• Keine Ergebnisse gefunden

Computing the absolute Frobenius action in larger characteristic

5. Implementations

5.2. Computing the absolute Frobenius action in larger characteristic

We have implemented Algorithm 2 as a package for Magma [BCP97]. It is available under a GPL license at github.com/mminzlaff/superelliptic. The package provides the intrinsicsAbsoluteFrobeniusAction(a,h,N)and ZetaFunction(a,h). The former corresponds to Algorithm 2, while the latter uses the absolute Frobenius action to compute the zeta function according to (the proof of) Corollary 4.1. The input consists of an integer a and a squarefree polynomialh that together define the superelliptic curveya−h(x) = 0. The desired precision is entered via the positive integerN. In case of ZetaFunction(a,h), a sufficient precision to compute the zeta function is deduced automatically. Here is one full example for how to use the package when Magma is started from the directory where the package resides:

1 > A t t a c h S p e c (" s u p e r e l l i p t i c ");

2 > F := F i n i t e F i e l d ( 4 0 9 9 ) ;

3 > FPol < x > := P o l y n o m i a l R i n g ( F );

4 > a := 4;

5 > h := x ^ 5 + 1 ;

6 > Z e t a F u n c t i o n ( a , h );

7 ( 4 7 4 3 1 5 7 1 0 6 2 0 3 3 3 2 1 2 5 4 0 1 * t ^12 + 6 9 4 2 8 9 8 9 1 1 2 5 1 5 2 2 9 9 4 * t ^10 +

8 4 2 3 4 5 0 7 7 5 2 6 5 4 0 1 5 * t ^8 + 1 3 7 7 4 1 1 6 4 5 9 8 0 * t ^6 +

9 2 5 2 0 2 7 0 1 5 * t ^4 + 2 4 5 9 4 * t ^2 + 1 ) / ( 4 0 9 9 * t ^2 - 4 1 0 0 * t + 1) Table 5.1 lists running times of our implementation when applied to the genus 3 nonhyperelliptic curve y3−(x4−37x3+ 2x2−102x+ 21) = 0. The absolute times should not be taken as a measure of the efficiency of the algorithm as we paid little attention to optimisation. There is, however, a separate column stating the increase in runtime for each quadrupling of the characteristic. Note that one expects a factor of roughly 2 by Theorem C. The table was calculated with version 1.0 of the package on a PC with Magma 2.15-8 and 2 gigabyte of RAM.

5.2. COMPUTING THE ABSOLUTE FROBENIUS ACTION IN LARGER CHARACTERISTIC71

p time time increase p time time increase

214+ 27 8.2 sec -.- 226+ 15 10.9 min 1.7 216+ 1 15.1 sec 1.8 228+ 3 21.9 min 2.0 218+ 3 30.3 sec 2.0 230+ 3 53.7 min 2.5

220+ 7 1.3 min 2.6 232+ 15 1.9 h 2.1

222+ 15 3.1 min 2.4 234+ 25 4.0 h 2.1

224+ 43 6.4 min 2.1 236+ 31 9.4 h 2.4

Table 5.1. Runtimes of our implementation of Algorithm 2 with varying primespand fixed inputa=3,h=x^4 -37x^3 +2x^2 -102x +21, andN=3.

APPENDIX A

CURVES OVER COMPLETE DISCRETE VALUATION RINGS

For this appendix, we redefine k and K. Let Λ be a complete discrete valuation ring with fraction field K and perfect residue field k. Fix a generatort of the maximal ideal ofΛ. SetS= Spec Λ.df

A.1. Importing properties from the special fibre

Lemma ([Gro65, Prop. 4.6.1 & Prop. 6.7.7]). — Letf:X →Speck be a locally of finite type morphism of schemes. IfX is reduced/normal/regular, then X is geomet-rically reduced/normal/regular.(1)

Lemma ([Gro66, Thm. 12.2.1 & Thm. 12.2.4]). — Let f: X → S be proper and flat morphism of schemes. If Xk is geometrically reduced/integral/normal/regular, then so isXK. IfXk is equidimensional of dimensionn, then so is XK.

Lemma. — Let X be a scheme andf:X →S be proper and flat. IfXk is a curve overk, thenX is a reduced curve overS andf is equidimensional. IfXk is geomet-rically integral/normal/regular, then so isX.

Proof. — By the above lemmas, it remains to show (1) thatX is reduced, (2) thatf is locally equidimensional [Gro66, Def. 13.3.2], [Gro67, Err. IV.35], and (3) thatX is geometrically integral/normal/regular, wheneverXk is.

