• Keine Ergebnisse gefunden

S and M proteins of MHV interact specifically with each other and form large heterocomplexes post-translationally but with different kinetics. While unmodified M proteins immediately associate with S proteins after synthesis, newly synthesized S proteins are found in these complexes after 10-20 min. S protein folding is necessary for its interaction with M proteins and is the rate-limiting step, whereas under reducing conditions no M-S complexes are formed (OPSTELTEN et al. 1994).

Correct S protein folding involves formation of disulfide bonds, addition of N-linked sugars, as well as its assembly into homo-oligomers, which occurs slowly

141

(VENNEMA et al. 1990; OPSTELTEN et al. 1993; OPSTELTEN et al. 1995). In contrast, the final conformation of M proteins is glycosylated but without inter- or intramolecular disulfide bonds (OPSTELTEN et al. 1993). In MHV M and S protein co-expressing cells, heteromultimeric complexes are transported beyond the ERGIC and accumulate at the Golgi apparatus (OPSTELTEN et al. 1995). M proteins themselves are able to form complexes by M-M interactions as well. They accumulate at the Golgi complex in homomultimeric and detergent-insoluble structures (LOCKER et al. 1995). During CoV particle assembly only M and E proteins are required and VLPs are built, whereas S proteins are incorporated when present (BOS et al. 1996; VENNEMA et al. 1996). Interestingly, N proteins are not required for VLP assembly and were not always taken into VLPs when present (VENNEMA et al. 1996). Such nucleocapsid-less particles show a typical CoV morphology but a lower density compared to virions, as this is shown for IBV (MACNAUGHTON & DAVIES 1980). Beside M-S complexes, M proteins are able to interact with HE proteins and form M-HE complexes leading to HE incorporation into virus particles. Thus, M proteins play a crucial role in virus assembly retaining viral glycoproteins at internal membranes (NGUYEN & HOGUE 1997).

However, CoV S proteins show low sequence conservation. Approximately 30 % sequence identity is found in the S2 region responsible for membrane fusion (CAVANAGH 1995). The highly conserved sequence KWPW(Y/W)VWL is present at the transition of the transmembrane and ectodomain, which is probably involved in membrane fusion as well but is dispensable for S incorporation into virus particles (BOSCH et al. 2005). Additionally, in the cytoplasmic domain conserved cysteines (approximately 24 %) are present (BOSCH et al. 2005). Regarding MHV and SARS-CoV S cytoplasmic tail, especially their charge-rich region seems to play a key role during M interaction (YE et al. 2004; BOSCH et al. 2005; MCBRIDE et al. 2007). By the help of a recombinant fMHV mutant, containing a chimeric S gene (ectodomain of FIPV, transmembrane and endodomain of MHV), a host switching event to feline cells was detected due to the FIPV ectodomain. Nonetheless, interaction with MHV M protein was still possible, resulting in S chimera incorporation into virus particles due to the S carboxy-terminus derived from MHV (KUO et al. 2000). In contrast, for TGEV S-M interaction neither the S cytoplasmic domain cysteine-rich motif nor the tyrosine-based retention signal are essential (GELHAUS et al. 2014). All tested TGEV S chimera, where the charge-rich region was exchanged by corresponding

142

human- and bat-derived S sequences, were intracellularly retained closely to M proteins in co-transfected cells. Nevertheless, investigated TGEV S chimera showed different expression pattern when expressed alone. However, all testes S constructs still contained positively or negatively charged amino acids. For further investigations, S mutants harboring only uncharged amino acids downstream their cysteine-rich region as well as the dibasic signal should be examined regarding their importance during S-M protein interaction. Results may give a hint if the charge-rich region and the dibasic signal of the TGEV S protein are necessary at all.

S protein regions important for the interaction with M proteins may depend on the CoV genera. For Betacoronaviruses the S cytoplasmic domain seems to be necessary, whereas for Alphacoronaviruses the S ectodomain is probably involved in M protein association. A reason therefore may lay in S protein modifications during maturation. For example, concerning MHV and SARS-CoV, S protein ectodomains are cleaved into S1 and S2 subunits to reach full functional activity, which is regarding TGEV not tested yet.

