• Keine Ergebnisse gefunden

5.5 The Grothendieck group of D <r (G, K)

5.5.2 Injectivity

As mentioned in the introduction, the motivation of Chapter 5 is to be able to compute the Grothendieck group of D(G, K). In this section, we take a step to-wards it. We prove that the group homomorphismK0(K[[G]])→K0(D<r(G, K)) induced by the natural injection of rings K[[G]] → D<r(G, K) is injective. This has a nice consequence, namely that there is a natural injective homomorphism Zc ↪→ K0(D<r(G, K)) and more importantly, it implies that there is an injective group homomorphism Zc↪→K0(D(G, K)). We will see what this homomorphism exactly is. We very much suspect that it is in fact an isomorphism. Let us denote byd the dimension of H.

Theorem 5.5.3. There is an injective mapZc ↪→K0(D<r(G, K)), where cis the number of p-regular conjugacy classes of G/H.

Proof. Let us denote by I0 the kernel of the ring homomorphism ϕ0 : K[[G]] → K[G/H] induced by the surjective group homomorphism G → G/H. Then the kernel I0 is generated by the elements bi for i = 1, . . . , d. One may look

at the algebra K[G/H] as the distribution algebra of G/H, which is a com-pact p-adic analytic group of dimension 0. Obviously, in this case all the al-gebras K[[G/H]], D(G/H, K), Dr(G/H, K), D<r(G/H, K) are the same, the group algebra K[G/H]. In the previous section we denoted by IK the kernel of the surjection ϕK :D<r(G, K)→ K[G/H], induced by the group homomorph-ism G → G/H. As before, IK is generated by bi for all i = 1, . . . , d. It is easy to see that IK is the scalar extension of I0 via the canonical at ring map K[[G]]↪→D<r(G, K). Hence we have the following commutative diagram:

K[[G]]

ϕ0

↓↓ →→D<r(G, K)

ϕr

↓↓

K[G/H] = →→K[G/H]

(41)

Lemma 5.5.4. K00) :K0(K[[G]])↪→K0(K[G/H])is injective.

Proof. It is easy to see that the diagram OK[[G]]

↓↓π →→K[[G]]

↓↓π

OK[G/H] →→K[G/H]

is commutative where the horizontal maps are the natural inclusions the the ver-tical maps are the natural surjections. Hence it induces a diagram

K0(OK[[G]])

↓↓ →→K0(K[[G]])

↓↓

K0(OK[G/H]) →→K0(K[G/H]).

By Theorem 5.2.4 the upper horizontal map is an isomorphism.By Proposition 3.3 (b)in [8], OK[[G]]is complete with respect to the augmentation ideal I(H): It is the kernel of the map OK[[G]]→ OK[G/H]). ActuallyI(H) is in the Jacobson radical of OK[[G]], which is contained in the radical, the intersection of all open maximal left ideals of OK[[G]]. The Iwasawa algebra is complete with respect to the ltration induced by the radical, by Corollary 5.2.19 in [30]. Hence by Proposition 2.5.6, the vertical map on the left hand side is also an isomorphism.

By Corollary 2.9.9, the lower horizontal map is injective. Hence the vertical map on the right hand side must be injective.

Diagram (41) induces a commutative diagram after applying K0( ): K0(K[[G]])

K00)

↓↓ →→K0(D<r(G, K))

K0r)

↓↓

K0(K[G/H]) = →→K0(K[G/H]) .

By Lemma 5.5.4, K00) is injective. Hence the upper horizontal map must also be injective, by commutativity.

Remark 5.5.5. Note that for injectivity, we did not need assumption (E).

Corollary 5.5.6. The map K0(K[[G]]) → K0(D(G, K)) induced by the natural inclusion K[[G]] → D(G, K) is injective. Hence we have an injective map Zc → K0(D(G, K))

Proof. It is an easy consequence of the fact that the natural inclusion K[[G]] ↪→ D<r(G, K)factorizes throughD(G, K)since know that D(G, K)⊂D<r(G, K)for all rQ such that 1/p < r <1. Then we can use that K0( ) is a functor to get the desired injective map.

Now the proof of Theorem 5.5.1: Hence the theorem follows from the well-known structure theorem for nitely generated modules over PID's since by Theorem 5.5.3 and by Theorem 5.5.2, we have an injective map Zc ↪→K0(D<r(G, K)) and a surjective map Zc→K0(D<r(G, K)). Hence Zc∼=K0(D<r(G, K)).