Ad (2): LetU be an open neighbourhood ofx∈X. Sincef is flat, every irreducible component dominatesS. Moreover, every irreducible component of U ∩f−1(f(x0)) has the same dimension for allx0 ∈X since the fibres off are equidimensional of the same dimension. Hencef is locally equidimensional [Gro66, Prop. 13.3.1].

Ad (1), (3): We already know that the respective properties hold on the open sub-scheme XK of X. It remains to consider the points x ∈ Xk. Since f is flat, it is

(1)Geometric regularity means that the geometric fibres are regular, i.e. X is smooth overk.

universally open [Gro65, Thm. 2.4.6]. Hence, ifXk is geometrically reduced/integral at x, then so is X [Gro66, Prop. 15.3.1 & Cor. 15.3.3]. Finally, a flat, locally of finite type scheme over Λ with geometrically normal/regular fibres is geometrically normal/regular itself [Gro65, Cor. 6.5.2 & Cor 6.5.4].

For the remainder of this appendix, letX be a curve overΛ.

A.2. Picard group

Let s ∈ S. The morphism ρk(s):Xk(s) = X ×Speck(s) → X induces a group homomorphism

ρk(s): Pic(X)→Pic(Xk(s)).

The image of an invertible sheafL onX is denoted byLk(s)and called therestriction ofL toXk(s). Recall that the degree ofLk(s)isχ(Lk(s))−χ(OXk(s)). By invariance of the Euler-Poincar´e characteristic [Liu06, Prop. 5.3.28],

degLK = degLk.

The open immersionρK induces a group morphism Div(X)→Div(XK). On the level of divisor classes, this maps sits in a commutative diagram

CaCl(X) _ ////

CaCl(X _ K)

Pic(X) ρK

////Pic(XK)

Let us now consider the closed immersion ρk. A divisor Z on X is relative (to S) if every irreducible component of Z (as subscheme of X) is flat over S.(2) Equiva-lently, a relative divisor does not contain any generic point of Xk. Let G(Xk/X) be the group of relative divisors. The map ρk then induces a group morphism ρk: G(Xk/X) → Div(Xk). It is related to ρk: Pic(X) → Pic(Xk) by the canon-ical isomorphism OXkk(Z)) ∼= ρkOX(Z) [Liu06, Lem. 7.1.29]. So there is the commutative diagram

G(Xk/X) //

Div(Xk)

Pic(X) ρk //Pic(Xk)

Lemma. — IfX is smooth over S, thenρk: Pic(X)→Pic(Xk)is onto.

Proof. — By the above it is enough to show thatρk:G(Xk/X)→Div(Xk) is onto.

Since X is smooth, we may also identify divisors with Weil divisors, i.e. cycles of codimension 1. So let P be a closed point of Xk and consider it as divisor on Xk.

(2)Liu calls these divisorshorizontal[Liu06, Def. 8.3.5].

A.4. ACYCLICITY 75

There exists a closed pointPK ofXK of the same degree asP [Liu06, Prop. 10.1.40].

Its topological closure in X is{PK, P} and defines a relative divisorP onX. Since Suppρk(P) = SuppP∩Xk, the image ofP isP.

A.3. Cohomological flatness

Lemma. — Lets∈S. For any quasi-coherent sheafF onX that is flat overS and for all i∈N, there is a natural embeddingHi(F)⊗k(s),→Hi(Fk(s))of k(s)-spaces.

In case sis the generic point, the map is an isomorphism.

Proof. — The map is defined in [Liu06, Lem. 5.2.26]. Injectivity follows from [Liu06, Lem. 5.3.19]. Surjectivity in casek(s) =K is [Liu06, Cor. 5.2.27].

An invertible sheafL onXiscohomologically flatif the inclusion Hi(L)⊗k ,→Hi(Lk) is an isomorphism for alli∈N.

Theorem ([Liu06, Thm. 5.3.20 & Rem. 5.3.30]). — Let L be an invertible sheaf onX. For all i∈N the following holds.

(1) hi(LK)≤hi(Lk).

(2) hi(LK) = hi(Lk)if and only if Hi(L)is free andHi(L)⊗k ,→Hi(Lk)is an isomorphism.

(3) Hi(L)⊗k ,→Hi(Lk)is an isomorphism if and only if Hi+1(L)is free.