5.4 Conclusion

CoVs underlay high mutation and recombination rates during their replication cycle, although they show a narrow host range. Nonetheless, several host shifting events are known for these enveloped RNA viruses including successful animal-to-human transmission. Especially, bats represent high risk factors for zoonotic host shifting.

Therefore, better understanding of CoV life cycle is necessary. In this study, we confirmed that the Alphacoronavirus S protein is the determinant for species restriction due to its function of receptor binding. Virus attachment to the species specific receptor is the first hurdle the virus has to overcome. However, during virus replication, assembly and budding, further cellular factors seem to be involved and play a crucial role in host restriction. We were able to identify tubulins as interaction partners of the CoV S protein cytoplasmic domain. This association highly likely supports the S protein transport during the virus assembly and budding process. Due to the fact that tubulins are conserved among eukaryotic cells this host factor is available also in potential new hosts and does not represent a species barrier.

Moreover, the TGEV S protein tyrosine-based retention signal is not essential for S-M interaction. Here, its ectodomain, the charged amino acids or the dibasic motif

143

within the charge-rich region of the cytoplasmic domain might play a key role.

Sequence differences in the S charge-rich region may not be a barrier for coronaviral evolution, as long as it contains a certain amount of charged amino acids.

Recombination events which may not disturb S-M interaction and incorporation of S proteins into virions might extend the host range of newly evolved CoVs.

Further insights into CoV life cycle, usage of host cell machinery as well as the identification and characterization of additional involved cellular factors may promote antiviral target investigations.

5.5 References

ALONSO, C., J. MISKIN, B. HERNAEZ, P. FERNANDEZ-ZAPATERO, L. SOTO, C. CANTO, I.

RODRIGUEZ-CRESPO, L. DIXON & J. M. ESCRIBANO (2001): African swine fever virus protein p54 interacts with the microtubular motor complex through direct binding to light-chain dynein.

J Virol 75, 9819-9827

ALVAREZ, E., M. L. DEDIEGO, J. L. NIETO-TORRES, J. M. JIMENEZ-GUARDENO, L. MARCOS-VILLAR & L. ENJUANES (2010): The envelope protein of severe acute respiratory syndrome coronavirus interacts with the non-structural protein 3 and is ubiquitinated. Virology 402, 281-291

APPENZELLER-HERZOG, C. & H. P. HAURI (2006): The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J Cell Sci 119, 2173-2183

BANNYKH, S. I. & W. E. BALCH (1997): Membrane dynamics at the endoplasmic reticulum-Golgi interface. J Cell Biol 138, 1-4

BEAUCHEMIN, N., P. DRABER, G. DVEKSLER, P. GOLD, S. GRAY-OWEN, F. GRUNERT, S.

HAMMARSTROM, K. V. HOLMES, A. KARLSSON, M. KUROKI, S. H. LIN, L. LUCKA, S. M. NAJJAR, M. NEUMAIER, B. OBRINK, J. E. SHIVELY, K. M. SKUBITZ, C. P. STANNERS, P. THOMAS, J. A.

THOMPSON, M. VIRJI, S. VON KLEIST, C. WAGENER, S. WATT & W. ZIMMERMANN (1999):

Redefined nomenclature for members of the carcinoembryonic antigen family. Exp Cell Res 252, 243-249

BEN-TEKAYA, H., K. MIURA, R. PEPPERKOK & H. P. HAURI (2005): Live imaging of bidirectional traffic from the ERGIC. J Cell Sci 118, 357-367

BERNARD, S. & H. LAUDE (1995): Site-specific alteration of transmissible gastroenteritis virus spike protein results in markedly reduced pathogenicity. J Gen Virol 76 ( Pt 9), 2235-2241

BISWAS, K. & J. DAS SARMA (2014): Effect of microtubule disruption on neuronal spread and replication of demyelinating and nondemyelinating strains of mouse hepatitis virus in vitro. J Virol 88, 3043-3047

