• Keine Ergebnisse gefunden

Clustertool takes lists of links as input from ordinary text files. Each line should contain one link specified by the name of the nodes at its ends and its weight. These three entries should be separated by tabs. Names can be strings of no more than 50 characters without spaces. For large networks, it is convenient to use integer numbers starting from one as names of nodes. In this case, the input file should carry the extension .mtx and clustertool will read the input faster. Self links and double links will be excluded from the input.

Bibliography

[1] E. T. Jaynes. Information theory and statistical mechanics. Physical Re-view, 106(4):620–630, 1957.

[2] E. T. Jaynes. Information theory and statistical mechanics ii. Physical Review, 108(2):171–190, 1957.

[3] A. Engel and C. Van den Broeck. Statistical Mechanics of Learning. Cam-bridge University Press, 2001.

[4] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: an introduction to cluster analysis. Wiley-Interscience, 1990.

[5] B.S. Everitt, S. Landau, and M. Leese.Cluster Analysis. Arnold, 4 edition, 2001.

[6] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review.ACM Computing Surveys, 31(3):264–323, 1999.

[7] P. Arabie and L. J. Hubert. Combinatorial data analysis. Anual Review of Psychology, 43:169–203, 1992.

[8] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton Univer-sity Press, Princeton, 1961.

[9] M. Steinbach, L. Ert ¨oz, and V. Kumar. New Vistas in Statistical Physics – Applications in Econo-physics, Bioinformatics, and Pattern Recognition, chap-ter Challenges of cluschap-tering high dimensional data. Springer-Verlag, 2003.

[10] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is ‘nearest neighbor‘ meaningful? In Proceedings of 7th International Conference on Database Theory (ICDT-1999), pages 217–235, Jerusalem, Israel, 1999.

[11] Special Issue. Complex systems. Science, 284:2–212, 1999.

[12] M. E. J. Newman. Detecting community structure in networks.Eur. Phys.

J. B, 38:321, 2004.

[13] L. Danon, J. Dutch, A. Arenas, and A. Diaz-Guilera. Comparing com-munity structure indentification. J. Stat. Mech., page P09008, 2005.

[14] B. Bollob´as. Modern Graph Theory. Springer-Verlag Berlin Heidelberg, 1998.

[15] R. Albert and A.-L. Barab`asi. Statistical mechanics of complex networks.

Rev. Mod. Phys., 74:47–97, 2002.

[16] M. E. J. Newman. The structure and function of complex networks.

SIAM Review, 45(2):167–256, 2003.

[17] S. N. Dorogovtsev and J. F. F. Mendes. Complex systems and inter-disciplinary science, 2005.

[18] S. Bornholdt and H. G. Schuster, editors. Handbook of Graphs and Net-works. Wiley-Vch, Weinheim, 2003.

[19] E. Ben-Naim, H. Frauenfelder, and Z. Toroczkai. Complex Networks, Lect.

Notes Phys. 650. Springer-Verlag Berlin Heidelberg, 2004.

[20] J. Mendes. Science of Complex Networks. From Biology to the Internet and WWW;. Springer-Verlag Berlin Heidelberg, 2005.

[21] M. Buchanan. Nexus: Small Worlds and the Groundbreaking Science of Net-works. W.W. Norton & Company, 2003.

[22] D. Watts. Six Degrees: The Science of a Connected Age. W.W. Norton &

Company, 2004.

[23] A.-L. Barab´asi. Linked. Plume Books, 2003.

[24] P. Erd˝os and A. R´enyi. On the evolution of random graphs. Publ. Math.

Inst. Hung. Acad. Sci., 5:17–61, 1960.

[25] B. Bollobas. Random Graphs. Cambridge University Press, 2nd. edition, 2001.

[26] S. Milgram. The small world problem. Psychology Today, 2:60–67, 1967.

[27] D. J. Watts and S. H. Strogatz. Collective dynamics in small world net-works. Nature, 393:440–442, 1998.

[28] A.-L. Barab´asi and R. Albert. Emergence of scaling in random networks.

Science, 286:509–512, 1999.

[29] M. Molloy and B. Reed. A critical point for random graphs with given degree sequence. Random Structures and Algorithms, 6:161–179, 1995.

[30] E. A. Bender and E. R. Canfield. Journal of Combinatorial Theory (A), 24:296, 1978.

Bibliography

[31] M. E. J. Newman. Assortative mixing in networks. Phys. Rev. Lett., 89:208701, 2002.