Since the fibres ofX are 1-dimensional, Hi(F) vanishes for any quasi-coherent sheaf on X whenever i is at least 2 [Liu06, Rem. 5.2.25]. Also, by duality H0(L) is free [Liu06, Rem. 6.4.21]. Hence the above says thatL is cohomologically flat if and only if H1(L) is free, or equivalently if hi(LK) = hi(Lk) fori= 0 ori= 1.

Proposition. — The sheafOX is cohomologically flat. IfX is smooth overS, then ΩX is cohomologically flat. In particular, the genera of the fibres ofX coincide.

Proof. — Since X is proper and flat over S, OX is cohomologically flat [Gro63, Prop. 7.8.6]. IfX is smooth, then ΩX is the dualising sheaf [Liu06, Thm. 6.4.32].

Cohomological flatness thus follows from the one ofOX[Liu06, Rem. 6.4.21]. There-fore, the genera h0(ΩXK) and h0(ΩXk) coincide.

A.4. Acyclicity

A quasi-coherent sheaf F (of abelian groups) on X (or one of its fibres) is called acyclic ornonspecial if Hi(F) vanishes wheneveriis greater than 0. Since Hi(F) is zero wheneveriis greater than 1,F is acyclic if and only if H1(F) is trivial.

IfF is flat and coherent overS, thenF is acyclic wheneverFk is. This is a conse-quence of the existence of the inclusion Hi(L)⊗k ,→Hi(Lk) and Nakayama’s lemma.

In particular, ifXk is of genusg, then Riemann-Roch says that an invertible sheaf is acyclic whenever its degree is at least 2g−1.

A.5. Strict relative normal crossing divisors

Definition. — Assume that X is smooth over S. A reduced divisor Z on X has strict relative normal crossings and is called astrict relative normal crossing divisor ifXcan be covered by open affine subschemesUsuch that eachU is ´etale overA1W(k) andZ|U is either empty or the fibre product ofU and the coordinate hyperplane. In other words, there exists an ´etale mapW(k)[x]→OX(U) that mapsxtotsuch that OX(−Z)(U) is eitherOX(U) ortOX(U).

Lemma. — Assume thatX is smooth overS. A reduced divisor Z on X has strict relative normal crossings if and only if it is a relative divisor and SuppZK and SuppZk have the same cardinality.

Proof. — Since X is smooth, we can cover the curve with finitely many open affines Ui = SpecAi such that each Ui is ´etale over A1Λ, i.e. there are ´etale maps ϕi: Λ[x] →Ai. The prime divisors of X are the irreducible components ofXk and closures inX of closed point onXK [Liu06, Prop. 8.3.4]. We writeZi forZ|Ui. Assume thatZ is a relative divisor and that the supports of its fibres have the same cardinality. ThenZ does not contain a generic point ofXk. We may therefore shrink the Ui so that each contains at most one point ofZk. If Zi is empty, then there is nothing to show. If Zi is not empty, then there is a unique irreducible component of Z that intersects Ui. So OX(−Z)(Ui) is a prime ideal of height 1 in Ai. Since ϕi is ´etale, the preimage of OX(−Z)(Ui) is a prime ideal also of height 1. Since Λ[x] is normal, the preimage is a principal ideal, generated by, say, fi. The map Λ[y] →Λ[x] that sends y tofi is ´etale atfiΛ[x]. Therefore, shrinking theUi again, we find Ui → Spec Λ[x] → Spec Λ[y] ´etale and Zi is the pullback of the coordinate hyperplaney= 0.

Assume thatZ is a strict relative normal crossing divisor. SinceUi→A1S is ´etale, it is quasi-finite [Liu06, Prop. 4.3.23]. In particular, its restriction toZi is quasi-finite and soZ is a relative divisor. Shrinking theUi, we may assume that each contains at most one point of Zk. Fix aUi whereZi is nonempty. LetP be the unique point in the support ofZi. AtP, the divisorZkcorresponds to the idealOXk(−Zk)P ofOXk,P. By assumption, this ideal is generated by the image ofxunder the mapk[x]→Ai⊗k.

Moreover, sincek[x]→Ai⊗k is ´etale,OXk(−Zk)P is maximal. If there existed two irreducible components of Z both with closed point P, then OXk(−Zk)P would not be radical and in particular not maximal. Hence the supports of the fibres ofZ have the same cardinality.

