• Keine Ergebnisse gefunden

5 Results and Discussion

5.2 The role of TtOmp85 in TtoA folding

5.2.5 Immobilization of TtOmp85 via short peptides

A further step in the investigation of TtOmp85/TtoA interaction was the immobiliza-tion of TtOmp85to the IRE surface via short C-terminal TtoA peptides that could interact with the TtOmp85 barrel via β-augmentation but not form an own β-barrel.

The goal of this experiment was to create a stable hybrid barrel between TtOmp85 and TtoA and thus provide evidence for our proposed mechanism of β-augmentation.

We used the one-stranded peptide b8 (Figure 4.12, upper sequence) and the modied two-stranded peptide b7/8 (Figure 4.12, lower sequence). Spectra of b8 and b7/8 im-mobilization and TtOmp85 binding were not reproducible. Solubility of b8 and b7/8 was low. An attempt to increase b7/8 solubility by exchange of hydrophobic for hy-drophilic amino acids did not increase solubility signicantly. Figure 5.32, Figure 5.33,

5. RESULTS AND DISCUSSION 5.2. ROLE OF TTOMP85 IN TTOA FOLDING

Figure 5.34 and Figure 5.35 show dierent attempts of peptide immobilization. Fig-ure 5.32 shows a spectrum of b8 after incubation with activated silane-NTA linker and rinsing. Peptide is present on the crystal after rinsing with an intense band band at 1623 cm−1, but it is likely due to precipitation because it was not possible to solubilize it completely in FC-12 buer. Incubation with TtOmp85 and rinsing did not result in major changes of the spectrum except for an increase of a shoulder in the mid-amide I region. It is unlikely that TtOmp85 only this minor eect on the spectrum when it is immobilized to b8. In order to increase b8 solubility 10% FC-12 were used (Figure 5.33). However, neither peptide nor TtOmp85 could be immobilized, as the spectra with undened bands and minima show. This might be due to the high amount of detergent on the crystal, which could hinder binding of the peptide and the protein.

It also seems as if components were removed from the crystal by repeated rinsing.

When peptide b7/b8* is solubilized in 0.5%FC-12 it seems that either immobilization or precipitation take place during incubation with activated silane-NTA linker due to bands at 1627 cm−1 and 1647 cm−1. Since solubilization was dicult precipitation is likely. The incubation with TtOmp85 does not result in major spectral dierences, thus leading to the conclusion that TtOmp85 binding to the peptide did not occur.

Figure 5.35 shows spectra that were recorded after incubation of b7/8* with linker and rinsing. The red spectrum is of TtOmp85 during incubation on the crystal. The blue spectrum is after rinsing and shows that TtOmp85 is removed from the crystal and thus not immobilized by interaction with b7/8*. Estrada et al.[100] showed that short peptide sequences were able to form stable hybrid barrels with TtOmp85. The results presented in this section neither conrm nor refute this. Even when peptide is present on the linker, interaction with TtOmp85 is likely not possible becuase, instead of binding to the activated silane-NTA linker, b8 and b7/8*, respectively, precipitated.

In higher detergent concentrations it was possible to dissolve the peptide but binding to the linker was unsuccessful.

5. RESULTS AND DISCUSSION 5.2. ROLE OF TTOMP85 IN TTOA FOLDING

Figure 5.32: 0.3 mg/mL of peptide b8 were dissolved in Tris buer with 0.1 % FC-12.

Spectra show peptide after incubation with activated silane-NTA linker after rinsing (black) and TtOmp85 after incubation with b8 after rinsing (red).

Figure 5.33: 0.3 mg/mL of peptide b8 were dissolved in Tris buer with 10%FC-12. Spectra show peptide after incubation with activated silane-NTA linker after rinsing (black) and TtOmp85 after incubation with b8 after rinsing (red).

5. RESULTS AND DISCUSSION 5.2. ROLE OF TTOMP85 IN TTOA FOLDING

Figure 5.34: 0.5 mg/mL of peptide b7/8* were dissolved in Tris buer with 0.5% FC-12.

Spectra show peptide after incubation with activated silane-NTA linker after rinsing (black) and TtOmp85 after incubation with b7/8* after rinsing (red).

Figure 5.35: 0.5 mg/mL of peptide b7/8* were dissolved in Tris buer with 5%SDS. Spectra show TtOmp85 during incubation with immobilized or precipitated (red) and after rinsing (blue).