BOS, E. C., W. LUYTJES, H. V. VAN DER MEULEN, H. K. KOERTEN & W. J. SPAAN (1996): The production of recombinant infectious DI-particles of a murine coronavirus in the absence of helper virus. Virology 218, 52-60

BOSCH, B. J., C. A. DE HAAN, S. L. SMITS & P. J. ROTTIER (2005): Spike protein assembly into the coronavirion: exploring the limits of its sequence requirements. Virology 334, 306-318 CAVANAGH, D. (1995): The Coronavirus Surface Glycoprotein. In: S. SIDDELL "The Coronaviridae" Plenum Press, New York, pp. 73-113

144

CHAMBERS, R. & T. TAKIMOTO (2010): Trafficking of Sendai virus nucleocapsids is mediated by intracellular vesicles. PLoS One 5, e10994

COLE, N. B. & J. LIPPINCOTT-SCHWARTZ (1995): Organization of organelles and membrane traffic by microtubules. Current opinion in cell biology 7, 55-64

COX, E., J. HOOYBERGHS & M. B. PENSAERT (1990a): Sites of replication of a porcine respiratory coronavirus related to transmissible gastroenteritis virus. Res Vet Sci 48, 165-169 COX, E., M. B. PENSAERT, P. CALLEBAUT & K. VAN DEUN (1990b): Intestinal replication of a porcine respiratory coronavirus closely related antigenically to the enteric transmissible gastroenteritis virus. Veterinary microbiology 23, 237-243

DELGUI, L. R., J. F. RODRIGUEZ & M. I. COLOMBO (2013): The endosomal pathway and the Golgi complex are involved in the infectious bursal disease virus life cycle. J Virol 87, 8993-9007

DELMAS, B., J. GELFI, R. L'HARIDON, L. K. VOGEL, H. SJOSTROM, O. NOREN & H. LAUDE (1992): Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV.

Nature 357, 417-420

DELMAS, B., J. GELFI, H. SJOSTROM, O. NOREN & H. LAUDE (1993): Further characterization of aminopeptidase-N as a receptor for coronaviruses. Adv Exp Med Biol 342, 293-298

DONALDSON, E. F., B. YOUNT, A. C. SIMS, S. BURKETT, R. J. PICKLES & R. S. BARIC (2008):

Systematic assembly of a full-length infectious clone of human coronavirus NL63. J Virol 82, 11948-11957

DOUGLAS, M. W., R. J. DIEFENBACH, F. L. HOMA, M. MIRANDA-SAKSENA, F. J. RIXON, V.

VITTONE, K. BYTH & A. L. CUNNINGHAM (2004): Herpes simplex virus type 1 capsid protein VP26 interacts with dynein light chains RP3 and Tctex1 and plays a role in retrograde cellular transport. J Biol Chem 279, 28522-28530

DVEKSLER, G. S., M. N. PENSIERO, C. B. CARDELLICHIO, R. K. WILLIAMS, G. S. JIANG, K. V.

HOLMES & C. W. DIEFFENBACH (1991): Cloning of the mouse hepatitis virus (MHV) receptor:

expression in human and hamster cell lines confers susceptibility to MHV. J Virol 65, 6881-6891 GE, X. Y., J. L. LI, X. L. YANG, A. A. CHMURA, G. ZHU, J. H. EPSTEIN, J. K. MAZET, B. HU, W.

ZHANG, C. PENG, Y. J. ZHANG, C. M. LUO, B. TAN, N. WANG, Y. ZHU, G. CRAMERI, S. Y.

