• Keine Ergebnisse gefunden

able images are creative actualizations of scientific hypotheses based on mathematical possibilities. And

Im Dokument MEDIA MEDIA PANDEMIC (Seite 176-186)

yet. Even as they render the capacities and tendencies of complex systems calculable, the partially known haunts the liquid image.

We encounter an ominous spiked orb almost on a daily basis in reportage on the­COVID-19­pandemic.­Those­spikes­attach­with­ease­to­the­ACE2­receptors­

of­human­respiratory­cells,­we­are­told,­enabling­a­deadly­viral­takeover­of­

host­resources.­But­we’ve­heard­this­story­before:­SARS-CoV2­does­to­res-piratory­cells­what­HIV­once­did­to­CD4­cells­of­the­immune­system.­An­abiding­

accompaniment to every pandemic is the visualization of virus

macro-molecules,­their­approach­and­entry,­bloom­and­blast­in­host­cells.­Despite­the­

intense­desire­to­separate­and­isolate­an­“invisible­enemy,”­we­have­come­to­

regard pathogenic particles in their vital relation to the hosts that they occupy.

Moving images based on structural data plunge us into wondrous voyages in­which­orbed­bodies­circle­and­encounter­each­other­(fig.1).­As­they­morph­

and­dissolve,­we­watch­virus-host­co-emergences­in­the­twenty-first­century­

“molecular­fantastic.”1­Operating­on­a­synthetic-biologic­continuum,­these­

moving­images­are­vital­media,­whose­irreducible­vitality­is­most­evident­in­ makes­large­volumes­of­data­cohere­as­a­single­insight,­a­process­that­statis-tician­and­artist­Edward­Tufte­(2001)­named­“de-quantification.”2 Scientists

With­advanced­imaging­technologies,­in­scientific­edutainment,­we­are­in­the­

domain of the marvelous: a molecular fantastic of the same order as Akira Lippit’s

“optical­fantastic”­in­the­first­half­of­the­20th­(triangulating­the­development­of­X-ray­

technologies,­the­splitting­of­the­atom,­and­psychoanalysis,­see­Atomic Light (Shadow Optics),­Minnesota­University­Press,­2005).­See­my­account­of­the­cellular­agon­in­

“Animating­Uncommon­Life:­U.S.­Military­Malaria­Films­(1942-1945)­in­the­Pacific­The-ater,”­in­Beckman­2014.

Edward­Tufte,­The Visual Display of Information­(Graphics­Press,­2001).

Of Liquid Images and Vital Flux 175

can keep abreast of structural data from multiple sources in contributing to editable­models­of­living­systems.­On­the­other,­the­speculative­nature­of­

the­liquid­image­is­strategic­in­keeping­up­with­vital­flux.­One­might­consider­

how genetic mutations that change instructions for protein assembly will impact the entry of viral biomolecules into host cellular receptors—an under-standing­critical­to­drug­design.­For­the­“best­understood­of­any­organism,”­

as­illustrator­David­Goodsell­puts­it,­HIV­clocks­over­90­drug­resistant­genetic­

mutations.3 Scientists continue to visualize and simulate HIV “molecular docking­events”­at­host­cellular­sites­that­enable­the­design­of­new­drugs—

molecules which can sit in the docking site and block viral entry.4 Dynamic speculative images keep pace with evolving virus-human emergences in these molecular-cellular contexts.

[Figure­1]­Screenshot­from­“HIV­Life­Cycle”­5

The­mediatic­capture­of­HIV-1­emerges­at­the­intersection­of­basic­science­

laboratories and creative media industries. While media histories starting from­the­first­capture­of­the­tobacco­mosaic­virus­under­the­electron­micro-scope­in­1938­reveal­a­shift­from­morphological­preoccupations­to­decoding­

viral­genomes­in­the­mid-twentieth­century,­biomolecular­models­of­virus­

Stanford­University­HIV­Drug­Resistance­Database­(https://hivdb.stanford.edu/).