6 Conclusion

Understanding the folding mechanisms and pathways of proteins is a highly investi-gated topic, especially in regard to protein misfolding diseases. Therefore, the doctoral thesis focuses on the investigation of the stability and folding of two outer membrane proteins, TtOmp85 and TtoA. Experiments showed that the melting point of TtoA in absence of denaturants is > 100 C. Thus, extensive studies on TtoA stability were performed, as it was necessary to have access to the unfolded protein for folding ex-periments. These included the application of heat in combination with denaturants on native TtoA. In presence of SDS and urea partial unfolding could be achieved by application of heat but the protein adopted a compact structure when recooled to room temperature. 2-Mercaptoethanol led to complete unfolding of TtoA at 100 C, indi-cating the importance of the extracelluar disulde bridge for TtoA stability. It was not possible, however, to keep TtoA unfolded at room temperature under these condi-tions. Mutation studies with cysteine mutants were inconclusive because the mutants and the control wildtype were expressed as inclusion bodies and seemed to adopt a non-native structure upon folding. Another approach to solve the problem of working with unfolded TtoA was to purify TtoA from inclusion bodies. It was kept in high amounts of SDS and remained mostly unfolded for a limited time and to a limited de-gree at room temperature. However, even under these conditions TtoA always showed signicant amounts of residual structure. In order to allow controlled folding of TtoA in presence of TtOmp85, an experiment was established to spectroscopically observe structural changes in unfolded TtoA upon the addition of TtOmp85. For this experi-ment unfolded TtoA was immobilized to an ATR crystal via its His-tag. A silane-NTA linker was constructed and covalently attached to the ATR crystal. His-tagged TtoA could be immobilized to the NTA group of the linker via Ni2+. Immobilized, unfolded

6. CONCLUSION

TtoA was incubated with TtOmp85 which led to folding of TtoA into a native-like structure. The importance of TtOmp85 specically for TtoA folding was shown by several control experiments. An attempt to immobilize short TtoA peptides to the ATR crystal and to form time-stable hybrid barrels with TtOmp85 failed. All in all the technique of ATR-FTIR spectroscopy proved to be a powerful tool for the study of the insertase/substrate pair. However, in this special case TtoA has a tendency to always adopt signicant amounts of secondary structure, even at room temperature and in presence of denaturants. This makes reproducibility of the experiments di-cult. SDS has proven to be eective in keeping TtoA in a mostly unfolded state but it decreases the yield of linker-bound TtoA and does not permit the use of liposomes or other lipid environments in the experiments. For future studies, outer membrane pro-teins from a bacterium that is less thermostable than T. thermophilus might be good candidates to expand the studies on outer membrane proteins and the mechanism that is used by insertases to fold and insert substrates into membranes.

References

[1] A. L. Goldberg, Nature 2003, 426, 895899.

[2] M. Bucciantini, E. Giannoni, F. Chiti, F. Baroni, L. Formigli, J. Zurdo, N.

Taddei, G. Ramponi, C. M. Dobson, M. Stefani, Nature 2002, 416, 50711.

[3] D. J. Selkoe, Nature 2003, 426, 900904.

[4] C. B. Annsen, E. Haber, M. Sela, F. W. Jr., Proc Natl Acad Sci U S A 1961, 47, 130914.

[5] C. B. Annsen, Science 1973, 181, 223230.

[6] N. C. Pace, J. M. Scholtz, Biophysical Journal 1998, 75, 422 427.

[7] J. S. Richardson, D. C. Richardson, Proc Natl Acad Sci 2002, 99, 27542759.

[8] F. Chiti, C. M. Dobson, Annu Rev Biochem 2006, 75, 33366.

[9] P. Tompa, Trends in Biochemical Sciences 2012, 37, 509 516.

[10] A. J. Cozzone in eLS, John Wiley & Sons, Ltd, 2001.

[11] C. Chakraborty, S. Nandi, S. Jana, Curr Pharm Biotechnol 2005, 6, 16777.

[12] E. Luna, K. C. Luk, FEBS Lett 2015, 589, 374959.

[13] K. S. Huang, H. Bayley, M. Liao, E. London, H. Khorana, Journal of Biological Chemistry 1981, 256, 38023809.

[14] K. Dornmair, H. Kiefer, F. Jähnig, Journal of Biological Chemistry 1990, 265, 1890711.

[15] G. H. M. Huysmans, S. A. Baldwin, D. J. Brockwell, S. E. Radford, Proceedings of the National Academy of Sciences 2010, 107, 40994104.

References References

[16] C. Levinthal in, (Eds.: J. T. P. DeBrunner, E. Munck), University of Illinois Press, 1969, Chapter Mossbauer Spectroscopy in Biological Systems: Proceed-ings of a meeting held at Allerton House, Monticello, Illinois. Pp. 2224.

[17] K. A. Dill, H. S. Chan, Nat Struct Biol 1997, 4, 109.

[18] J. N. Onuchic, P. G. Wolynes, Curr Opin Struct Biol 2004, 14, 705.