BIBLIOGRAPHY

[AKR11] T. Abbott, K. Kedlaya & D. Roe – “Bounding Picard numbers of surfaces usingp-adic cohomology”, S´eminaires et Congr`es, vol. 21, p. 125–159, S´ emi-naires et Congr`es, Soc. Math. France, 2011. 2, 31, 34

[BCP97] W. Bosma, J. Cannon&C. Playoust– “The Magma Algebra System I:

The User Language”,Journal of Symbolic Computation 24(1997), no. 3–4, p. 235–

265,doi:10.1006/jsco.1996.0125. 5, 70

[Bee99] N. Beerenwinkel–Hochheben von Kurven in positiver Charakteristik nach Charakteristik Null, Diplomarbeit, Universit¨at Bonn, 1999, Available from: http:

//www.bsse.ethz.ch/cbg/publications/Beerenwinkel1999.pdf. 23

[Ber74] P. Berthelot – Cohomologie cristalline des sch´emas de caract´eristique p > 0, Lecture Notes in Mathematics, vol. 407, Springer Berlin Heidelberg, 1974, doi:10.1007/BFb0068636. 2

[Ber97] , “Finitude et puret´e cohomologique en cohomologie rigide”, Invent.

math.128(1997), no. 2, p. 329–377,doi:10.1007/s002220050143. 1, 2, 45 [BGS07] A. Bostan, P. Gaudry & E. Schost´ – “Linear Recurrences with

Poly-nomial Coefficients and Application to Integer Factorization and Cartier-Manin Operator”, SIAM J. Comput. 36 (2007), no. 6, p. 1777–1806, doi:10.1137/

S0097539704443793. 60, 64, 65

[Bou89a] N. Bourbaki– Commutative Algebra, Chapters 1–7, Elements of Mathe-matics, Springer Berlin Heidelberg, 1989, Available from: http://www.springer.

com/mathematics/algebra/book/978-3-540-64239-8. 31, 36, 49, 50

[Bou89b] , General Topology, Chapters 1–4, Elements of Mathematics, Springer Berlin Heidelberg, 1989, Available from: http://www.springer.com/

mathematics/geometry/book/978-3-540-64241-1. 50

[Bou06] ,Alg`ebre commutative, Chapitres 8 et 9, ´El´ements de Math´ematique, Springer Berlin Heidelberg, 2006,doi:10.1007/3-540-33980-9. 21, 36

[BS08] J. Buhler&P. Stevenhagen(eds.) –Algorithmic Number Theory, Math.

Sci. Res. Inst. Publ., vol. 44, Cambridge University Press, 2008. 82, 84

[CDV06] W. Castryck, J. Denef & F. Vercauteren – “Computing zeta func-tions of nondegenerate curves”, International Mathematics Research Papers 2006 (2006), article ID 72017, 57 pages,doi:10.1155/IMRP/2006/72017. 2, 45, 51 [CFA05] H. Cohen, G. Frey & R. Avanzi – Handbook of Elliptic and

Hyperel-liptic Curve Cryptography, Chapman & Hall, 2005, Available from: http://www.

crcpress.com/product/isbn/9781584885184. 4, 66

[CHL06] H.-J. Chiang-Hsieh & J. Lipman – “A numerical criterion for simulta-neous normalization”, Duke Mathematical Journal 133 (2006), no. 2, p. 347–390, doi:10.1215/S0012-7094-06-13327-6. 11

[CHV08] W. Castryck, H. Hubrechts & F. Vercauteren– “Computing zeta functions in families ofCa,b curves using deformation”, inAlgorithmic Number The-ory, Lecture Notes in Computer Science, vol. 5011, Springer Berlin Heidelberg, 2008, p. 296–311,doi:10.1007/978-3-540-79456-1_20. 2

[CL07] R. Carls & D. Lubicz – “A p-adic quasi-quadratic point counting algo-rithm”, 2007,arXiv:0706.0234v3. 4

[CL08] A. Chambert-Loir – “Compter (rapidement) le nombre de solutions d’´equations dans les corps finis”, Ast´erisque, vol. 317, p. 39–90, Ast´erisque, Soc.