ZHANG, L. F. WANG, P. DASZAK & Z. L. SHI (2013): Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503, 535-538

GELHAUS, S., B. THAA, K. ESCHKE, M. VEIT & C. SCHWEGMANN-WESSELS (2014):

Palmitoylation of the Alphacoronavirus TGEV spike protein S is essential for incorporation into virus-like particles but dispensable for S-M interaction. Virology 464-465, 397-405

GEVA, Y. & M. SCHULDINER (2014): The back and forth of cargo exit from the endoplasmic reticulum. Current biology : CB 24, R130-136

GLICK, B. S., T. ELSTON & G. OSTER (1997): A cisternal maturation mechanism can explain the asymmetry of the Golgi stack. FEBS Lett 414, 177-181

GLICK, B. S. & A. LUINI (2011): Models for Golgi traffic: a critical assessment. Cold Spring Harbor perspectives in biology 3, a005215

GLICK, B. S. & A. NAKANO (2009): Membrane traffic within the Golgi apparatus. Annual review of cell and developmental biology 25, 113-132

145

GLOZA-RAUSCH, F., A. IPSEN, A. SEEBENS, M. GOTTSCHE, M. PANNING, J. F. DREXLER, N.

PETERSEN, A. ANNAN, K. GRYWNA, M. MULLER, S. PFEFFERLE & C. DROSTEN (2008):

Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerg Infect Dis 14, 626-631

HAIJEMA, B. J., H. VOLDERS & P. J. ROTTIER (2003): Switching species tropism: an effective way to manipulate the feline coronavirus genome. Journal of virology 77, 4528-4538

HE, B., Y. ZHANG, L. XU, W. YANG, F. YANG, Y. FENG, L. XIA, J. ZHOU, W. ZHEN, Y. FENG, H.

GUO, H. ZHANG & C. TU (2014): Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China. J Virol 88, 7070-7082

HO, W. C., V. J. ALLAN, G. VAN MEER, E. G. BERGER & T. E. KREIS (1989): Reclustering of scattered Golgi elements occurs along microtubules. European journal of cell biology 48, 250-263 HOFFMANN, M., M. A. MULLER, J. F. DREXLER, J. GLENDE, M. ERDT, T. GUTZKOW, C.

LOSEMANN, T. BINGER, H. DENG, C. SCHWEGMANN-WESSELS, K. H. ESSER, C. DROSTEN &

G. HERRLER (2013): Differential sensitivity of bat cells to infection by enveloped RNA viruses:

coronaviruses, paramyxoviruses, filoviruses, and influenza viruses. PloS one 8, e72942

HUYNH, J., S. LI, B. YOUNT, A. SMITH, L. STURGES, J. C. OLSEN, J. NAGEL, J. B. JOHNSON, S.

AGNIHOTHRAM, J. E. GATES, M. B. FRIEMAN, R. S. BARIC & E. F. DONALDSON (2012):

Evidence supporting a zoonotic origin of human coronavirus strain NL63. J Virol 86, 12816-12825

JACOB, Y., H. BADRANE, P. E. CECCALDI & N. TORDO (2000): Cytoplasmic dynein LC8 interacts with lyssavirus phosphoprotein. J Virol 74, 10217-10222

KALICHARRAN, K. & S. DALES (1995): Involvement of microtubules and the microtubule-associated protein tau in trafficking of JHM virus and components within neurons. Adv Exp Med Biol 380, 57-61

KALICHARRAN, K. & S. DALES (1996): The murine coronavirus as a model of trafficking and assembly of viral proteins in neural tissue. Trends in microbiology 4, 264-269

KREIS, T. E., H. V. GOODSON, F. PEREZ & R. RÖNNHOLM (1997): Golgi apparatus-cytoskeleton interactions. In: E. G. BERGER und J. ROTH "The Golgi Apparatus" Birkhäuser Verlag, Basel, pp.

179-193

KREMPL, C., H. LAUDE & G. HERRLER (1998): Is the sialic acid binding activity of the S protein involved in the enteropathogenicity of transmissible gastroenteritis virus? Adv Exp Med Biol 440, 557-561

KUBOTA, T., M. MATSUOKA, T. H. CHANG, M. BRAY, S. JONES, M. TASHIRO, A. KATO & K.