Corollary 5.5.7. Let G be a compactp-adic analytic group. Let r ∈pQ, 1/p <

r < 1 and assume that K satisies (E). Then there is an injective map Zc → Dr(G, K).

Proof. The mapK0(K[[G]])↪→K0(D<r(G, K))factorizes throughK0(Dr(G, K)). It follows thatZc ↪→K0(Dr(G, K)). Hence using that K0 is a functor, we get the injective map.

References

[1] Ardakov K.: Centres of Skewelds and completely faithful Iwasawa modules.

J. Inst. Math. Jussieu 7 (2008).

[2] Ardakov K.: Krull dimension of Iwasawa algebras and some related topics, PhD thesis, University of Cambridge (2004).

[3] Ardakov K.: Localisation at augmentation ideals in Iwasawa algebras, Glas-gow Math. Journal 48(2) (2006) 251-267.

[4] Ardakov K.: The centre of completed group algebras of pro-p groups, Docu-mentha Math. 9 (2004), 599-606

[5] Ardakov K., Brown K. A.: Primesness, semiprimness and localization in Iwas-awa algebras, Trans. Amer. Math. Soc., 359 (2007), 1499-1515.

[6] Ardakov K., Brown K. A.: Ring-theoretic properties of Iwasawa algebras: a survey, Documenta Math., Extra volume Coates, (2006), 7-33.

[7] Ardakov K., Wadsley S.: K0 and the dimension ltration forp-torsion Iwas-awa modules, Proc. Lond. Math. Soc. 97(1) (2008) 31-59.

[8] Ardakov K., Wadsley S.: Characteristic elements for p-torsion Iwasawa mod-ules, J. Algebraic Geom. 15 (2006) , 339-377.

[9] Ardakov K., Wei F., Whang J. J.: Reexive ideals in Iwasawa algebras. Adv.

Math. 218 (2008), 865-901.

[10] Asano K.: Zur Arithmetik in Schiefringen I., Osaka Math. J., (1949) 98-134.

[11] Bosch S., Güntzer U., Remmert R.: Non-Archimedean Analysis Berlin-Heidelberg-New York: Springer (1984).

[12] Brumer A.: Pseudocompact Algebras, Pronite Groups and class formations, Journal of Algebra, 4 (1966), 442-470.

[13] Burns D., Venjakob O.: On descent theory and main conjectures of non-commutative Isawawa theory. J. Inst. Math. Jussieu 10 (2010), 59-118.

[14] Chevalley C.: La notion d'anneau dècomposition, Nagoya Math. J. 7 (1954), 21-33.

[15] Clark J.: Auslander-Gorenstein rings for beginners, International Symposium on Ring Theory, Kyongu (1995) 95-115.

[16] Coates J., Schneider P., Sujatha R.: Modules over Iwasawa algebras. J. Inst.

Math. Jussieu 2 (2003), 73-108.

[17] Coates J., Fukaya T., Kato K., Sujatha R., Venjakob O.: The GL2 main con-jecture for elliptic curves without complex multiplication, Publ. Math. IHES 101 (2005), 163-208.

[18] C. W. Curtis, Methods of Representation Theory, Pure and Applied Math-ematics (1981).

[19] Dixon, J. D., Du Sautoy M., Segal D.: Analytic pro-p groups, second edition.

Cambridge University Press (2003).

[20] Feit W.: The representation theory of nite groups. North-Holland Mathem-atical Library 25. Amsterdam-New York: North-Holland Publishing (1982).

[21] Hazrat, R.: Graded Rings and Graded Grothendieck Groups, London Math.

Soc. Lecture Note Series (2016).

[22] Hiushi L., van Oystaeyean F.: Zariskian Filtrations,K-monographs in Math-ematics, Vol. II (1996).

[23] Kaplansky I., Projective modules, Annals of Mathematics, Second Series, Vol. 68 2 (1958), 372-377.

[24] Lam T. Y.: Lectures on modules and rings, Graduate Texts in Mathematics, Springer189 (1999).

[25] Lazard M.: Groupes analytiques p-adiques, Publ. Math. IHES 26 (1965), 389-603.

[26] Leinster, T.: The bijection between projective indecomposable and simple modules. Available on arxiv https://arxiv.org/pdf/1410.3671v1.pdf.