[32] M. E. J. Newman. Mixing patterns in networks. Phys. Rev. E., 67:026126, 2003.

[33] R. Cohen, K. Erez, and S. Havlin. Resilience of the internet to random breakdowns. Phys. Rev. Lett., 85:4626–4628, 2000.

[34] R. Pastor-Satorras and A. Vespignani. Epidemic spreading in scale-free networks. Phys. Rev. Lett., 86:3200–3203, 2001.

[35] F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and X. Aberg.

The web of human sexual contacts. Nature, 411:907–908, 2001.

[36] R. Pastor-Satorras and A. Vespignani. Immunization of complex net-works. Phys. Rev. E., page 036104, 2002.

[37] G. Szabo and G. Fath. Evolutionary games on graphs. pre-print cond-mat/0607377, 2006.

[38] J.R. Tyler, D.M. Wilkinson, and B.A. Huberman. Email as spectroscopy:

automated discovery of community structure within organisations. In International Conference on Communities and Technologies, Amsterdam, The Netherlands, 2003.

[39] P Uetz, L Giot, G. Cagney, T.A. Mansfield, R.S. Judson, J.R. Knight, D. Lockshon, V. Narayan, M. Srinivasan, P. Pochardt, A. Qureshi-Emili, Y. Li, B. Godwin, D. Conver, T. Kalbfleisch, G. Vijayadamodar, M. Yang, M. Johnston, S. Fields, and J.M. Rothberg. A comprehensive analy-sis of protein–protein interactions in saccharomyces cerevisiae. Nature, 403:623–627, 2000.

[40] V. Spirin and L. A. Mirny. Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci. USA, 100(21):12123, 2003.

[41] R. Guimera and L. A. N. Amaral. Functional cartography of complex metabolic networks. Nature, 433:895–900, 2005.

[42] various authors. Special issue: Mapping knowledge domains.Proc. Natl.

Acad. Sci. USA, 101, 2004.

[43] M. E. J. Newman. Scientific collaboration networks: I. network construc-tion and fundamental results. Phys. Rev. E, 64:016131, 2001.

[44] C.E. Bonferroni. Il calcolo delle assicuranzioni su gruppi die teste. Studi in Onore del Professore Salvatore Ortu Carboni, pages 13–60, 1935.

[45] M. E. J. Newman and M. Girvan. Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA, 99(12):7821–7826, 2003.

[46] W. Zachary. An information flow model for conflict and fission in small groups. J. Anthr. Res., 33:452–473, 1977.

[47] S. Wasserman and K. Faust. Social Network Analysis. Cambridge Univer-sity Press, 1994.

[48] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi. Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA, 101:2658, 2004.

[49] I. Der´enyi, G. Palla, and T. Vicsek. Clique percolation in random net-works. Phys. Rev. Lett., 94:160202, 2005.

[50] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek. Uncovering the overlapping community structure of complex networks in nature and society.Nature, 435:814, 2005.

[51] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. Phys. Rev. E, 69:026113, 2004.

[52] B. Kernighan and S. Lin. An effective heuristic procedure for partition-ing graphs. The Bell System Technical Journal, 29:291–307, 1970.

[53] C. Fiduccia and R. Mattheyses. A linear time heuristic for improving network partitions. InProc. 19th Design Automation Conf., pages 175–181, 1982.

[54] C.-K. Cheng and Y. A. Wei. An improved two-way partitioning algo-rithm with stable performance. IEEE. Trans. Comp. Aided Des. Integrated Circuits Syst., 10:1502–1511, 1991.

[55] L. Hagen and A. B. Kahng. New spectral methods for ratio cut parti-tioning and clustering. IEEE. Trans. on Comp. Aided Des., 11:1074–1085, 1992.

[56] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE.

Trans. Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

[57] Ch. H. Q. Ding, X. He, H. Zha, M. Gu, and H. D. Simon. A min-max cut algorithm for graph partioning and data clustering. InProceedings of ICDM 2001, pages 107–114, 2001.

[58] D. M. Wilkinson and B. A. Huberman. A method for finding communi-ties of related genes. Proc. Natl. Acad. Sci. USA, 101:5241–5248, 2004.

[59] M. E. J. Newman. A measure of betweenness centrality based on random walks. arXiv:cond-mat/0309045, submitted to Social Networks, 2003.

[60] F. Wu and B.A. Huberman. Finding communities in linear time: a physics approach. Eur. Phys. J. B, 38:331, 2004.