[19] S. Gianni, N. R. Guydosh, F. Khan, T. D. Caldas, U. Mayor, G. W. White, M. L. DeMarco, V. Daggett, A. R. Fersht, Proc Natl Acad Sci U S A 2003, 100, 1328691.

[20] F. U. Hartl, A. Bracher, M. Hayer-Hartl, Nature 2011, 475, 32432.

[21] M. Ohgushi, A. Wada, FEBS Lett 1983, 164, 214.

[22] G. J. A. Vidugiris, J. L. Markley, C. A. Royer, Biochemistry 1995, 34, 4909 4912.

[23] T. Y. Tsong, R. L. Baldwin, E. L. Elson, Proc Natl Acad Sci U S A 1972, 69, 180912.

[24] L. S. Itzhaki, D. E. Otzen, A. R. Fersht, J Mol Biol 1995, 254, 26088.

[25] S. E. Jackson, A. R. Fersht, Biochemistry 1991, 30, 1042835.

[26] D. J. Brockwell, S. E. Radford, Curr Opin Struct Biol 2007, 17, 307.

[27] D. E. Otzen, O. Kristensen, M. Proctor, M. Oliveberg, Biochemistry 1999, 38, 6499511.

[28] I. E. Sanchez, T. Kiefhaber, J Mol Biol 2003, 325, 36776.

[29] C. T. Friel, D. A. Smith, M. Vendruscolo, J. Gsponer, S. E. Radford, Nat Struct Mol Biol 2009, 16, 31824.

[30] H. Roder, K. Maki, H. Cheng, Chem Rev 2006, 106, 183661.

[31] D. M. Korzhnev, X. Salvatella, M. Vendruscolo, A. A. Di Nardo, A. R. Davidson, C. M. Dobson, L. E. Kay, Nature 2004, 430, 58690.

[32] P. Neudecker, A. Zarrine-Afsar, A. R. Davidson, L. E. Kay, Proc Natl Acad Sci U S A 2007, 104, 1571722.

References References

[33] A. I. Bartlett, S. E. Radford, Nat Struct Mol Biol 2009, 16, 5828.

[34] M. J. Osborn, J. E. Ganderand, E. Parisi, J. Carson, Journal of Biological Chem-istry 1972, 247, 39623972.

[35] H. Nikaido, Microbiology and Molecular Biology Reviews 2003, 67, 593656.

[36] P. F. Muhlradt, J. R. Golecki, Eur J Biochem 1975, 51, 34352.

[37] M. Ishinaga, R. Kanamoto, M. Kito, Journal of Biochemistry 1979, 86, 161 165.

[38] Y. Funahara, H. Nikaido, J Bacteriol 1980, 141, 14635.

[39] G. Herrera, A. Martinez, M. Blanco, J.-E. O'Connor, Cytometry 2002, 49, 62 69.

[40] S. O. Jensen, P. R. Reeves, Canadian Journal of Microbiology 2004, 50, 299 302.

[41] J. A. Bengoechea, H. Najdenski, M. Skurnik, Molecular Microbiology 2004, 52, 451469.

[42] J. Meissner, J. H. Krauss, U. J. Jurgens, J. Weckesser, J Bacteriol 1988, 170, 32136.

[43] C. P. Schultz, V. Wolf, R. Lange, E. Mertens, J. Wecke, D. Naumann, U.

Zahringer, J Biol Chem 1998, 273, 156616.

[44] E. Vinogradov, E. E. Egbosimba, M. B. Perry, J. S. Lam, C. W. Forsberg, Eur J Biochem 2001, 268, 356676.

[45] G. Ben-Menachem, J. Kubler-Kielb, B. Coxon, A. Yergey, R. Schneerson, Proc Natl Acad Sci U S A 2003, 100, 79138.

[46] K. Kawahara, H. Moll, Y. A. Knirel, U. Seydel, U. Zahringer, Eur J Biochem 2000, 267, Kawahara, K Moll, H Knirel, Y A Seydel, U Zahringer, U Compar-ative Study Journal Article Research Support, Non-U.S. Gov't Germany Eur J Biochem. 2000 Mar;267(6):1837-46., 183746.

[47] S. Leone, A. Molinaro, B. Lindner, I. Romano, B. Nicolaus, M. Parrilli, R.

Lanzetta, O. Holst, Glycobiology 2006, 16, 766775.

References References

[48] A. Silipo, A. Molinaro, C. De Castro, R. Ferrara, I. Romano, B. Nicolaus, R. Lanzetta, M. Parrilli, European Journal of Organic Chemistry 2004, 2004, 50475054.