Scientific­visualizations­that­model­crowd-sourced­data­play­a­critical­role­in­anti-viral strategies of epidemic mediation. The histories of SciVis are vast because they include­material­practices­obtaining­across­computer­graphics,­bioscience­laboratory­

techniques,­and­virtual­art.­I­discuss­their­conjugation­further­in­my­current­book­

project,­The Virus Touch: Theorizing Epidemic Mediation.

For­the­animation,­see­https://vimeo.com/260291601. This was made collaboratively with the Department of Biochemistry at the University at Utah and the CHEETAH consortium (https://biochem.web.utah.edu/iwasa/projects/HIV.html).­Janet­Iwasa­(Animation­Lab),­

whose­scientific­animations­I­have­explored­elsewhere,­headed­the­project­with­data­

sourced­from­researchers­globally.­See,­Ghosh­2016.

176 Pandemic Media

macromolecules remain critical to integrative research.6 No doubt the push arrives with the turn to complex systems thinking in the life sciences that made computation central to the study of living organisms. In attempting to understand­the­effects­of­vital­processes­at­one­scale­(e.g.­biochemical­cellular­

reactions)­on­another­(e.g.­folding­of­protein­molecules),­scientists­of­different­

cloth­increasingly­share­structural­data­and­test­competing­hypotheses,­com-municate and educate on new media platforms such as (Maxon’s) Cinema 4D­or­(Autodesk’s)­Maya.­The­“molecular­movies,”­as­they­are­dubbed,­are­

robust­collaborations­between­academic­researchers,­biotech­corporations,­

and digital animators.7­Making­the­unseen­visible,­as­the­SciVis­mantra­goes,­

moving images integrate structural data and simulate possible molecular events in this post-cinematic context. With new data inputs come new possibilities.

In­liquid­images,­“life”­as­vital­process­appears­as­“life­itself.”­As­shorthand,­

“life­itself”­refers­to­the­mediatic­appearance of vital processes.8 Life “emerges with”­matter:­bodily­media­like­blood­or­respiratory­mucosa­sustain­the­virus.­

Technical-aesthetic mediation detects and composes the interactions of viral particles­in­bodily­fluids­as­the­numeric­distribution­of­x copies in y milliliter blood­(à­la­the­viral­load­test).­Sarah­Kember­and­Johanna­Zylinska­(2010)­name­

research on identifying viruses began in earnest. The focus on virus morphologies soon­gave­way­to­the­romance­with­genomic­codes­in­the­mid-20th century as molecular biologists­drilled­down­to­genomic­fingerprints­of­viruses­in­host­DNA.­The­latter­

remains­the­bedrock­of­virological­research,­even­as,­still­later­in­the­20th­century,­the­

onus fell on integrating research with the rise of systems biology.

The­mantra­is­associated­with­SciVis­practices­which­begins­to­commercially­cohere­

in the late eighties (the precedents in molecular graphics go back much further). The first­SciVis­congregation­(the­Visualization­in­Scientific­Computing­Conference),­in­

1987,­brought­together­industry,­academics,­and­government­officials.­Thus,­began­the­

industrial enterprise of new media platforms that allowed scientists and animators to produce images based on experimental data necessary for designing source materials

readying them for other interventions such as gene-splicing or drug therapy.

­For­the­multisensory­dimension­of­building­protein­macromolecules,­one­of­the­best­

studies­is­Natasha­Myers’­(2015)­ethnography­of­protein­crystallography.­Myers­traces­

