• Keine Ergebnisse gefunden

2 Materials and Methods 2.1 Materials

CHX ActD

4.8 Implications for neurodegeneration in vivo

In the presented culture model, different programs trigger degeneration of neuronal projections and apoptotic demise of neuronal somata and caspase-independent disruption of neurites precedes neuronal apoptosis. Activation of caspases seems to be the main, but not sole execution system in neuronal apoptosis. When caspases are inhibited either by energy depletion or synthetic agents, neurons can still undergo delayed demise and this death is characterized by apoptotic features.

Such a cell culture system models a situation where caspase inhibition may save time for the recovery of neurons in stress situations. If this does not occur, then other proteases may take over the execution to prevent the persistence of damaged cells. This suggests that: (i) the finding of neurons dying in vivo with apoptotic features does not always imply that caspase activation was causally involved in neuronal demise; and (ii) that treatment of neurodegenerative disease solely with caspase inhibitors may not always be the most efficient way to rescue neurons. The combined use of caspase inhibitors with treatments aimed to foster active regeneration of sublethally injured neurons, may be the most effective therapeutic approach [410].

5 Summary

• In cerebellar granule cells, the microtubule disassembling poisons colchicine, nocodazole, vincristine, and vinblastine induced fragmentation of microtubules which resulted in the degeneration of the axodendritic network which was followed by apoptotic demise of neuronal somata. The microtubule stabilizing drug taxol prevented both fragmentation of microtubules and apoptosis.

• Colchicine-induced apoptosis was accompanied by mitochondrial cytochrome c release and damage, proteolytic activation of execution caspase-3 and -7, subsequent proteolysis of fodrin, advanced chromatin condensation and fragmentation, large scale and oligonucleosomal DNA fragmentation, and PS translocation to the outer surface of the plasma membrane. In the presence of peptide caspase inhibitors, apoptotic changes were prevented, although cytochrome c was released from mitochondria and the axodendritic network was still destroyed.

• Depletion of intracellular ATP by either mitochondrial inhibitors or inhibition of glycolysis blocked caspase activation, nuclear apoptotic features, and PS exposure, while the primary effect of microtubule disruption and neurite loss still occurred. Conversely, repletion of intracellular ATP by enhanced glycolysis restored all apoptotic features.

Thus, sufficient ATP is required for the execution of neuronal apoptosis and energy deficiency may lead to the persistence of degenerating and dysfunctional neurons.

• Neither caspase inhibition by ATP depletion or pharmacological agents nor antiapoptotic Bcl-2 prevented microtubule breakdown or neurite loss. But neuronal somata were protected from apoptosis under these conditions. However, after a lag period, caspase-inhibited as well as Bcl-2 overexpressing neurons underwent delayed cell death. This implies that death programs for neurite degeneration and apoptosis can occur independently from each other and that block of caspases may not rescue neurons from demise under degenerative conditions.

• The delayed caspase-independent death was characterized by partial chromatin condensation, large scale DNA fragmentation and PS exposure. Inhibitors of the proteasome reduced caspase-independent apoptosis, implying that noncaspase proteases can take over execution of apoptosis in neurons.

Zusammenfassung

Colchicin, Nocodazol, Vincristin und Vinblastin lösten in Kleinhirnkörnerzellen die De-polymerisierung von Microtubuli aus. Die Zerstörung dieser Strukturen führte zur Degeneration des neuronalen Netzwerks, dem der apoptotische Untergang der neuronalen Zellkörper folgte. Taxol, eine microtubulistabilisierende Substanz verhinderte sowohl die Zerstörung der Microtubuli als auch die nachfolgende Apoptose. Die durch Colchicin ausgelöste Apoptose war durch folgende morphologische und biochemische Merkmale gekennzeichnet: Schädigung der Mitochondrien und Freisetzung von Cytochrome c, proteo-lytische Aktivierung der Exekutionscaspasen 3 und 7, nachfolgende Proteolyse von Fodrin, Kondensierung und Fragmentierung des Chromatins, hochmolekulare und oligonukleosomale DNA-Fragmentierung und Umverteilung von Phosphatidylserin (PS) in die äußere Schicht der Plasmamembran. Die meisten dieser apoptotischen Veränderungen wurden durch die Gabe von Caspaseinhibitoren verhindert, obwohl Cytochrome c aus den Mitochondrien freigesetzt und das axodendritische Netzwerk zerstört wurde. Wenn der intrazelluläre ATP-Spiegel abgesenkt wurde, entweder durch Hemmstoffe, die direkt auf Mitochondrien wirkten oder durch Inhibition der Glykolyse wurden sowohl Caspasenaktivierung, als auch apoptotische Kernveränderungen und die PS-Umverteilung verhindert, während der primäre Effekt, die Zerstörung von Microtubuli und der Verlust von Neuriten weiterhin stattfand.