[49] J. E. van Wielink, J. A. Duine, Trends in Biochemical Sciences 1990, 15, 136 137.

[50] J. G. Sklar, T. Wu, D. Kahne, T. J. Silhavy, Genes Dev 2007, 21, 247384.

[51] E. B. Volokhina, J. Grijpstra, M. Stork, I. Schilders, J. Tommassen, M. P. Bos, J Bacteriol 2011, 193, 161221.

[52] G. Liechti, J. B. Goldberg, Front Cell Infect Microbiol 2012, 2, 29.

[53] K. Denoncin, J. Schwalm, D. Vertommen, T. J. Silhavy, J. F. Collet, Proteomics 2012, 12, 1391401.

[54] C. Schwechheimer, M. J. Kuehn, Nat Rev Microbiol 2015, 13, 60519.

[55] C. Dong, K. Beis, J. Nesper, A. L. Brunkan-Lamontagne, B. R. Clarke, C.

Whiteld, J. H. Naismith, Nature 2006, 444, 2269.

[56] L. K. Tamm, H. Hong, B. Liang, Biochimica et Biophysica Acta (BBA) - Biomem-branes 2004, 1666, 250 263.

[57] R. Ujwal, D. Cascio, J. P. Colletier, S. Faham, J. Zhang, L. Toro, P. Ping, J.

Abramson, Proc Natl Acad Sci U S A 2008, 105, 177427.

[58] S. Hiller, R. G. Garces, T. J. Malia, V. Y. Orekhov, M. Colombini, G. Wagner, Science 2008, 321, 120610.

[59] S. E. Rollauer, M. A. Sooreshjani, N. Noinaj, S. K. Buchanan, Philosophical Transactions of the Royal Society of London B: Biological Sciences 2015, 370.

[60] A. G. Murzin, A. M. Lesk, C. Chothia, Journal of Molecular Biology 1994, 236, 1369 1381.

[61] G. E. Schulz, Biochimica et Biophysica Acta (BBA) - Biomembranes 2002, 1565, Membrane Protein Structure, 308 317.

[62] T Páli, D Marsh, Biophysical Journal 2001, 80, 2789 â 2797.

References References

[63] R. Koebnik, K. P. Locher, P. V. Gelder, Molecular Microbiology 2000, 37, 239 253.

[64] L. Song, M. R. Hobaugh, C. Shustak, S. Cheley, H. Bayley, J. E. Gouaux, Science 1996, 274, 18591865.

[65] X. Liu, H. Gao, N. Xiao, Y. Liu, J. Li, L. Li, PLoS One 2015, 10, e0119026.

[66] J. Grodberg, J. J. Dunn, Journal of Bacteriology 1988, 170, 12451253.

[67] I. R. Henderson, F. Navarro-Garcia, J. P. Nataro, Trends in Microbiology 1998, 6, 370 378.

[68] P. M. Hwang, W.-Y. Choy, E. I. Lo, L. Chen, J. D. Forman-Kay, C. R. H. Raetz, G. G. Privé, R. E. Bishop, L. E. Kay, Proc Natl Acad Sci 99, 2002, 1356013565.

[69] S. Cowan, T. Schirmer, G. Rummel, M. Steiert, R. Ghosh, R. Pauptit, J. Jan-sonius, J. Rosenbusch, Nature 1992, 358, 727733.

[70] A. D. Ferguson, E. Hofmann, J. W. Coulton, K. Diederichs, W. Welte, Science 1998, 282, 22152220.

[71] K. P. Locher, B. Rees, R. Koebnik, A. Mitschler, L. Moulinier, J. P. Rosenbusch, D. Moras, Cell 1998, 95, 771 778.

[72] S. Buchanan, Biochemical Society Transactions 1999, 27, 903908.

[73] A. D. Ferguson, R. Chakraborty, B. S. Smith, L. Esser, D. van der Helm, J.

Deisenhofer, Science 2002, 295, 17151719.

[74] S. Geibel, E. Procko, S. J. Hultgren, D. Baker, G. Waksman, Nature 2013, 496, 2436.

[75] I. Farabella, T. Pham, N. S. Henderson, S. Geibel, G. Phan, D. G. Thanassi, A.

H. Delcour, G. Waksman, M. Topf, Elife 2014, 3, DOI 10.7554/eLife.03532.

[76] D. G. Thanassi, E. T. Saulino, M.-J. Lombardo, R. Roth, J. Heuser, S. J. Hult-gren, Proc Natl Acad Sci 1998, 95, 31463151.

[77] H. Remaut, C. Tang, N. S. Henderson, J. S. Pinkner, T. Wang, S. J. Hultgren, D. G. Thanassi, G. Waksman, H. Li, Cell 2008, 133, 640â652.