Math. France, 2008, Available from: http://smf4.emath.fr/en/Publications/

Asterisque/2008/317/html/smf_ast_317_39-90.html. 4

[CV09] W. Castryck & J. Voight – “On nondegeneracy of curves”, Algebra &

Number Theory 3 (2009), no. 3, p. 255–281, Available from: http://pjm.math.

berkeley.edu/ant/2009/3-3/p01.xhtml. 3, 44, 45

[DH88] S. Diaz & J. Harris– “Ideals associated to deformations of singular plane curves”,Transactions of the American Mathematical Society 309(1988), p. 433–368, doi:10.1090/S0002-9947-1988-0961600-2. 9

[DV06a] J. Denef & F. Vercauteren – “Counting points on Cab curves using Monsky-Washnitzer cohomology”,Finite Fields and Their Applications 12 (2006), no. 1, p. 78–102,doi:10.1016/j.ffa.2005.01.003. 2, 51

[DV06b] , “An Extension of Kedlaya’s Algorithm to Hyperelliptic Curves in Characteristic 2”, Journal of Cryptology 19 (2006), no. 1, p. 1–25, doi:10.1007/

s00145-004-0231-y. 2

[EH99] P. Ellia&R. Hartshorne– “Smooth specializations of space curves: ques-tions and examples”, Lecture Notes in Pure and Appl. Math., vol. 206, p. 53–79, Lecture Notes in Pure and Appl. Math., CRC Press, 1999. 7

BIBLIOGRAPHY 79

[Eis95] D. Eisenbud –Commutative Algebra, Graduate Texts in Mathematics, vol.

150, Springer New York Heidelberg, 1995, Available from: http://www.springer.

com/mathematics/algebra/book/978-0-387-94269-8. 47

[Elk73] R. Elkik– “Solutions d’´equations `a coefficients dans un anneau hens´elien”, Ann. Sci. ´Ecole Norm. Sup´er. (4)6(1973), no. 4, p. 553–603, Available from: http:

//www.numdam.org/item?id=ASENS_1973_4_6_4_553_0. 46

[Ful02] W. Fulton– “Adjoints and Max Noether’s Fundamentalsatz”, 2002,arXiv:

math/0209203. 27, 28

[FvdP03] J. Fresnel&M. van der Put–Rigid Analytic Geometry and Its Appli-cations, Progress in Mathematics, vol. 218, Birkh¨auser, 2003, Available from: http:

//www.springer.com/birkhauser/mathematics/book/978-0-8176-4206-8. 46 [Ger07] R. Gerkmann– “Relative Rigid Cohomology and Deformation of

Hypersur-faces”,Int. Math. Res. Papers 2007(2007),doi:10.1093/imrp/rpm003. 2, 34 [GG01] P. Gaudry &N. G¨urel– “An Extension of Kedlaya’s Point-Counting

Al-gorithm to Superelliptic Curves”, inAdvances in Cryptology – ASIACRYPT 2001, Lecture Notes in Computer Science, vol. Volume 2248/2001, Springer Berlin Heidel-berg, 2001, p. 480–494,doi:10.1007/3-540-45682-1_28. 2, 51

[GH00] P. Gaudry&R. Harley– “Counting Points on Hyperelliptic Curves over Finite Fields”, in Algorithmic Number Theory (W. Bosma, ed.), Lecture Notes in Computer Science, vol. 1838, Springer Berlin Heidelberg, 2000, p. 313–332, doi:

10.1007/10722028_18. 3

[GK89] G.-M. Greuel & U. Karras– “Families of varieties with prescribed sin-gularities”, Compositio Mathematica 69 (1989), no. 1, p. 83–110, Available from:

http://www.numdam.org/item?id=CM_1989__69_1_83_0. 24

[GL96] G.-M. Greuel & C. Lossen – “Equianalytic and equisingular families of curves on surfaces”, manuscripta mathematica 91 (1996), no. 1, p. 323–342, doi:

10.1007/BF02567958. 25

[GL01] , “The Geometry of Families of Sinuglar Curves”, NATO Science Series II: Mathematics, Physics and Chemistry, vol. 21, p. 159–192, NATO Science Series II: Mathematics, Physics and Chemistry, Springer Berlin Heidelberg, 2001. 19 [GM03] S. Gelfand&Y. Manin–Methods of Homological Algebra, Springer

Mono-graphs in Mathematics, Springer Berlin Heidelberg, 2003, Available from: http:

//www.springer.com/mathematics/algebra/book/978-3-540-43583-9. 34, 39 [Gro63] A. Grothendieck– “ ´El´ements de g´eom´etrie alg´ebrique (r´edig´es avec la

col-laboration de Jean Dieudonn´e) : III. ´Etude cohomologique des faisceaux coh´erents, Seconde partie”, Publications Math´ematiques de l’IH ´ES 17 (1963), no. 1, p. 5–91, doi:10.1007/BF02684890. 75