OZATO (2009): Ebolavirus VP35 interacts with the cytoplasmic dynein light chain 8. J Virol 83, 6952-6956

KUO, L., G. J. GODEKE, M. J. RAAMSMAN, P. S. MASTERS & P. J. ROTTIER (2000): Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. Journal of virology 74, 1393-1406

LAUDE, H., K. VAN REETH & M. PENSAERT (1993): Porcine respiratory coronavirus: molecular features and virus-host interactions. Vet Res 24, 125-150

LENDECKEL, U., T. KAHNE, D. RIEMANN, K. NEUBERT, M. ARNDT & D. REINHOLD (2000):

Review: the role of membrane peptidases in immune functions. Adv Exp Med Biol 477, 1-24

146

LEVINE, A. (1984): Viruses and Differentiation: The Molecular Basis of Viral Tissue Tropisms. In:

A. NOTKINS und M. A. OLDSTONE "Concepts in Viral Pathogenesis" Springer New York, pp. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450-454 LI, W., Z. SHI, M. YU, W. REN, C. SMITH, J. H. EPSTEIN, H. WANG, G. CRAMERI, Z. HU, H.

ZHANG, J. ZHANG, J. MCEACHERN, H. FIELD, P. DASZAK, B. T. EATON, S. ZHANG & L. F.

WANG (2005): Bats are natural reservoirs of SARS-like coronaviruses. Science 310, 676-679 LIPPINCOTT-SCHWARTZ, J., N. B. COLE, A. MAROTTA, P. A. CONRAD & G. S. BLOOM (1995):

Kinesin is the motor for microtubule-mediated Golgi-to-ER membrane traffic. J Cell Biol 128, 293-306

LIU, C., J. TANG, Y. MA, X. LIANG, Y. YANG, G. PENG, Q. QI, S. JIANG, J. LI, L. DU & F. LI (2015):

Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. J Virol 89, 6121-6125 LOCKER, J. K., D. J. OPSTELTEN, M. ERICSSON, M. C. HORZINEK & P. J. ROTTIER (1995):

Oligomerization of a trans-Golgi/trans-Golgi network retained protein occurs in the Golgi complex and may be part of its retention. J Biol Chem 270, 8815-8821

LUINI, A., A. A. MIRONOV, E. V. POLISHCHUK & R. S. POLISHCHUK (2008): Morphogenesis of post-Golgi transport carriers. Histochemistry and cell biology 129, 153-161

MACNAUGHTON, M. R. & H. A. DAVIES (1980): Two particle types of avian infectious bronchitis virus. J Gen Virol 47, 365-372

MARTINEZ-MORENO, M., I. NAVARRO-LERIDA, F. RONCAL, J. P. ALBAR, C. ALONSO, F.

GAVILANES & I. RODRIGUEZ-CRESPO (2003): Recognition of novel viral sequences that associate with the dynein light chain LC8 identified through a pepscan technique. FEBS Lett 544, 262-267

MCBRIDE, C. E., J. LI & C. E. MACHAMER (2007): The cytoplasmic tail of the severe acute respiratory syndrome coronavirus spike protein contains a novel endoplasmic reticulum retrieval signal that binds COPI and promotes interaction with membrane protein. J Virol 81, 2418-2428

MERINO-GRACIA, J., M. F. GARCIA-MAYORAL & I. RODRIGUEZ-CRESPO (2011): The association of viral proteins with host cell dynein components during virus infection. The FEBS journal 278, 2997-3011

MIRONOV, A. A., P. WEIDMAN & A. LUINI (1997): Variations on the intracellular transport theme:

maturing cisternae and trafficking tubules. J Cell Biol 138, 481-484

MOSKALEWSKI, S., J. THYBERG, A. HINEK & U. FRIBERG (1977): Fine structure of the golgi complex during mitosis of cartilaginous cells in vitro. Tissue & cell 9, 185-196

NGUYEN, V. P. & B. G. HOGUE (1997): Protein interactions during coronavirus assembly. J Virol 71, 9278-9284

OPSTELTEN, D. J., P. DE GROOTE, M. C. HORZINEK & P. J. ROTTIER (1994): Folding of the mouse hepatitis virus spike protein and its association with the membrane protein. Archives of virology. Supplementum 9, 319-328