References References

[78] M. Faller, M. Niederweis, G. E.Schulz, Science 2004, 303, 11891192.

[79] S. Bhakdi, J. Tranum-Jensen, Microbiological Reviews 1991, 55, 733751.

[80] J. L. Popot, Arch Biochem Biophys 2014, 564, 31426.

[81] T. Surrey, F. Jähnig, Proc Natl Acad Sci 1992, 89, 74577461.

[82] J. H. Kleinschmidt, Chem Phys Lipids 2006, 141, 3047.

[83] M. Schweizer, I. Hindenach, W. Garten, U. Henning, European Journal of Bio-chemistry 1978, 82, 211217.

[84] B. Shanmugavadivu, H. J. Apell, T. Meins, K. Zeth, J. H. Kleinschmidt, J Mol Biol 2007, 368, 6678.

[85] G. J. Patel, S. Behrens-Kneip, O. Holst, J. H. Kleinschmidt, Biochemistry 2009, 48, 1023545.

[86] I. Gentle, K. Gabriel, P. Beech, R. Waller, T. Lithgow, The Journal of Cell Biology 2004, 164, 1924.

[87] R. Voulhoux, M. P. Bos, J. Geurtsen, M. Mols, J. Tommassen, Science 2003, 299, 262265.

[88] T. Wu, J. Malinverni, N. Ruiz, S. Kim, T. J. Silhavy, D. Kahne, Cell 2005, 121, 235 245.

[89] R. Voulhoux, J. Tommassen, Res Microbiol 2004, 155, 12935.

[90] C. L. Hagan, T. J. Silhavy, D. Kahne, Annu Rev Biochem 2011, 80, 189210.

[91] A. Pautsch, G. E. Schulz, J Mol Biol 2000, 298, 27382.

[92] J. H. Kleinschmidt, Cell Mol Life Sci 2003, 60, 154758.

[93] A. Brosig, J. Nesper, W. Boos, W. Welte, K. Diederichs, Journal of Molecular Biology 2009, 385, 14451455.

[94] C. J. Oomen, P. van Ulsen, P. van Gelder, M. Feijen, J. Tommassen, P. Gros, Embo j 2004, 23, 125766.

[95] E. M. Hearn, D. R. Patel, B. van den Berg, Proc Natl Acad Sci U S A 2008, 105, 86016.

References References

[96] D. Gessmann, Y. H. Chung, E. J. Dano, A. M. Plummer, C. W. Sandlin, N. R.

Zaccai, K. G. Fleming, Proc Natl Acad Sci 2014, 111.

[97] B. Clantin, A. S. Delattre, P. Rucktooa, N. Saint, A. C. Meli, C. Locht, F.

Jacob-Dubuisson, V. Villeret, Science 2007, 317, 95761.

[98] E. Yamashita, M. V. Zhalnina, S. D. Zakharov, O. Sharma, W. A. Cramer, Embo j 2008, 27, 217180.

[99] S. W. Cowan, R. M. Garavito, J. N. Jansonius, J. A. Jenkins, R. Karlsson, N. Konig, E. F. Pai, R. A. Pauptit, P. J. Rizkallah, J. P. Rosenbusch, et al., Structure 1995, 3, 104150.

[100] L. Estrada Mallarino, E. Fan, M. Odermatt, M. Müller, M. Lin, J. Liang, M.

Heinzelmann, F. Fritsche, H.-J. Apell, W. Welte, Biochemistry 2015, 54, 844 852.

[101] S. K. Buchanan, B. S. Smith, L. Venkatramani, D. Xia, L. Esser, M. Palnitkar, R. Chakraborty, D. van der Helm, J. Deisenhofer, Nat Struct Biol 1999, 6, 56 63.

[102] W. W. Yue, S. Grizot, S. K. Buchanan, J Mol Biol 2003, 332, 35368.

[103] D. Cobessi, H. Celia, F. Pattus, J Mol Biol 2005, 352, 893904.

[104] Y. Huang, B. S. Smith, L. X. Chen, R. H. Baxter, J. Deisenhofer, Proc Natl Acad Sci U S A 2009, 106, 74037.

[105] P. Sperandeo, G. Deho, A. Polissi, Biochim Biophys Acta 2009, 1791, 594602.

[106] E. Freinkman, S. S. Chng, D. Kahne, Proc Natl Acad Sci U S A 2011, 108, 248691.

[107] E. Papanikou, S. Karamanou, A. Economou, Nat Rev Microbiol 2007, 5, 839 51.

[108] R. E. Dalbey, P. Wang, A. Kuhn, Annu Rev Biochem 2011, 80, 16187.

[109] D. M. Walther, D. Rapaport, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2009, 1793, 42 51.