[Gro64] , “ ´El´ements de g´eom´etrie alg´ebrique (r´edig´es avec la collaboration de Jean Dieudonn´e) : IV. ´Etude locale des sch´emas et des morphismes des sch´emas, Premi`ere partie”,Publications Math´ematiques de l’IH ´ES 20(1964), no. 1, p. 5–251, doi:10.1007/BF02684747. 42

[Gro65] , “ ´El´ements de g´eom´etrie alg´ebrique (r´edig´es avec la collaboration de Jean Dieudonn´e) : IV. ´Etude locale des sch´emas et des morphismes des sch´emas, seconde partie”, Publications Math´ematiques de l’IH ´ES 24 (1965), no. 1, p. 5–223, doi:10.1007/BF02684322. 9, 73, 74

[Gro66] , “ ´El´ements de g´eom´etrie alg´ebrique (r´edig´es avec la collaboration de Jean Dieudonn´e) : IV. ´Etude locale des sch´emas et des morphismes des sch´emas, Troisi`eme partie”,Publications Math´ematiques de l’IH ´ES 28(1966), no. 1, p. 5–255, doi:10.1007/BF02684343. 9, 73, 74

[Gro67] , “ ´El´ements de g´eom´etrie alg´ebrique (r´edig´es avec la collaboration de Jean Dieudonn´e) : IV. ´Etude locale des sch´emas et des morphismes des sch´emas, Quatri`eme partie”,Publications Math´ematiques de l’IH ´ES32(1967), no. 1, p. 5–333, doi:10.1007/BF02732123. 21, 73

[Har97] R. Hartshorne – Algebraic Geometry, Graduate Texts in Mathemat-ics, vol. 52, Springer New York Heidelberg, 1997, Available from: http://www.

springer.com/math/algebra/book/978-0-387-90244-9. 7, 25

[Har07] D. Harvey – “Kedlaya’s Algorithm in Larger Characteristic”, Int. Math.

Res. Notices 2007(2007),doi:10.1093/imrn/rnm095. 3, 51, 59, 64

[Har10] R. Hartshorne – Deformation Theory, Graduate Texts in Mathematics, vol. 257, Springer New York Heidelberg, 2010, doi:10.1007/978-1-4419-1596-2.

6, 7, 15

[Hes] F. Hess– “Computing relations in divisor class groups of algebraic curves over finite fields”, Submitted toJournal of Symbolic Computation, Available from: http:

//www.staff.uni-oldenburg.de/florian.hess/publications/dlog.pdf. 3 [Hir57] H. Hironaka – “On the arithmetic genera and the effective genera of

al-gebraic curves”, Memoir of the College of Science, University of Tokyo, Series A 30(1957), no. 2, p. 177–195, Available from: http://projecteuclid.org/euclid.

kjm/1250777055. 13

[Hub07] H. Hubrechts – “Point Counting in Families of Hyperelliptic Curves in Characteristic 2”,Journal of Computation and Mathematics 10(2007), p. 207–234, doi:10.1112/S1461157000001376. 2

[Hub08] , “Point Counting in Families of Hyperelliptic Curves”, Founda-tions of Computational Mathematics 8 (2008), no. 1, p. 137–169, doi:10.1007/

s10208-007-9000-2. 2

BIBLIOGRAPHY 81

[Kat89] K. Kato – “Logarithmic structures of Fontaine-Illusie”, p. 551–578, John Hopkins University Press, 1989. 31

[Ked01] K. Kedlaya – “Counting Points on Hyperelliptic Curves using Monsky-Washnitzer Cohomology”,J. Ramanujan Math. Soc. 16 (2001), no. 4, p. 323–338.

2, 55

[Kod71] T. Kodama– “Residuenfreie Differentiale und der Cartier-Operator alge-braischer Funktionenk¨orper”, Archiv der Mathematik 22(1971), no. 1, p. 271–274, doi:10.1007/BF01222574. 49

[Kod84] , “On the Rank of Hasse-Witt Matrix”, Proc. Japan Acad. Ser. A Math. Sci.60 (1984), no. 5, p. 165–167,doi:10.3792/pjaa.60.165. 49

[Kun62] E. Kunz– “Einige Anwendungen des Cartier-Operators”,Archiv der Math-ematik 13(1962), no. 1, p. 349–356,doi:10.1007/BF01650083. 49