147

OPSTELTEN, D. J., P. DE GROOTE, M. C. HORZINEK, H. VENNEMA & P. J. ROTTIER (1993):

Disulfide bonds in folding and transport of mouse hepatitis coronavirus glycoproteins. J Virol 67, 7394-7401

OPSTELTEN, D. J., M. J. RAAMSMAN, K. WOLFS, M. C. HORZINEK & P. J. ROTTIER (1995):

Envelope glycoprotein interactions in coronavirus assembly. The Journal of cell biology 131, 339-349

PASICK, J. M., K. KALICHARRAN & S. DALES (1994): Distribution and trafficking of JHM coronavirus structural proteins and virions in primary neurons and the OBL-21 neuronal cell line. J Virol 68, 2915-2928

PFEFFERLE, S., S. OPPONG, J. F. DREXLER, F. GLOZA-RAUSCH, A. IPSEN, A. SEEBENS, M. A.

MULLER, A. ANNAN, P. VALLO, Y. ADU-SARKODIE, T. F. KRUPPA & C. DROSTEN (2009): Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana. Emerg Infect Dis 15, 1377-1384

PRESLEY, J. F., N. B. COLE, T. A. SCHROER, K. HIRSCHBERG, K. J. ZAAL & J. LIPPINCOTT-SCHWARTZ (1997): ER-to-Golgi transport visualized in living cells. Nature 389, 81-85

PYRC, K., B. BERKHOUT & L. VAN DER HOEK (2007): The novel human coronaviruses NL63 and HKU1. J Virol 81, 3051-3057

RAJ, V. S., H. MOU, S. L. SMITS, D. H. DEKKERS, M. A. MULLER, R. DIJKMAN, D. MUTH, J. A.

DEMMERS, A. ZAKI, R. A. FOUCHIER, V. THIEL, C. DROSTEN, P. J. ROTTIER, A. D.

OSTERHAUS, B. J. BOSCH & B. L. HAAGMANS (2013): Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495, 251-254

RAUX, H., A. FLAMAND & D. BLONDEL (2000): Interaction of the rabies virus P protein with the LC8 dynein light chain. J Virol 74, 10212-10216

ROGALSKI, A. A. & S. J. SINGER (1984): Associations of elements of the Golgi apparatus with microtubules. J Cell Biol 99, 1092-1100

SANCHEZ, C. M., F. GEBAUER, C. SUNE, A. MENDEZ, J. DOPAZO & L. ENJUANES (1992):

Genetic evolution and tropism of transmissible gastroenteritis coronaviruses. Virology 190, 92-105

SANCHEZ, C. M., A. IZETA, J. M. SANCHEZ-MORGADO, S. ALONSO, I. SOLA, M. BALASCH, J.

PLANA-DURAN & L. ENJUANES (1999): Targeted recombination demonstrates that the spike gene of transmissible gastroenteritis coronavirus is a determinant of its enteric tropism and virulence. J Virol 73, 7607-7618

SCHWEGMANN-WESSELS, C. & G. HERRLER (2006): Sialic acids as receptor determinants for coronaviruses. Glycoconjugate journal 23, 51-58

STORRIE, B., J. WHITE, S. ROTTGER, E. H. STELZER, T. SUGANUMA & T. NILSSON (1998):

Recycling of golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J Cell Biol 143, 1505-1521 SUIKKANEN, S., T. AALTONEN, M. NEVALAINEN, O. VALILEHTO, L. LINDHOLM, M. VUENTO & M.