[61] M. E. J. Newman. Fast algorithm for detecting community structure in networks. Phys. Rev. E., 69:066133, 2004.

Bibliography

[62] Alex Arenas, Albert D´ıaz-Guilera, and Conrad j. P´erez-Vicente. Synchro-nization reveals topological scales in complex networks. Phys. Rev. Lett., 96:114102, 2006.

[63] M. Blatt, S. Wiseman, and E. Domany. Super-paramagnetic clustering of data. Phys. Rev. Lett., 76:3251–3254, 1996.

[64] S. Wiseman, M. Blatt, and E. Domany. Super-paramagnetic clustering of data. Phys. Rev. E, 57(3767), 1998.

[65] E. Domany. Cluster analysis of gene expression data.J. Stat. Phys., 110(3-6):1117–1139, 2003.

[66] K. A. Eriksen, I. Simonsen, S. Maslov, and K. Sneppen. Modularity and extreme edges of the internet. Phys. Rev. Lett., 90(14), 2003.

[67] I. Somonsen, K.A. Eriksen, S. Maslov, and K. Sneppen. Diffusion on complex networks: a way to probe their large scale topological struc-tures. Physica A, 336:163, 2004.

[68] H. Zhou. Distance, dissimilarity index, and network community struc-ture. Phys. Rev. E, 67, 2003.

[69] H. Zhou and R. Lipowsky.Network brownian motion: a new method to mea-sure vertex-vertex proximity an to identify communities and subcommunities, pages 1062–1069. Springer-Verlag Berlin Heidelberg, 2004.

[70] H. Zhou. Network landscape from a brownian particle’s perspective.

Phys. Rev. E, 67:041908, 2003.

[71] L. Donetti and M. A. Munoz. Detecting network communities: a new and systematic approach. J. Stat. Mech.: Th. Exp., page P10012, 2004.

[72] C. H. Papadimitriou. Combinatorial Optimization: Algorithms and Com-plexity. Dover Publications, 1998.

[73] R. Guimera, M. Sales-Pardo, and L. N. Amaral. Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E., 70:025101(R), 2004.

[74] C. P. Massen and J. P. K. Doye. Identifying communities within energy landscapes. Phys. Rev. E, 71:046101, 2005.

[75] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by simmu-lated annealing. Science, 220:671–680, 1983.

[76] J. Duch and A. Arenas. Community detection in complex networks us-ing extremal optimization. Phys. Rev. E, 72:027104, 2005.

[77] O. Martin, R. Monasson, and R. Zecchina. Statistical mechanics methods and phase transitions in optimization problems.Theoretical Computer Sci-ence, 256:3–67, 2001.

[78] Y. Fu and P. W. Anderson. Application of statistical mechanics to NP-complete problems in combinatorial optimisation. J. Phys. A: Math. Gen., 19:1605–1620, 1986.

[79] M. Weigt and A. K. Hartman. Number of guards needed by a museum:

A phase transition in vertex covering of random graphs. Phys. Rev. Lett., 84(26):6118, 2000.

[80] R. Monasson and R. Zecchina. Entropy of the k-satisfiability problem.

Phys. Rev. Lett., 76:3881, 1996.

[81] V. ˇCerny. Thermodynamical approach to the travelling salesman prob-lem: An efficient simulation algorithm. J. Optim. Theory Appl., 45:41, 1985.

[82] F.Y. Wu. The Potts model. Rev. Mod. Phys., 54(1):235–368, 1982.

[83] K. Fischer and J. Hertz. Spin Glasses. Cambridge University Press, Cam-bridge, 1991.

[84] M. Mezard, G. Parisi, and M. A. Virasoro. Spin Glass Theory and Beyond.

World Scientific, 1987.

[85] H. Nishimori. Statistical Physics of Spin Glasses and Information Processing.

Oxford Science Publications, Oxford, 2001.

[86] S. Kirkpatrick and D. Sherrington. Infinite-ranged models of spin-glasses. Phys. Rev. B, 17(11), 1977.

[87] J. Reichardt and S. Bornholdt. Detecting fuzzy community structures in complex networks with a Potts model. Phys. Rev. Lett., 93:218701, 2004.

[88] A. Clauset, M. E. J. Newman, and C. Moore. Finding community struc-ture in very large networks. Phys. Rev. E., 70:066111, 2004.

[89] S. B. Seidmann. Internal cohesion of ls-sets in graphs. Social Networks, 5:97–107, 1983.