[Lam58] E. Lamprecht – “Zur Klassifikation von Differentialen in K¨orpern von Primzahlcharakteristik. I”,Mathematische Nachrichten 19 (1958), no. 1–6, p. 353–

374,doi:10.1002/mana.19580190126. 32, 48

[Lau03] A. Lauder – “Computing Zeta Functions of Kummer Curves via Multi-plicative Characters”,Foundations of Computational Mathematics 3(2003), no. 3, p. 273–295,doi:10.1007/s10208-002-0066-6. 3

[Lau04] , “Deformation theory and the computation of zeta functions”, Pro-ceedings of the London Mathematical Society 88 (2004), no. 3, p. 565–602, doi:

10.1112/S0024611503014461. 3

[Lau06] , “A recursive method for computing zeta functions of varieties”,LMS Journal of Computation and Mathematics 9 (2006), p. 222–269, Available from:

http://www.lms.ac.uk/jcm/9/lms2006-005/. 2

[Li08] M. Li – “Anwendung deformationstheoretischer Methoden zur Lif-tung des Frobeniusmorphismus”, Ph.D. Thesis, Universit¨at Duisburg-Essen, 2008, Available from: http://duepublico.uni-duisburg-essen.de/servlets/

DocumentServlet?id=19280. 22

[Liu06] Q. Liu–Algebraic Geometry and Arithmetic Curves, Oxford Graduate Texts in Mathematics, vol. 6, Oxford University Press, 2006, Available from: http://www.

oup.com/uk/catalogue/?ci=9780199202492. 5, 9, 10, 24, 25, 36, 42, 74, 75, 76 [LL06] R. Lercier & D. Lubicz – “A quasi quadratic time algorithm for

hyperel-liptic curve point counting”,The Ramanujan Journal 12 (2006), no. 3, p. 399–423, doi:10.1007/s11139-006-0151-6. 4

[LW04] A. Lauder&D. Wan– “Computing zeta functions of Artin-Schreier curves over finite fields II”, Journal of Complexity 20 (2004), no. 2–3, p. 331–349, doi:

10.1016/j.jco.2003.08.009. 3

[LW08] , “Counting points on varieties over finite fields of small characteristic”, p. 579–612, vol. 44 of Buhler & Stevenhagen [BS08], 2008, Available from: http:

//www.msri.org/communications/books/Book44/files/18lauder.pdf. 3

[Mar07] T. Markwig – “Families of Curves with Prescribed Singulari-ties”, Habilitation, Technische Universit¨at Kaiserslautern, 2007, Available from: http://www.mathematik.uni-kl.de/~keilen/download/Habilitation/

habilitation.pdf. 12

[Mes00] J.-F. Mestre– “Lettre adress´ee `a Gaudry et Harley”, 2000, Available from:

http://www.math.jussieu.fr/~mestre/. 4

[Mil80] J. S. Milne – Etale Cohomology, Princeton Mathematical Series, vol. 33,´ Princenton University Press, 1980, Available from:http://press.princeton.edu/

titles/1566.html. 35

[Min10] M. Minzlaff– “Computing Zeta Functions of Superelliptic Curves in Larger Characteristic”,Mathematics in Computer Science 3(2010), no. 2, p. 209–224,doi:

10.1007/s11786-009-0019-4. 52

[Mum66] D. Mumford – Lectures on Curves on an Algebraic Surface, Annals of Mathematics Studies, vol. 59, Princeton University Press, 1966, Available from:

http://press.princeton.edu/titles/2404.html. 19

[MW68] P. Monsky & G. Washnitzer– “Formal Cohomology I”, Ann. of Math.

(2)88(1968), p. 181–217,doi:10.2307/1970571. 2, 46

[Pil90] J. Pila – “Frobenius maps of abelian varieties and finding roots of unity in finite fields”, Mathematics of Computation 55 (1990), no. 192, p. 745–763, doi:

10.1090/S0025-5718-1990-1035941-X. 3

[Ros53] M. Rosenlicht– “Differentials of the Second Kind for Algebraic Function Fields of One Variable”, The Annals of Mathematics (Second Series) 57 (1953), no. 3, p. 517–523, Available from: http://www.jstor.org/stable/1969733. 32 [S+12] W. A. Stein et al. – Sage Mathematics Software (Version 5.3), The Sage

Development Team, 2012, Available from: http://www.sagemath.org. 5, 69 [Sat00] T. Satoh– “The Canonical Lift of an Ordinary Elliptic Curve over a Finite

Field and its Point Counting”,J. Ramanujan Math. Soc.15(2000), no. 4, p. 247–270.