References References

[110] G. von Heijne, Progress in Biophysics and Molecular Biology 1996, 66, 113 139.

[111] M. Paetzel, Biochim Biophys Acta 2014, 1843, 1497508.

[112] A. Polissi, P. Sperandeo, Mar Drugs 2014, 12, 102342.

[113] S. W. Lazar, R. Kolter, Journal of Bacteriology 1996, 178, 17701773.

[114] F. A. Saul, J.-P. Arié, N. B. Vulliez-le, R Kahn, J.-M. Betton, G. A. Bentley, Journal of Molecular Biology 2004, 335, 595 608.

[115] B. M. Alba, H. J. Zhong, J. C. Pelayo, C. A. Gross, Molecular Microbiology 2001, 40, 13231333.

[116] C. Spiess, A. Beil, M. Ehrmann, Cell 1999, 97, 339 347.

[117] Y. Matern, B. Barion, S. Behrens-Kneip, BMC Microbiol 2010, 10, 251.

[118] R. Chen, U. Henning, Molecular Microbiology 1996, 19, 12871294.

[119] B. M. Alba, C. Gross, Molecular Microbiology 2004, 52, 613619.

[120] S. E. Barchinger, S. E. Ades, English in Regulated Proteolysis in Microorganisms, (Ed.: D. A. Dougan), Subcellular Biochemistry, Springer Netherlands, 2013, pp. 129160.

[121] J. Tommassen, Science 2007, 317, 903904.

[122] V. Robert, E. B. Volokhina, F. Senf, M. P. Bos, P. V. Gelder, J. Tommassen, PLos Biology 2006, 4, e377.

[123] L. Sanchez-Pulido, D. Devos, S. Genevrois, M. Vicente, A. Valencia, Trends in Biochemical Sciences 2003, 28, 523 526.

[124] F. Gruss, F. Zähringer, R. P. Jakob, B. M. Burmann, S. Hiller, T. Maier, Nature Structural and Molecular Biology 2013, 20, 13181322.

[125] T. Maier, B. Clantin, F. Gruss, F. Dewitte, A. S. Delattre, F. Jacob-Dubuisson, S. Hiller, V. Villeret, Nat Commun 2015, 6, 7452.

[126] S. Kim, J. C. Malinverni, P. Sliz, T. J. Silhavy, S. C. Harrison, D. Kahne, Science 2007, 317, 961964.

References References

[127] P. Z. Gatzeva-Topalova, T. A. Walton, M. C. Sousa, Structure 2008, 16, 1873 1881.

[128] A.-S. Delattre, N. Saint, B. Clantin, E. Willery, G. Lippens, C. Locht, V.

Villeret, F. Jacob-Dubuisson, Molecular Microbiology 2011, 81, 99112.

[129] C. Baud, J. Guérin, E. Petit, E. Lesne, E. Dupré, C. Locht, F. Jacob-Dubuisson, Nat Commun 2014, 5, 5271.

[130] K. H. Kim, S. Aulakh, M. Paetzel, Protein Science 2012, 21, 751â768.

[131] F. Jacob-Dubuisson, C. El-Hamel, N. Saint, S. Guedin, E. Willery, G. Molle, C. Locht, J Biol Chem 1999, 274, 377315.

[132] S. Guedin, E. Willery, J. Tommassen, E. Fort, H. Drobecq, C. Locht, F. Jacob-Dubuisson, J Biol Chem 2000, 275, 3020210.

[133] N. Noinaj, A. J. Kuszak, J. C. Gumbart, P. Lukacik, H. Chang, N. C. Easley, T. Lithgow, S. K. Buchanan, Nature 2013, 501, 385390.

[134] T. Sinnige, M. Weingarth, M. Renault, L. Baker, J. Tommassen, M. Baldus, Journal of Molecular Biology 2014, 426, 2009 2021.

[135] T. L. Lu, C. S. Chen, F. L. Yang, J. M. Fung, M. Y. Chen, S. S. Tsay, J. Li, W. Zou, S. H. Wu, Carbohydr Res 2004, 339, 25938.

[136] N. Noinaj, A. Kuszak, C. Balusek, J. Gumbart, S. Buchanan, Structure 2014, 22, 1055 1062.

[137] D. Ni, Y. Wang, X. Yang, H. Zhou, X. Hou, B. Cao, Z. Lu, X. Zhao, K. Yang, Y. Huang, The FASEB Journal 2014, 28, 26772685.

[138] T. D. Brock, Thermophilic microorganisms and life at high temperatures, Springer-Verlag, 1978.

[139] J. C. Quintela, P. Zöllner, F. G. del Portillo, G. Allmaier, M. A. de Pedro, {FEMS} Microbiology Letters 1999, 172, 223 229.