[90] D. Gfeller, J.-C. Chappelier, and P. de los Rios. Finding instabilities in the community structure of complex networks. Phys. Rev. E., 72:056135, 2005.

[91] R. Palmer. The Economy as an Evolving Complex System, chapter II, page 177. Westview-Press, 1988.

[92] A. K. Hartmann and H. Rieger, editors. Optimization Algorithms in Physics. Wiley-Vch, 2004.

[93] A. K. Hartmann and H. Rieger, editors. New Optimization Algorithms in Physics. Wiley-Vch, 2004.

[94] M. E. J. Newman and G. T. Barkema. Monte Carlo Methods in Statistical Physics. Clarendon Press, 1999.

Bibliography

[95] S. Maslov and K. Sneppen. Specificity and stability in topology of pro-tein networks. Science, 296:910–913, 2002.

[96] I. Kanter and H. Sompolinsky. Graph optimisation problems and the Potts glass. J. Phys. A: Math. Gen., 20:L636–679, 1987.

[97] J. R. Banavar, D. Sherrington, and N. Sourlas. Graph bipartioning and statistical mechanics. J. Phys. A: Math. Gen., 20:L1–L8, 1987.

[98] D. Sherrington and S. Kirkpatrick. Solvable model of a spin-glass. Phys.

Rev. Lett., 35(26):1792–1796, 1975.

[99] D.-H. Kim, G. J. Rodgers, B. Kahng, , and D. Kim. Spin glass phase-transitions on scale-free networks. Phys. Rev. E, 71:056115, 2005.

[100] S. F. Edwards and P. W. Anderson. Theory of spin glasses.J. Phys. F. Met.

Phys, 5:965, 1975.

[101] J. Hubbard. Calculation of partition functions. Phys. Rev. Lett., 3:77–78, 1959.

[102] G Parisi. A sequence of approximated solutions to the s-k model for spin glasses. J. Phys. A: Math. Gen., 13:L115–L121, 1980.

[103] W. Liao. The graph-bipartitioning problem.Phys. Rev. Lett., 59(15):1625–

1628, 1987.

[104] W. Liao. Replica-symmetric solution of the graph-bipartitioing problem.

Phys. Rev. A, 37:587–595, 1988.

[105] Y. Y. Goldschmidt and C. De Dominicis. Replica symmetry breaking in the spin-glass model on lattices with finite connectivity: Application to graph partitioning. Phys. Rev. B, 410(4):2184–2197, 1990.

[106] I. Kanter and H. Sompolinsky. Mean-field theory of spin-glasses with finite coordination number. Phys. Rev. Lett., 58(2):164–167, 1987.

[107] K. Y. M. Wong and D. Sherrington. Graph bipartitioning and spin glasses on a random network of finite valence. J. Phys. A: Math. Gen., 20:L793–

L799, 1987.

[108] M. Mezard and G. Parisi. Mean-field theory of randomly frustrated sys-tems with finite connectivity. Europhys. Lett., 3(10):1067–1074, 1987.

[109] M. J. de Oliveira. Graph optimization problems on the bethe lattice. J.

Stat. Phys., 54(1/2):477–493, 1989.

[110] D. Sherrington and K. Y. M. Wong. Graph bipartitioning and the bethe spin glass. J. Phys. A: Math. Gen., 20:L785–L791, 1987.

[111] M. Mezard and G. Parisi. The cavity method at zero temperature.J. Stat.

Phys., 111(1/2), 2003.

[112] S. Franz, M. Leone, and F. L. Toninelli. Replica bounds for diluted non-poissonian spin systems. J. Phys. A: Math. Gen., 36:10967–10985, 2003.

[113] L. Viana and A. J. Bray. Phase diagrams for dilute spin glasses. J. Phys.

C: Solid State Phys., 18:3037–3051, 1985.

[114] A. Braunstein, R. Mulet, A. Pagnani, M. Weigt, and R. Zecchina. Poly-nomial iterative algorithms for coloring and analyzing random graphs.

Phys. Rev. E, 68:036702, 2003.

[115] R. Mulet, A. Pagnani, M. Weigt, and R. Zecchina. Coloring random graphs. Phys. Rev. Lett, 89, 2002.

[116] M. Mezard and G. Parisi. The bethe lattice spin glass revisited. Eur. Phys.

J. B, 20:217–233, 2001.

[117] A. V´azquez and M. Weigt. Computational complexity arising from de-gree correlations in networks. Phys. Rev. E, 67:027101, 2003.