Umgekehrt führte die Wiederherstellung des ATP-Gehalts durch erhöhte Glykolyse zur erneuten Ausprägung der apoptotischen Merkmale. Daher kann angenommen werden, daß für die Durchführung der Apoptose genügend ATP in den Neuronen vorhanden sein muss und könnte erklären, wieso unter energiedefizienten Zuständen degenerierende Neuronen persistieren können. Die Zerstörung der Microtubuli und der Neuritenverlust wurden weder durch Caspaseninhibition noch durch das anti-apoptotische Protein Bcl-2 verhindert, dennoch waren die neuronalen Zellkörper vor Apoptose geschützt. Nach einer gewissen Zeit starben allerdings auch diese Neuronen. Dies impliziert, daß unterschiedliche Todesprogramme verantwortlich für Neuritenverlust oder für Apoptose existieren und daß die Hemmung von Caspasen nicht ausreichen könnte, um Neuronen unter neurodegenerativen Bedingungen vor dem Zelluntergang zu bewahren. Der verzögerte und unter Caspaseninhibition auftretende Zelltod war durch eine partielle Chromatinkondensierung, hochmolekulare DNA-Frag-mentierung und PS-Umverteilung gekennzeichnet. Proteasominhibitoren reduzierten diese von Caspasen unabhängig auftretende Apoptose, was daraufschliessen läßt, daß andere Proteasen wie zum Beispiel das Proteasom die Durchführung des apoptotischen Zelltods übernehmen können.

6 References

1 Kerr JF, Wyllie AH and Currie AR. (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26: 239-257.

2 Wyllie AH, Kerr JF and Currie AR. (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:

251-306.

3 Wyllie AH. (1992) Apoptosis and the regulation of cell numbers in normal and neoplastic tissues: an overview. Cancer Metastasis Rev 11: 95-103.

4 Oberhammer F, Wilson JW, Dive C, et al. (1993) Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. Embo J 12:

3679-3684.

5 Wyllie AH. (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284: 555-556.

6 Cohen GM, Sun XM, Snowden RT, Dinsdale D and Skilleter DN. (1992) Key morphological features of apoptosis may occur in the absence of internucleosomal DNA fragmentation. Biochem J 286: 331-334.

7 Ucker DS, Obermiller PS, Eckhart W, Apgar JR, Berger NA and Meyers J. (1992) Genome digestion is a dispensable consequence of physiological cell death mediated by cytotoxic T lymphocytes. Mol Cell Biol 12: 3060-3069.

8 Cohen GM. (1997) Caspases: the executioners of apoptosis. Biochem J 326: 1-16.

9 Kroemer G, Petit P, Zamzami N, Va yssiere JL and Mignotte B. (1995) The biochemistry of programmed cell death. Faseb J 9: 1277-1287.

10 Fesus L, Thomazy V and Falus A. (1987) Induction and activation of tissue transglutaminase during programmed cell death. FEBS Lett 224: 104-108.

11 Savill J, Fadok V, Henson P and Haslett C. (1993) Phagocyte recognition of cells undergoing apoptosis.

Immunol Today 14: 131-136.

12 Majno G and Joris I. (1995) Apoptosis, oncosis, and necrosis. An overview of cell death [see comments].

Am J Pathol 146: 3-15.

13 Nicotera P, Leist M and Manzo L. (1999) Neuronal cell death: a demise with different shapes. Trends Pharmacol Sci 20: 46-51.

14 Leist M and Nicotera P. (1998) Apoptosis versus necrosis: the shape of neuronal cell death. Results Probl Cell Differ 24: 105-135.

15 Leist M and Nicotera P. (1997) The shape of cell death. Biochem Biophys Res Commun 236: 1-9.

16 Leist M, Gantner F, Naumann H, et al. (1997) Tumor necrosis factor-induced apoptosis during the poisoning of mice with hepatotoxins. Gastroenterology 112: 923-934.

17 Bonfoco E, Krainc D, Ankarcrona M, Nicotera P and Lipton SA. (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 92: 7162-7166.

18 Dypbukt JM, Ankarcrona M, Burkitt M, et al. (1994) Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin -secreting RINm5F cells. The role of intracellular polyamines. J Biol Chem 269: 30553-30560.

19 Ankarcrona M, Dypbukt JM, Bonfoco E, et al. (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15: 961-973.

20 Lipton SA. (1996) Similarity of neuronal cell injury and death in AIDS dementia and focal cerebral ischemia: potential treatment with NMDA open-channel blockers and nitric oxide-related species. Brain Pathol 6: 507-517.

