanotrophy in the water column of the stratified Gotland Deep (Baltic Sea)”), Gotland Deep samples collected in summer 2008 were further analyzed with respect to molecular biomarkers. BHPs were of special interest. It was shown that suboxic zone BHP production controls BHP signals in the underlying surface sediment. [Own contribution: First author;

reprocessing of samples, measurements, interpretation, discussion, writing.]

The geological record of BHPs in sediments and their applicability to reconstruct water column stratification during the Baltic Sea Holocene history is discussed in chapter 6 (“Bacteriohopanepolyols record stratification, nitrogen fixation and other biogeochemical perturbations in Holocene sediments of the central Baltic Sea”).

[Own contribution: Co-Author; partial reprocessing of samples, BHP measurements, contribution to writing.]

References

Anderson, R., Winter, C., Jürgens, K., 2012. Protist grazing and viral lysis as prokaryotic mortality factors at Baltic Sea oxic-anoxic interfaces. Marine Ecology Progress Series 467, 1-14.

Andrén, E., Andrén, T., Kunzendorf, H., 2000a. Holocene history of the Baltic Sea as a background for assessing records of human impact in the sediments of the Gotland Basin. The Holocene 10, 687-702.

Andrén, E., Andrén, T., Sohlenius, G., 2000b. The Holocene history of the southwestern Baltic Sea as reflected in a sediment core from the Bornholm Basin.

Boreas 29.

20

Bange, H.W., Rixen, T., Johansen, A.M., Siefert, R.L., Ramesh, R.L., Ittekott, V., Hoffmann, M.R., Andreae, M.O., 2000. A revised nitrogen budget for the Arabian Sea.

Global Biogeochemical Cycles 14, 1283-1297.

Behnke, A., Bunge, J., Barger, K., Breiner, H.-W., Alla, V., Stoeck, T., 2006.

Microeukaryote community patterns along an O2/H2S gradient in a supersulfidic anoxic fjord (Framvaren, Norway). Applied and Environmental Microbiology 72, 3626-3636.

Bergström, S., Matthäus, W., 1996. Meteorology, hydrology and hydrography. In:

Third periodic assessment of the state of the marine environment of the Baltic Sea, 1989-1993; Background document HELCOM, Helsinki.

Berry, A.M., Moreau, R.A., Jones, A.D., 1991. Bacteriohopanetetrol: abundant lipid in Frankia cells and in nitrogen-fixing nudule tissue. Plant Physiology 95, 111-115.

Björck, S., 1995. A review of the history of the Baltic Sea, 13.0-8.0 ka BP. Quaternary International 27, 19-40.

Blumenberg, M., Hoppert, M., Krüger, M., Dreier, A., Thiel, V., 2012. Novel findings on hopanoid occurrences among sulfate reducing bacteria: Is there a direct link to nitrogen fixation? Organic Geochemistry 49, 1-5.

Blumenberg, M., Oppermann, B.I., Guyoneaud, R., Michaelis, W., 2009. Hopanoid production by Desulfovibrio bastinii isolated from oilfield formation water. FEMS Microbiology Letters 293, 73-78.

Brocks, J.J., Grice, K., 2011. Biomarkers (molecular fossils). In: Reitner, J., Thiel, V., Encyclopedia of Geobiology. Springer, Dordrecht, The Netherlands, pp. 147-167.

Brocks, J.J., Pearson, A., 2005. Building the biomarker tree of life. Reviews in Mineralogy and Geochemistry 59, 233-258.

Campbell, N.A., Reece, J.B., 2003. Biologie, 6th Edition. Spektrum Akademischer Verlag, Heidelberg, Berlin.

21

Colling, A., Brown, E., Park, D., Philips, J., Rothery, D., Wright, J., 2001. Ocean Circulation. Butterworth Heinemann, Oxford.

Detmer, A.E., Giesenhagen, H.C., Trenkel, V.M., Auf dem Venne, H., Jochem, F., 1993.

Phototrophic and hetreotrophic pico- and nanoplankton in anoxic depths of the central Baltic Sea. Marine Ecology Progress Series 99, 197-203.

Diaz, R.J., Rosenberg, R., 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology: an annual Review 33, 245-303.

Diaz, R.J., Rosenberg, R., 2008. Spreading dead zones and consequences for marine ecosystems. Science 321, 926-929.