VIHINEN-RANTA (2003): Exploitation of microtubule cytoskeleton and dynein during parvoviral traffic toward the nucleus. J Virol 77, 10270-10279

THEISS, C., M. NAPIREI & K. MELLER (2005): Impairment of anterograde and retrograde neurofilament transport after anti-kinesin and anti-dynein antibody microinjection in chicken dorsal root ganglia. European journal of cell biology 84, 29-43

THYBERG, J. & S. MOSKALEWSKI (1985): Microtubules and the organization of the Golgi complex. Exp Cell Res 159, 1-16

148

TRESNAN, D. B., R. LEVIS & K. V. HOLMES (1996): Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I. J Virol 70, 8669-8674

TURNER, J. R. & A. M. TARTAKOFF (1989): The response of the Golgi complex to microtubule alterations: the roles of metabolic energy and membrane traffic in Golgi complex organization.

J Cell Biol 109, 2081-2088

UJIKE, M. & F. TAGUCHI (2015): Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses 7, 1700-1725

VAN DER HOEK, L., K. PYRC, M. F. JEBBINK, W. VERMEULEN-OOST, R. J. BERKHOUT, K. C.

WOLTHERS, P. M. WERTHEIM-VAN DILLEN, J. KAANDORP, J. SPAARGAREN & B. BERKHOUT (2004): Identification of a new human coronavirus. Nat Med 10, 368-373

VENNEMA, H., G. J. GODEKE, J. W. ROSSEN, W. F. VOORHOUT, M. C. HORZINEK, D. J.

OPSTELTEN & P. J. ROTTIER (1996): Nucleocapsid-independent assembly of coronavirus-like particles by co-expression of viral envelope protein genes. EMBO J 15, 2020-2028

VENNEMA, H., P. J. ROTTIER, L. HEIJNEN, G. J. GODEKE, M. C. HORZINEK & W. J. SPAAN (1990): Biosynthesis and function of the coronavirus spike protein. Adv Exp Med Biol 276, 9-19 WEBBY, R., E. HOFFMANN & R. WEBSTER (2004): Molecular constraints to interspecies transmission of viral pathogens. Nat Med 10, S77-81

YE, R., C. MONTALTO-MORRISON & P. S. MASTERS (2004): Genetic analysis of determinants for spike glycoprotein assembly into murine coronavirus virions: distinct roles for charge-rich and cysteine-rich regions of the endodomain. J Virol 78, 9904-9917

YEAGER, C. L., R. A. ASHMUN, R. K. WILLIAMS, C. B. CARDELLICHIO, L. H. SHAPIRO, A. T.

LOOK & K. V. HOLMES (1992): Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357, 420-422

ZHANG, X., H. Y. SHI, J. F. CHEN, D. SHI, H. W. LANG, Z. T. WANG & L. FENG (2013):

Identification of cellular proteome using two-dimensional difference gel electrophoresis in ST cells infected with transmissible gastroenteritis coronavirus. Proteome science 11, 31

Appendix

Nucleotide and amino acid sequences

TGEV (PUR-46 MAD) S protein

Nucleotide sequence (4344 bp)

1 atgaaaaaac tatttgtggt tttggtcgta atgccattga tttatggaga 51 caattttcct tgttctaaat tgactaatag aactataggc aaccagtgga 101 atctcattga aaccttcctt ctaaactata gtagtaggtt accacctaat

150

151 Amino acid sequence (1447 aa)

accession no. CAB91145

1 MKKLFVVLVV MPLIYGDNFP CSKLTNRTIG NQWNLIETFL LNYSSRLPPN 51 SDVVLGDYFP TVQPWFNCIR NDSNDLYVTL ENLKALYWDY ATENITWNHR 101 QRLNVVVNGY PYSITVTTTR NFNSAEGAII CICKGSPPTT TTESSLTCNW

1 atgaagattt tgttaatatt agcgtgtgtg attgcatgcg catgtggaga 51 acgctattgt gctatgaaat ccgatacaga tttgtcatgt cgcaatagta 101 cagcgtctga ttgtgagtca tgcttcaacg gaggcgatct tatttggcat

152

1 MKILLILACV IACACGERYC AMKSDTDLSC RNSTASDCES CFNGGDLIWH 51 LANWNFSWSI ILIVFITVLQ YGRPQFSWFV YGIKMLIMWL LWPVVLALTI 101 FNAYSEYQVS RYVMFGFSIA GAIVTFVLWI MYFVRSIQLY RRTKSWWSFN