21 Linnik MD, Miller JA, Sprinkle-Cavallo J, et al. (1995) Apoptotic DNA fragmentation in the rat cerebral cortex induced by permanent middle cerebral artery occlusion. Brain Res Mol Brain Res 32: 116-124.

22 Charriaut-Marlangue C, Margaill I, Represa A, Popovici T, Plotkine M and Ben-Ari Y. (1996) Apoptosis and necrosis after revers ible focal ischemia: an in situ DNA fragmentation analysis. J Cereb Blood Flow Metab 16: 186-194.

23 Schweichel JU and Merker HJ. (1973) The morphology of various types of cell death in prenatal tissues.

Teratology 7: 253-266.

24 Kitanaka C and Kuchino Y. (1999) Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ 6: 508-515.

25 Schwartz LM, Smith SW, Jones ME and Osborne BA. (1993) Do all programmed cell deaths occur via apoptosis? Proc Natl Acad Sci U S A 90: 980-984.

26 Lockshin RA and Zakeri Z. (1994) Programmed cell death: early changes in metamorphosing cells.

Biochem Cell Biol 72: 589-596.

27 Yuan JY and Horvitz HR. (1990) The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev Biol 138: 33-41.

28 Clarke PG. (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol 181: 195-213.

29 Martin SJ, Green DR and Cotter TG. (1994) Dicing with death: dissecting the components of the apoptosis machinery. Trends Biochem Sci 19: 26-30.

30 Oppenheim RW. (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:

453-501.

31 Oppenheim RW, Schwartz LM and Shatz CJ. (1992) Neuronal death, a tradition of dying. J Neurobiol 23:

1111-1115.

32 Oppenheim RW, Prevette D, Yin QW, Collins F and MacDonald J. (1991) Control of embryonic motoneuron survival in vivo by ciliary neurotrophic factor. Science 251: 1616-1618.

33 Oppenheim RW, Yin QW, Prevette D and Yan Q. (1992) Brain-derived neurotrophic factor rescues developing avian motoneurons from cell death. Nature 360: 755-757.

34 Raff MC. (1992) Social controls on cell survival and cell death. Nature 356: 397-400.

35 Choi DW. (1996) Ischemia-induced neuronal apoptosis. Curr Opin Neurobiol 6: 667-672.

36 Leist M and Nicotera P. (1998) Apoptosis, excitotoxicity, and neuropathology. Exp Cell Res 239: 183-201.

37 Stefanis L, Burke RE and Greene LA. (1997) Apoptosis in neurodegenerative disorders. Curr Opin Neurol 10: 299-305.

38 Nicotera P, Leist M, Fava E, Berliocchi L and Volbracht C. (2000) Energy requirement for caspase activation and neuronal cell death. Brain Pathol 10: 276-282.

39 Green D and Kroemer G. (1998) The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol 8: 267-271.

40 Weil M, Jacobson MD, Coles HS, et al. (1996) Constitutive expression of the machinery for programmed cell death. J Cell Biol 133: 1053-1059.

41 Ishizaki Y, Cheng L, Mudge AW and Raff MC. (1995) Programmed cell death by default in embryonic cells, fibroblasts, and cancer cells. Mol Biol Cell 6: 1443-1458.

42 Ellis HM and Horvitz HR. (1986) Genetic control of programmed cell death in the nematode C. elegans.

Cell 44: 817-829.

43 Shaham S and Horvitz HR. (1996) An alternatively spliced C. elegans ced-4 RNA encodes a novel cell death inhibitor. Cell 86: 201-208.

44 Hengartner MO, Ellis RE and Horvitz HR. (1992) Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356: 494-499.

45 Chinnaiyan AM, O'Rourke K, Lane BR and Dixit VM. (1997) Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275: 1122-1126.

46 Spector MS, Desnoyers S, Hoeppner DJ and Hengartner MO. (1997) Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 385: 653-656.

47 Wu D, Wallen HD and Nunez G. (1997) Interaction and regulation of subcellular localization of CED-4 by CED-9. Science 275: 1126-1129.

48 Seshagiri S and Miller LK. (1997) Caenorhabditis elegans 4 stimulates 3 processing and CED-3-induced apoptosis. Curr Biol 7: 455-460.

49 Yuan J, Shaham S, Ledoux S, Ellis HM and Horvitz HR. (1993) The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75: 641-652.