[140] R. A. Pask-Hughes, N. Shaw, Journal of Bacteriology 1982, 149, 5458.

[141] R. Wait, L. Carreto, M. Nobre, A. Ferreira, M. da Costa, Journal of Bacteriology 1997, 179, 61546162.

References References

[142] T. Oshima, K. Imahori, International Journal of Systematic Bacteriology 1974, 24, 102112.

[143] R. A. D. Williams, K. E. Smith, S. G. Welch, J. Micallef, R. J. Sharp, Interna-tional Journal of Systematic Bacteriology 1995, 45, 495499.

[144] L. K. Tamm, A. Arora, J. H. Kleinschmidt, Journal of Biological Chemistry 2001, 276, 3239932402.

[145] M. C. Wiener, Methods 2004, 34, Macromolecular Crystallization, 364 372.

[146] C. R. Sanders, F. Sönnichsen, Magnetic Resonance in Chemistry 2006, 44, S24 S40.

[147] C. Fernández, K. Wüthrich, FEBS Letters 2003, 555, 144 150.

[148] C. Fernández, C. Hilty, S. Bonjour, K. Adeishvili, K. Pervushin, K. Wüthrich, FEBS Letters 2001, 504, 173 178.

[149] A. Arora, L. K. Tamm, Current Opinion in Structural Biology 2001, 11, 540 547.

[150] P. J. Judge, A. Watts, Current Opinion in Chemical Biology 2011, 15, 690 695.

[151] A. Hofmann, Principles and Techniques of Biochemistry and Molecular Biology, (Eds.: K. Wilson, J. Walker), Cambridge University Press, 2010.

[152] M. Sauer, J. Hofkens, J. Enderlein, Handbook of Fluorescence Spectroscopy and Imaging, WILEY-VCH, 2011.

[153] R. Tuma, Journal of Raman Spectroscopy 2005, 36, 307319.

[154] A. Rygula, K. Majzner, K. M. Marzec, A. Kaczor, M. Pilarczyk, M. Baranska, Journal of Raman Spectroscopy 2013, 44, 10611076.

[155] H. Vogel, F. Jähnig, J Mol Biol 1986, 190, 1919.

[156] P. R. Carey, Y. Chen, B. Gong, M. Kalp, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 2011, 1814, Protein Structure and Function in the Crystalline State: From X-ray to Spectroscopy, 742 749.

[157] I. M. Weidinger, Biochimica et Biophysica Acta (BBA) - Bioenergetics 2015, 1847, Vibrational spectroscopies and bioenergetic systems, 119 125.

References References

[158] A. Barth, Biochimica et Biophysica Acta (BBA) - Bioenergetics 2007, 1767, 1073 1101.

[159] A. Barth, J. Brauner, L. Buchanan, J. Corrie, E. B. Dunkelberger, H. Fabian, K. Hauser, T. Kimura, J. Markgraf, R. Mendelsohn, G. Morgan, D. Naumann, A. Perálvarez-Marín, M. Pühse, S. Radford, S. Takahashi, J. Wachtveitl, R.

Winter, M. Zanni, W. Zinth, Protein Folding and Misfolding: Shining Light by Infrared Spectroscopy, (Ed.: D. N. Heinz Fabian), Springer Science & Business Media, 2011.

[160] H. Fabian, D. Naumann, R. Misselwitz, O. Ristau, D. Gerlach, H. Wele, Bio-chemistry 1992, 31, 65326538.

[161] J. M. Hollas, Modern Spectroscopy, John Wiley & Sons Ltd, 2004.

[162] Application Note AN # 79 Attenuated Total Reection (ATR) - a versatile tool for FT-IR spectroscopy, Bruker.

[163] S. Devouge, J. Conti, A. Goldsztein, E. Gosselin, A. Brans, M. Voue, J. De Con-inck, F. Homble, E. Goormaghtigh, J. Marchand-Brynaert, J Colloid Interface Sci 2009, 332, 40815.

[164] K. Ataka, F. Giess, W. Knoll, R. Naumann, S. Haber-Pohlmeier, B. Richter, J.

Heberle, J Am Chem Soc 2004, 126, 16199206.

[165] J. Schartner, J. Güldenhaupt, B. Mei, M. Rögner, M. Muhler, K. Gerwert, C.

Kötting, J. Am. Chem. Soc. 2013, 135, 40794087.

[166] P. Pinkerneil, J. Güldenhaupt, K. Gerwert, C. Kotting, Chemphyschem 2012, 13, 264953.

[167] T. Haltia, E. Freire, Biochimica et Biophysica Acta (BBA) - Bioenergetics 1995, 1228, 1 27.