[118] F. Rao and A. Caflisch. The protein folding network.J. Mol. Bio., 342:299, 2004.

[119] C. B. Anfinsen, E. Haber, M. Sela, and F. H. Jr. White. The kinetics of for-mation of native ribonuclease during oxidation of the reduced polypep-tide chain. Proc. Natl. Acad. Sci. USA, 47:1309, 1961.

[120] C. B. Anfinsen. Principles that govern the folding of protein chains. Sci-ence, 181:223–230, 1973.

[121] C. Levinthal. Are there pathways for protein folding? J. Chim. Phys., 65:44–45, 1968.

[122] K. A. Dill and H. S. Chan. From levinthal to pathways to funnels.Nature, 4(1), 1997.

[123] E. De Alba, J. Santoro, M. Rico, and M. A. Jim´enez. De novo, design of monomeric three-stranded antiparallel β-sheet. Protein Sci., 8:854–865, 1999.

[124] P. Ferrara, J Apostolakis, and A. Caflisch. Evaluation of a fast implicit solvent model for molecular dynamics simulations. Proteins: Struct., Funct. Genet., 46:24–33, 2002.

[125] C. A. F. Anderson, A. G. Palmer, S. Brunak, and B. Rost. Continuum secondary structure captures protein flexibility. Structure, 10:174–184, 2002.

[126] Special report on ebay. The Economist, 375(8430), 06/2005.

[127] I. Yang, H. Jeong, B. Kahng, and A.-L. Barab´asi. Emerging behavior in electronic bidding. Phys. Rev. E, 68:016102, 2003.

Bibliography

[128] A. Ockenfels and A. E. Roth. Late and multiple bidding in second price internet auctions: Theory and evidence concerning different rules for ending an auction. Am. Econ. Rev., 92:1093, 2002.

[129] I. Yang and B. Kahng. Bidding process in online auctions and winning strategy: rate equation approach. physics/0511073, 2005.

[130] M. J. Greenacre. Correspondence Analysis in Practice. Academic Press, 1993.

[131] R. Agrawak and R. Skrikant. Fast algorithms for mining association rules. In20thVLDB Conf., pages 487–499, Santiago, Chile, 1994.

[132] J. Hipp, U. G ¨untzer, and G. Nakhaeizadeh. Algorithms for association rule mining - a general survey and comparison. SIGKDD Explor. Newsl., 293(1):58–64, 2000.

[133] E.-H. Han, G. Karypis, V. Kumar, and B. Mobasher. Hypergraph based clustering in high-dimensional data sets: A summary of results. Data Engineering Bulletin, 21(1):15–22, 1998.

[134] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collabora-tive filtering recommendation algorithms. InWWW10, pages 285 – 295, Hong Kong, 2001.

[135] H. S. Wilf. Generatingfunctionology. Academic Press, 1994.

[136] S. H. Strogatz. Exploring complex networks. Nature, 410:268–276, 2001.

[137] M. E. J. Newman. Properties of highly clustered networks. Phys. Rev. E., 68:026121, 2003.

[138] M. E. J. Newman. Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E, 64:026118, 2001.

[139] M. L. Goldstein, S. A. Morris, and G. G. Yen. Problems with fitting to the power-law distribution. Eur. Phys. J. B, 410:255–258, 2004.

[140] M. E. J. Newman. Power laws, Pareto distributions and Zipf’s law. Con-temporary Physics, 46:323–351, 2005.

[141] Robert L. Axtell. Zipf distribution of u.s. firm sizes. Science, 293:1818, 2001.

[142] M. E. J. Newman, D. J. Watts, and S. H. Strogatz. Random graph models of social networks. Proc. Natl. Acad. Sci. USA, 99:2566–2572, 2002.

[143] E. Ravasz, A. Somera, D. A. Mongru, Z. N. Oltvai, and A.-L. Barab´asi.

Hierarchical organization of modularity in metabolic networks. Science, 297:1551, August 2002.

[144] M. E. J. Newman. Modularity and community structure in networks.

Proc. Natl. Acad. Sci. USA, 103(23):8577–8582, 2006.

[145] J. Reichardt and S. Bornholdt. Statistical mechanics of community detec-tion. Phys. Rev. E, 74:016110, 2006.

[146] P. Resnick and H. R. Varian. Recommender systems. Commun. ACM, 40(3):56–58, 1997.

[147] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and J. Riedl. Grouplens: applying collaborative filtering to usenet news.

Commun. ACM, 40(3):77–87, 1997.