Edgcomb, V.P., Pachiadaki, M., 2014. Ciliates along oxyclines or permanently stratified marine water columns. Journal of Eukaryotic Microbiology 0, 1-12.

Feistel, R., Nausch, G., Hagen, E., 2006. Unusual Baltic inflow activity in 2002-2003 and varying deep-water properties. Oceanologia 48, 21-35.

Gustafsson, B.G., Westman, P., 2002. On the causes of salinity variations in the Baltic Sea during the last 8500 years. Paleoceanography 17, 12-11-12-14.

Harvey, H.R., 2006. Sources and cycling of organic matter in the marine water column. In: Volkmann, J.K., The handbook of environmental chemistry, Volume 2:

Marine organic matter. Springer, Berlin, Heidelberg, pp. 1-25.

Helly, J.J., Levin, L.A., 2004. Global distribution of naturally occurring marine hypoxia on continental margins. Deep-Sea Research I 51, 1159-1168.

Jonsson, P., Carman, R., 1994. Changes in deposition of organic matter and nutrients in the Baltic Sea during the twentieth century. Marine Pollution Bulletin 28, 417-426.

Kannenberg, E.L., Poralla, K., 1999. Hopanoid biosythesis and function in bacteria.

Naturwissenschaften 86, 168-176.

Konhauser, K., 2007. Introduction to Geomicrobiology. Blackwell Publishing, Oxford.

22

Konovalov, S.K., Murray, J.W., Luther III, G.W., 2005. Basic processes of Black Sea biogeochemistry. Oceanography 18, 24-35.

Leipe, T., Dippner, J.W., Hille, S., Voss, M., Christiansen, C., Bartholdy, J., 2008.

Environmental changes in the central Baltic Sea during the past 1000 years:

inferences from sedimentary records, hydrography and climate. Oceanologia 50, 23-41.

Mandernack, K.W., Krouse, H.R., Skei, J.M., 2003. A stable sulfur and oxygen isotopic investigation of sulfur cycling in an anoxic marine basin, Framvaren Fjord, Norway.

Chemical Geology 195, 181-200.

Matthäus, W., Lass, H.U., 1995. The recent salt inflow into the Baltic Sea. Journal of Physical Oceanography 25, 280-286.

Matthäus, W., Schinke, H., 1999. The influence of river runoff on deep water conditions of the Baltic Sea. Hydrobiologia 393, 1-10.

Meier, H.E.M., Feistel, R., Piechura, J., Arneborg, L., Burchard, H., Fiekas, V., Golenko, N., Kuzmina, N., Mohrholz, V., Nohr, C., Paka, V.T., Sellschopp, J., Stips, A., Zhurbas, V., 2006. Ventilation of the Baltic Sea deep water: A brief review of present knowledge from observations and models. Oceanologia 48, 133-164.

Meyer, K.M., Kump, L.R., 2008. Oceanic euxinia in earth history: causes and consequences. Annual Review of Earth and Planetary Sciences 36, 251-288.

Moros, M., Lemke, W., Kuijpers, A., Endler, R., Jensen, J.B., Bennike, O., Gingele, F., 2002. Regressions and transgressions of the Baltic basin refelcted by a new hogh-resolution deglacial and postglacial lithostratigraphy for Arkona Basin sediments (western Baltic Sea). Boreas 31, 151-162.

Neunlist, S., Rohmer, M., 1985. Novel hopanoids from the methylotrophic bacteria Methylococcus capsulatus and Methylomonas methanica. (22S )-35-aminobacteriohopane-30,31,31,33,34-pentol and (22S)-35-amino-3β -methylbacteriohopane-30,31,32,33,34-pentol. Biochemical Journal 231, 635-639.

23

Ourisson, G., Albrecht, P., 1992. Hopanoids. 1. Geohopanoids: The most abundant natural products on earth? Accounts of Chemical Research 25, 398-402.

Overmann, J., Cypionka, H., Pfennig, N., 1992. An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnology and Oceanography 37, 150-155.

Pancost, R.D., Pagani, M., 2006. Controls on the carbon isotopic compositions of lipids in marine environments. In: Volkman, J.K., The handbook of environmental chemistry, Volume 2: Marine organic matter. Springer, Berlin, Heidelberg, pp. 209-249.

Pearson, A., Flood Page, S.R., Jorgensen, T.L., Fischer, W.W., Higgins, M.B., 2007.

Novel hopanoid cyclases from the environment. Environmental Microbiology 9, 2175-2188.