50 Miura M, Zhu H, Rotello R, Hartwieg EA and Yuan J. (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75: 653-660.

51 Hengartner MO. (1997) Apoptosis. CED-4 is a stranger no more. Nature 388: 714-715.

52 Yuan J and Horvitz HR. (1992) The Caenorhabditis elegans cell death gene ced-4 encodes a novel protein and is expressed during the period of extensive programmed cell death. Development 116: 309-320.

53 Zou H, Henzel WJ, Liu X, Lutschg A and Wang X. (1997) Apaf-1, a human protein homologous to C.

elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90: 405-413.

54 Hengartner MO and Horvitz HR. (1994) C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76: 665-676.

55 Alnemri ES, Livingston DJ, Nicholson DW, et al. (1996) Human ICE/CED-3 protease nomenclature. Cell 87: 171.

56 Wilson KP, Black JA, Thomson JA, et al. (1994) Structure and mechanism of interleukin-1 beta converting enzyme. Nature 370: 270-275.

57 Kumar S. (1999) Mechanisms mediating caspase activation in cell death. Cell Death Differ 6: 1060-1066.

58 Thornberry NA and Lazebnik Y. (1998) Caspases: enemies within. Science 281: 1312-1316.

59 Nicholson DW and Thornberry NA. (1997) Caspases: killer proteases. Trends Biochem Sci 22: 299-306.

60 Nicholson DW. (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death.

Cell Death Differ 6: 1028-1042.

61 Van de Craen M, Vandenabeele P, Declercq W, et al. (1997) Characterization of seven murine caspase family members. FEBS Lett 403: 61-69.

62 Nakagawa T, Zhu H, Morishima N, et al. (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403: 98-103.

63 Van de Craen M, Van Loo G, Pype S, et al. (1998) Identification of a new caspase homologue: caspase-14. Cell Death Differ 5: 838-846.

64 Ahmad M, Srinivasula SM, Hegde R, Mukattash R, Fernandes-Alnemri T and Alnemri ES. (1998) Identification and characterization of murine caspase-14, a new member of the caspase family. Cancer Res 58: 5201-5205.

65 Thornberry NA, Rano TA, Peterson EP, et al. (1997) A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272: 17907-17911.

66 Talanian RV, Quinlan C, Trautz S, et al. (1997) Substrate specificities of caspase family proteases. J Biol Chem 272: 9677-9682.

67 Garcia-Calvo M, Peterson EP, Rasper DM, et al. (1999) Purification and catalytic properties of human caspase family members. Cell Death Differ 6: 362-369.

68 Wang S, Miura M, Jung YK, Zhu H, Li E and Yuan J. (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92: 501-509.

69 Humke EW, Ni J and Dixit VM. (1998) ERICE, a novel FLICE-activatable caspase. J Biol Chem 273:

15702-15707.

70 Boldin MP, Goncharov TM, Goltsev YV and Wallach D. (1996) Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85: 803-815.

71 Chinnaiyan AM, O'Rourke K, Tewari M and Dixit VM. (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81: 505-512.

72 Schneider P and Tschopp J. (2000) Apoptosis induced by death receptors. Pharm Acta Helv 74: 281-286.

73 Kischkel FC, Hellbardt S, Behrmann I, et al. (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. Embo J 14: 5579-5588.

74 Muzio M, Chinnaiyan AM, Kischkel FC, et al. (1996) FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85: 817-827.

75 Muzio M, Stockwell BR, Stennicke HR, Salvesen GS and Dixit VM. (1998) An induced proximity model for caspase-8 activation. J Biol Chem 273: 2926-2930.

76 Yang X, Chang HY and Baltimore D. (1998) Autoproteolytic activation of pro-caspases by oligomerization. Mol Cell 1: 319-325.

77 Li P, Nijhawan D, Budihardjo I, et al. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91: 479-489.

78 Hu Y, Benedict MA, Ding L and Nunez G. (1999) Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. Embo J 18: 3586-3595.

79 Zou H, Li Y, Liu X and Wang X. (1999) An APAF-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274: 11549-11556.

80 Srinivasula SM, Ahmad M, Fernandes-Alnemri T and Alnemri ES. (1998) Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1: 949-957.

81 Saleh A, Srinivasula SM, Acharya S, Fishel R and Alnemri ES. (1999) Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem 274: 17941-17945.

82 Liu X, Kim CN, Yang J, Jemmerson R and Wang X. (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147-157.

83 Genini D, Budihardjo I, Plunkett W, et al. (2000) Nucleotide requirements for the in vitro activation of the apoptosis protein -activating factor-1-mediated caspase pathway. J Biol Chem 275: 29-34.

84 Scaffidi C, Fulda S, Srinivasan A, et al. (1998) Two CD95 (APO-1/Fas) signaling pathways. Embo J 17:

1675-1687.