[27] Maury G., Raynaud J.: Ordres Maximaus au Sens de K. Assano, Lecture Notes in Math. Springer, 808 (1980).

[28] McConnell J. C. , Robson J. C., Noncommutative Noetherian Rings. LMS Lecture Note Series 98 (1986).

[29] Meng, F. L.: On the completely faithfulness of thep-free quotient modules of dual Selmer groups. http://arxiv.org/pdf/1504.04917v5.pdf.

[30] Neukirch J., Schmidt A., Wingberg K.: Cohomology of number elds.

Springer 323 (2000).

[31] Neumann A.: Completed group algebras without zero-divisors, Arch. Math.

Basel, 51, (1998), 496-499.

[32] Passman D. S.: The Algebraic Structure of Group Rings, New York (1977).

[33] Pompescu N.: Abelian Categories with Applications to Rings and Modules, Academic Press INC. (1973).

[34] Robson J. C.: Cyclic and faithful objects in quotient categories with applic-ations to noetherian simple or Asano rings, In noncommutative ring theory, Kent State 1975, Lecture Notes in Mathematics, vol. 545, Springer (1976), 151-172.

[35] Schmidt T.: Auslander regularity ofp-adic distribution algebras. Rep. Theory (2007).

[36] Schneider P.: p-adic Banach space representations of p-adic groups, Lectures at Jerusalem. (2009) http://wwwmath.uni-muenster.de/u/pschnei/publ/

lectnotes/jerusalem.pdf.

[37] Schneider P.: Modular Representation Theory of Finite Groups, Springer (2013).

[38] Schneider P., Teitelbaum J.: Algebras of p-adic distributions and admissible representations. Inv. Math. 153 (2003).

[39] Schneider P., Teitelbaum J.: Banach space representations and Iwasawa the-ory. Israel J. Math. 127, 359-380 (2002)

[40] Schneider P., Teitelbaum J.: Continuous and locally analytic representa-tion theory, Leactures by P. Schneider and J. Teitelbaum at Hangzhou.

(2004) http://wwwmath.uni-muenster.de/u/schneider/publ/lectnotes/

index.html

[41] Schneider P., Teitelbaum J.: Locally analytic distributions and p-adic repres-entation theory, with applications to GL2. J. AMS 15, 443-468 (2002) [42] Schneider P., Teitelbaum J.: p-adic Fourier theory. Documenta Math. 6,

447-481 (2001)

[43] Schneider P., Teitelbaum J.: p-adic boundary values. Cohomologies p-adiques et applications arithmetiques (I) Asterisque 278, 51-125 (2002)

[44] Schneider P., Teitelbaum J.: U(g)-nite locally analytic representations. Rep-resentation Theory 5, 111-128 (2001)

[45] Schneider P., Venjakob O.: On the codimension of modules over skew power series rings with applications to Iwasawa algebras, J. Pure Appl. Algebra 204 349-367 (2006).

[46] Serre J. P.: Sur la dimension homologique des groupes pronis, Topology3 (1965) 413-420.

[47] Stenström B.: Rings of Quotients, Berlin-Heidelberg-New York: Springer (1975).

[48] Venjakob O.: A noncommutative Weierstrass Preparation Theorem and ap-plications to Iwasawa Theory. J. Reine Angew. Math (2003), 153-191.

[49] Venjakob O.: On the structure theory of the Iwasawa algebra of a p-adic Lie group, J. Eur. Math. Soc. 4, no. 3 (2002), 271-311.

[50] Walker R.: Local rings and normalizing sets of elements. Proc. London Math.

Soc. (3) 24 (1965) 27-45.

[51] Weibel C.: The K-book: An Introduction to Algebraic K-theory, Graduate Studies in Mathematics 145, (2013).

[52] Zábrádi G.: Generalized Robba rings (with an Appendix by Peter Schneider), Israel J. Math. 191(2), 817-887 (2012)

Selbstständigkeitserklärung

Ich erkläre, dass ich die Dissertation selbständig und nur unter Verwendung der von mir gemäÿ Ÿ7 Abs. 3 der Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fakultät, veröentlicht im Amtlichen Mitteilungsblatt der Humboldt-Universität zu Berlin Nr. 126/2014 am 18.11.2014 angegebenen Hilfsmittel angefertigt habe.

Berlin, den 04.10.2016 Tamás Csige