Peters, K.E., Walters, C.C., Moldowan, J.M., 2004. The biomarker guide, Volume 1, 2nd Edition. Cambridge University Press, Cambridge.

Reissmann, J.H., Burchard, H., Feistel, R., Hagen, E., Lass, H.U., Mohrholz, V., Nausch, G., Umlauf, L., Wieczorek, G., 2009. State-of-the-art review on vertical mixing in the Baltic Sea and consequences for eutrophication. Progress in Oceanography 82, 47-80.

Rohmer, M., Bouvier-Nave, P., Ourisson, G., 1984. Distribution of hopanoid triterpenes in prokaryotes. Journal of General Microbiology 130, 1137-1150.

Sohlenius, G., Sternbeck, J., Andrén, E., Westman, P., 1996. Holocene history of the Baltic Sea as recorded in a sediment core from the Gotland deep. Marine Geology 134.

Stal, L.J., Albertano, P., Bergmann, B., von Bröckel, K., Gallon, J.R., Hayes, P.K., Sivonen, K., Walsby, A.E., 2003. BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea - responses to a changing environment. Continental Shelf Research 23, 1695-1714.

24

Stock, A., Jürgens, K., Bunge, J., Stoeck, T., 2009. Protistan diversity in suboxic and anoxic waters of the Gotland Deep (Baltic Sea) as revealed by 18S rRNA clone libraries. Aquatic Microbial Ecology 55, 267-284.

Strauss, H., 2006. Anoxia through time. In: Neretin, L.N., Past and Present Water Column Anoxia. Springer Netherlands, pp. 3-19.

Talbot, H.M., Watson, D.F., Murrel, J.C., Carter, J.F., Farrimond, P., 2001. Analysis of intact bacteriohopanepolyols from methanotrophic bacteria by reversed-phase high-performance liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry. Journal of chromatography A 921, 175-185.

Tyson, R.V., Pearson, T.H., 1991. Modern and ancient continental shelf anoxia: an overview. Geological Society Special Publication 58, 1-24.

Wakeham, S.G., Amann, R., Freeman, K.H., Hopmans, E.C., Jørgensen, B.B., Putnam, I.F., Schouten, S., Sinninghe Damsté, J.S., Talbot, H.M., Woebken, D., 2007. Microbial ecology of the stratified water column of the Black Sea as revealed by a comprehensive biomarker study. Organic Geochemistry 38, 2070-2097.

Wakeham, S.G., Turich, C., Schubotz, F., Podlaska, A., Xiaona, N.L., Varela, R., Astor, Y., Sáenz, J.P., Rush, D., Sinninghe Damsté, J.S., Summons, R.E., Scranton, M.I., Taylor, G.T., Hinrichs, K.U., 2012. Biomarkers, chemistry and microbiology show chemoautotrophy in a multilayer chemocline in the Cariaco Basin. Deep Sea Research Part I 163, 133-156.

Wastegård, S., Andrén, T., Sohlenius, G., Sandgren, P., 1995. Different phases of the Yoldia Sea in the North-Western Baltic proper. Quaternary International 27, 121-129.

Winsor, P., Rodhe, J., Omstedt, A., 2001. Baltic Sea ocean climate: an analysis of 100 yr of hydrographic data with focus on the freshwater budget. Climate Research 18, 5-15.

Zaitsev, Y.P., 1992. Recent changes in the trophic structure of the Black Sea. Fisheries Oceanography 1, 180-189.

25

Zaitsev, Y.P., Mamaev, V., 1997a. Main man-made impacts on Black Sea Biodiversity.

In, Biological diversity in the Black Sea: a study of change and decline. United Nations Publications, New York, pp. 49-74.

Zaitsev, Y.P., Mamaev, V., 1997b. Present state of Black Sea Biodiversity. In, Biological diversity in the Black Sea: a study of change and decline. United Nations Publications, New York, pp. 75-130.

Zillén, L., Conley, D.J., 2010. Hypoxia and cyanobacteria blooms - are they really natural features of the late Holocene history of the Baltic Sea? Biogeosciences 7, 2567-2580.

Zillén, L., Conley, D.J., Andrén, T., Andrén, E., Björck, S., 2008. Past occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental chnage and human impact. Earth-Science Reviews 91, 77-92.

26

27

2

Test of microwave, ultrasound and Bligh & Dyer extraction