[168] N. J. Harris, P. J. Booth, Biochimica et Biophysica Acta (BBA) - Biomembranes 2012, 1818, 1055 1066.

[169] M. B. Tol, C. Deluz, G. Hassaine, A. Gra, H. Stahlberg, H. Vogel, Journal of Biological Chemistry 2013, 288, 57565769.

References References

[170] S. Conlan, H. Bayley, Biochemistry 2003, 42, PMID: 12899633, 94539465.

[171] J. L. Eisele, J. P. Rosenbusch, Journal of Biological Chemistry 1990, 265, 10217 10220.

[172] M. A. Basharov, Indian J Biochem Biophys 2012, 49, 717.

[173] L. J. Rizzolo, M. le Maire, J. A. Reynolds, C. Tanford, Biochemistry 1976, 15, 34333437.

[174] S. Makino, H. Nakashima, K. Shibagaki, Journal of Biochemistry 1981, 89, 651658.

[175] K. Henke, M. Odermatt, W. Welte, K. Hauser, Biomedical Spectroscopy and Imaging 2014, 3, 5156.

[176] M. M. Nielsen, K. K. Andersen, P. Westh, D. E. Otzen, Biophysical Journal 2007, 92, 3674 3685.

[177] M. Manning, W. Colon, Biochemistry 2004, 43, 1124854.

[178] D Shortle, The FASEB Journal 1996, 10, 2734.

[179] N. C. Fitzkee, G. D. Rose, Proceedings of the National Academy of Sciences of the United States of America 2004, 101, 1249712502.

[180] V. Kräutler, S. Hiller, P. H. Hünenberger, English, European Biophysics Journal 2010, 39, 14211432.

[181] A. Krogh, B. Larsson, G. von Heijne, E. L. Sonnhammer, Journal of Molecular Biology 2001, 305, 567 580.

[182] J. H. Kleinschmidt, M. C. Wiener, L. K. Tamm, Protein Science 1999, 8, 2065 2071.

[183] A. Brosig, J. Nesper, W. Welte, K. Diederichs, Acta Cryst. 2008, F64, 533536.

[184] J. Nesper, A. Brosig, P. Ringler, G. Patel, S. Müller, J. Kleinschmidt, W. Boos, K. Diederichs, W. Welte, Journal of Bacteriology 2008, 190, 45684575.

[185] J. Coates in Encyclopedia of Analytical Chemistry, John Wiley & Sons, Ltd, 2006.

References References

[186] N. M. Levinson, E. E. Bolte, C. S. Miller, S. A. Corcelli, S. G. Boxer, Journal of the American Chemical Society 2011, 133, 1323613239.

[187] J. Lambert, H. Marsmann, S. Gronert, H. Shurvell, D. Lightner, Spektroskopie - Strukturaufklärung in der Organischen Chemie, Pearson, Higher Education, 2012.

[188] J. P. Rosenbusch, J. Biol. Chem. 1974, 249, 80198029.

[189] U. K. Laemmli, Nature 1970, 227, 680685.

[190] J. P. Matinlinna, S. Areva, L. V. J. Lassila, P. K. Vallittu, Surface and Interface Analysis 2004, 36, 13141322.

[191] F. Korkmaz, S. Köster, O. Yildiz, W. Mäntele, Spectrochim Acta A Mol Biomol Spectrosc 2012, 91, 395401.

[192] S. Sukumaran, K. Hauser, A. Rauscher, W. Mäntele, FEBS Letters 2005, 579, 2546 2550.

[193] P. N. Cheng, J. D. Pham, J. S. Nowick, J Am Chem Soc 2013, 135, 547792.

[194] R. N. Reusch, FEBS J 2012, 279, 894909.

[195] B. M. Smith, S. E. Lappi, S. H. Brewer, S. Dembowy, J. Belyea, S. Franzen, Langmuir 2004, 20, 11848.

[196] S. A. Tatulian, Biochemistry 2003, 42, 11898907.

[197] C. A. Schlecht, J. A. Maurer, RSC Adv. 2011, 1, 14461448.

[198] C. a. A. S. A. Minetti, J. Y. Tai, M. S. Blake, J. K. Pullen, S.-M. Liang, D. P.

Remeta, Journal of Biological Chemistry 1997, 272, 1071010720.

[199] K. Nakamura, S. Mizushima, Journal of Biochemistry 1976, 80, 14111422.

[200] G. J. Patel, J. H. Kleinschmidt, Biochemistry 2013, 52, 397486.

[201] T. H. Bayburt, S. G. Sligar, FEBS Lett 2010, 584, 17217.

[202] J. Borch, T. Hamann, Biol Chem 2009, 390, 80514.