85 Fulda S, Susin SA, Kroemer G and Debatin KM. (1998) Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells. Cancer Res 58: 4453-4460.

86 Slee EA, Harte MT, Kluck RM, et al. (1999) Ordering the cytochrome c-initiated caspase cascade:

hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144: 281-292.

87 Talanian RV, Yang X, Turbov J, et al. (1997) Granule-mediated killing: pathways for granzyme B-initiated apoptosis. J Exp Med 186: 1323-1331.

88 Deveraux QL, Roy N, Stennicke HR, et al. (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. Embo J 17: 2215-2223.

89 Verhagen AM, Ekert PG, Pakusch M, et al. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102: 43-53.

90 Du C, Fang M, Li Y, Li L and Wang X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33-42.

91 Bruey JM, Ducasse C, Bonniaud P, et al. (2000) Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2: 645-652.

92 Beere HM, Wolf BB, Cain K, et al. (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the apaf-1 apoptosome. Nat Cell Biol 2: 469-475.

93 Saleh A, Srinivasula SM, Balkir L, Robbins PD and Alnemri ES. (2000) Negative regulation of the apaf-1 apoptosome by hsp70. Nat Cell Biol 2: 476-483.

94 Pandey P, Saleh A, Nakazawa A, et al. (2000) Negative regulation of cytochrome c-mediated oligomerization of apaf-1 and activation of procaspase-9 by heat shock protein 90. Embo J 19: 4310-4322.

95 Li CY, Lee JS, Ko YG, Kim JI and Seo JS. (2000) Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J Biol Chem 275: 25665-25671.

96 Porter AG. (1999) Protein translocation in apoptosis. Trends Cell Biol 9: 394-401.

97 Mancini M, Nicholson DW, Roy S, et al. (1998) The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. J Cell Biol 140: 1485-1495.

98 Susin SA, Lorenzo HK, Zamzami N, et al. (1999) Mitochondrial release of caspase-2 and -9 during the apoptotic process. J Exp Med 189: 381-394.

99 Mancini M, Machamer CE, Roy S, et al. (2000) Caspase-2 is localized at the Golgi complex and cleaves golgin-160 during apoptosis. J Cell Biol 149: 603-612.

100 Krajewski S, Krajewska M, Ellerby LM, et al. (1999) Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci U S A 96: 5752-5757.

101 Zhivotovsky B, Samali A, Gahm A and Orrenius S. (1999) Caspases: their intracellular localization and translocation during apoptosis. Cell Death Differ 6: 644-651.

102 Zheng TS, Hunot S, Kuida K and Flavell RA. (1999) Caspase knockouts: matters of life and death. Cell Death Differ 6: 1043-1053.

103 Hakem R, Hakem A, Duncan GS, et al. (1998) Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94: 339-352.

104 Kuida K, Haydar TF, Kuan CY, et al. (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94: 325-337.

105 Kuida K, Zheng TS, Na S, et al. (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384: 368-372.

106 Woo M, Hakem R, Soengas MS, et al. (1998) Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev 12: 806-819.

107 Yoshida H, Kong YY, Yoshida R, et al. (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94: 739-750.

108 Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA and Gruss P. (1998) Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94: 727-737.

109 Li K, Li Y, Shelton JM, et al. (2000) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101: 389-399.

110 Gagliardini V, Fernandez PA, Lee RK, et al. (1994) Prevention of vertebrate neuronal death by the crmA gene. Science 263: 826-828.

111 Enari M, Hug H and Nagata S. (1995) Involvement of an ICE-like protease in Fas-mediated apoptosis.

Nature 375: 78-81.

112 Nicholson DW, Ali A, Thornberry NA, et al. (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376: 37-43.

113 Loddick SA, MacKenzie A and Rothwell NJ. (1996) An ICE inhibitor, z-VAD-DCB attenuates ischaemic brain damage in the rat. Neuroreport 7: 1465-1468.

114 Hara H, Friedlander RM, Gagliardini V, et al. (1997) Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci U S A 94: 2007-2012.

115 Rodriguez I, Matsuura K, Ody C, Nagata S and Vassalli P. (1996) Systemic injection of a tripeptide inhibits the intracellular activation of CPP32-like proteases in vivo and fully protects mice against Fas-mediated fulminant liver destruction and death. J Exp Med 184: 2067-2072.

116 Ray CA, Black RA, Kronheim SR, et al. (1992) Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme. Cell 69: 597-604.

117 Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW and Thornberry NA. (1998) Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273: 32608-32613.

118 Xue D and Horvitz HR. (1995) Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a

118 Xue D and Horvitz HR. (1995) Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a