1 atggccaagg gattctacat ttccaaggcc ctgggcatcc tgggcatcct 51 cctcggcgtg gcggccgtgg ccaccatcat cgctctgtct gtggtgtatg 101 cccaggagaa gaacaagaat gccgagcatg tcccccaagc ccccacgtcg

153

154 Amino acid sequence (963 aa)

accession no. NP_999442

1 MAKGFYISKA LGILGILLGV AAVATIIALS VVYAQEKNKN AEHVPQAPTS 51 PTITTTAAIT LDQSKPWNRY RLPTTLLPDS YFVTLRPYLT PNADGLYIFK 101 GKSIVRLLCQ ESTDVIIIHS KKLNYTTQGH MVVLRGVGDS QVPEIDRTEL 151 VELTEYLVVH LKGSLQPGHM YEMESEFQGE LADDLAGFYR SEYMEGNVKK 201 VLATTQMQST DARKSFPCFD EPAMKATFNI TLIHPNNLTA LSNMPPKGSS 251 TPLAEDPNWS DTEFETTPVM STYLLAYIVS ESQSVNETAQ NGVLIRIWAR 301 PNAIAEGHGM YALNVTGPIL NFFANHYNTS YPLPKSDQIA LPDFNAGAME 351 NWGLVTYREN ALLFDPQSSS ISNKERVVTV IAHELAHQWF GNLVTLAWWN 401 DLWLNEGFAS YVEYLGADHA EPTWNLKDLI VPGDVYRVMA VDALASSHLL 451 TTPAEEVNTP AQISEMFDSI SYSKGASVIR MLSNFLTEDL FKEGLASYLH 501 AFAYQNTTYL DLWEHLQKAV DAQTSIRLPD TVRAIMDRWT LQMGFPVITV 551 DTKTGNISQK HFLLDSESNV TRSSAFDYLW IVPISSIKNG VMQDHYWLRD 601 VSQAQNDLFK TASDDWVLLN VNVTGYFQVN YDEDNWRMIQ HQLQTNLSVI 651 PVINRAQVIY DSFNLATAHM VPVTLALDNT LFLNGEKEYM PWQAALSSLS 701 YFSLMFDRSE VYGPMKKYLR KQVEPLFQHF ETLTKNWTER PENLMDQYSE 751 INAISTACSN GLPQCENLAK TLFDQWMSDP ENNPIHPNLR STIYCNAIAQ 801 GGQDQWDFAW GQLQQAQLVN EADKLRSALA CSNEVWLLNR YLDYTLNPDL 851 IRKQDATSTI NSIASNVIGQ PLAWDFVQSN WKKLFQDYGG GSFSFSNLIQ 901 GVTRRFSSEF ELQQLEQFKK NNMDVGFGSG TRALEQALEK TKANIKWVKE 951 NKEVVLNWFI EHS

Affidavit

I herewith declare that I autonomously carried out the dissertation entitled “Analysis of viral and host factors influencing Alphacoronavirus life cycle in chiropteran and porcine cell lines”.

No third party assistance has been used.

I did not receive any assistance in return for payment by consulting agencies or any other person. No one received any kind of payment for direct or indirect assistance in correlation to the content of the submitted thesis.

I conducted the project at the following institute: Institute of Virology, University of Veterinary Medicine Hannover.

The thesis has not been submitted elsewhere for an exam, as thesis or for evaluation in a similar context.

I hereby affirm the above statements to be complete and true to the best of my knowledge.

____________________________

Acknowledgement

Firstly, I would like to express my deepest gratitude to my supervisor PD, Dr.

Christel Schwegmann-Weßels, for providing me the opportunity to work on this fascinating topic as well as for her continuous guidance, support, patience, motivation, and knowledge.

I would also like to thank Prof. Dr. Andreas Beinecke and PD, Dr. Eike Steinmann,

I would also like to thank Prof. Dr. Andreas Beinecke and PD, Dr. Eike Steinmann,