4

[Sch39] F. K. Schmidt– “Zur arithmetischen Theorie der algebraischen Funktionen.

II. Allgemeine Theorie der Weierstraßpunkte”,Mathematische Zeitschrift 45(1939), no. 1, p. 75–96,doi:10.1007/BF01580274. 42, 44

[Sch68] M. Schlessinger– “Functors of Artin Rings”,Trans. Amer. Math. Soc.130 (1968), no. 2, p. 208–222,doi:10.1090/S0002-9947-1968-0217093-3. 15

BIBLIOGRAPHY 83

[Sch85] R. Schoof – “Elliptic Curves Over Finite Fields and the Computation of Square Roots modp”,Mathematics of Computation 44(1985), no. 170, p. 483–494, doi:10.1090/S0025-5718-1985-0777280-6. 3

[Ser06] E. Sernesi– Deformations of Algebraic Schemes, Grundlehren der mathe-matischen Wissenschaften, vol. 334, Springer Berlin Heidelberg, 2006,doi:10.1007/

978-3-540-30615-3. 6

[SG02] N. S. S. Galbraith, S. Paulus – “Arithmetic on superelliptic curves”, Mathematics of Computation 71 (2002), p. 393–405, doi:10.1090/

S0025-5718-00-01297-7. 51

[Shi02] A. Shiho– “Crystalline Fundamental Groups II – Log Convergent Cohomol-ogy and Rigid CohomolCohomol-ogy”, Journal of Mathematical Sciences, The University of Tokyo9(2002), no. 1, p. 1–163, Available from: http://journal.ms.u-tokyo.ac.

jp/abstract/jms090101.html. 31

[Sti09] H. Stichtenoth – Algebraic Function Fields and Codes, Graduate Texts in Mathematics, vol. 254, Springer Berlin Heidelberg, 2009, doi:10.1007/

978-3-540-76878-4. 1, 3, 11, 53, 54

[Tei80] B. Teissier – “R´esolution simultan´ee – i – Familles de courbes”, Lecture Notes in Mathematics, vol. 777, p. 71–81, Lecture Notes in Mathematics, Springer Berlin Heidelberg, 1980,doi:10.1007/BFb0085880. 11

[The04] The American Institute of Mathematics – “Workshop ’L-functions and Random Matrix Theory”’, 2004, Available from:http://www.aimath.org/WWN/

lrmt/. 3

[Tui11] J. Tuitman– “Counting points in families of nondegenerate curves”, Ph.D.

Thesis, Katholieke Universiteit Leuven, 2011, Available from: http://people.

maths.ox.ac.uk/tuitman/thesis.pdf. 2, 35, 44, 45

[vdB08] T. van den Bogaart – “Links between cohomology and arithmetic”, Ph.D. Thesis, Universiteit Leiden, 2008, Available from: www.math.leidenuniv.

nl/scripties/vandenBogaart.pdf. 32, 35, 38, 43

[vdP86] M. van der Put – “The cohomology of Monsky and Washnitzer”, M´em.

Soc. Math. France (2) 23 (1986), p. 33–60, Available from: http://www.numdam.

org/item?id=MSMF_1986_2_23__33_0. 2, 46, 47

[vzGG03] J. von zur Gathen& J. Gerhard– Modern Computer Algebra, Cam-bridge University Press, 2003,doi:10.2277/0521826462. 6

[Wah74a] J. Wahl– “Deformations of Plane Curves with Nodes and Cusps”, Amer-ican Journal of Mathematics 96 (1974), no. 4, p. 529–577, doi:10.2307/2373706.

18

[Wah74b] , “Equisingular Deformations of Plane Algebroid Curves”, Transac-tions of the American Mathematical Society 193(1974), p. 143–170,doi:10.1090/

S0002-9947-1974-0419439-2. 12, 16, 18

[Wal09] G. Walker – “Computing zeta functions of varieties via fibration”, Ph.D.

Thesis, University of Oxford, 2009, Available from: http://www.maths.bris.ac.

uk/~magmw/GMW_thesis.pdf. 2, 34, 35, 44

[Wan08] D. Wan– “Algorithmic theory of zeta functions over finite fields”, p. 551–

578, vol. 44 of Buhler & Stevenhagen [BS08], 2008, Available from: http://www.

msri.org/communications/books/Book44/files/18lauder.pdf. 1