Of Liquid Images and Vital Flux 177

The point is better made with brief illustration: I focus on the making of HIV macromolecules at the Center for Computational Structural Biology (formerly,­Molecular­Graphics­Lab)­at­the­Scripps­Research­Institute,­Univer-sity­of­California,­San­Diego.­Its­chief­biologist,­Arthur­Olson,­was­a­pioneer­

in the computer graphics foundational to molecular visualizations. Founded in­1981,­the­“Olson­Lab”­(as­it­is­nicknamed)­sources­its­data­from­molecular­

biologists­(studying­gene­transcriptions),­biochemists­(studying­chemical­

interactions),­and­structural­biologists­(studying­protein­assemblies)­to­build­

integrative crowd-sourced models which allow researchers to move beyond their silos of expertise.10­Until­now,­the­lab­has­made­six­models­of­the­HIV-1­

macromolecule on media platforms so that researchers can manually move molecules­around,­watch­for­folds,­accelerate­or­decelerate­motion.­While­the­

game industry’s VR platforms provide inspiration for analyzing biomolecular structures­in­3-D,­sophisticated­toolkits­specifically­tailored­for­biological­

research­are­now­available;­some­of­these­have­been­developed­at­the­Olson­

Lab.11­A­biology-specific­extension­of­the­better-known­AutoPACK­is­a­suite­of­

programs­called­cellPACK,­which­was­developed­in­collaboration­with­med-ical-illustrator-turned-software-designer­Graham­Johnson­(Mesoscope­Lab,­

University­of­California,­San­Francisco).12 Structural biologist and illustrator David­Goodsell’s­legendary­“zoomable”­watercolors,­which­magnified­cellular­

structures­into­their­molecular­components,­are­the­methodological­and­aes-thetic­bases­for­building­unified­hybrid­models­on­cellPACK­(fig.­2a).13

the haptic and kinesthetic qualities of modeling proteins to argue for a sensuous engagement­with­scientific­molecular­structures.

10 Arthur Olson has been envisioning HIV from the start of the epidemic in the United States.­Studying­the­structural­dimensions­of­HIV,­the­Olson­Lab’s­“AIDS-Related­Struc-tural­Biology­Program”­is­an­NIH-funded­operation.­The­team­at­the­lab­includes­a­range­

of scientists from David Goodsell (on the technical-aesthetic end) to Stefano Forli (on the biotech­industry­end).­The­lab­developed­at­least­one­thousand­structures­of­protease,­

one of the three important HIV enzymes in the viral replication cycle. Research on HIV enzyme­biostructures­has­everything­to­do­with­the­life-saving­protease­inhibitors,­

placing­the­Olson­Lab­squarely­within­ongoing­efforts­to­develop­pharmacological­

solutions­to­“managed­HIV”­(as­it­is­now­called).

11­ In­the­area­of­software­programs,­the­lab’s­successes­are­many.­“Autodock,”­a­program­

for­biomolecular­structure­analysis,­has­been­adopted­by­four­thousand­laboratories­all­

over the world.

12 cellPACK was developed at the Olson Lab (with Ludovic Antin) while Johnson was finishing­his­post-graduate­work.­The­open-source­program­integrates­structural­biology­

and­systems­biology­data­with­packing­algorithms­to­assemble­comprehensive­3D­

models­of­cell-scale­structures­in­molecular­detail. 

13­ David­Goodsell­is­a­central­figure­who­is­well­known­for­his­watercolor­illustrations­

based­on­real­data­sources­and­magnification­specifications;­these­are­available­on­the­

Protein­Data­Bank.­Goodsell­has­not­only­led­on­the­scientific­front,­but­his­books, The Machinery of Life­(1993)­and­Atomic Evidence­(2016),­are­widely­considered­exemplars­of­

science­communication.­Based­on­his­aesthetic­protocols,­the­Olson­Lab­has­produced­

as­many­as­6­HIV-1­models­to­date­(HIV-1­1.2,­1.3…),­each­manually­curated­with­widely­

sourced data.

178 Pandemic Media

[Figure­2a–b]­Watercolor­of­HIV­in­Blood­Plasma,­1999;­HIV-in-Blood­Plasma­Visualization,­2015

The idea is to combine data from all branches of biology into a compre-hensive­mesoscale­model­ranging­from­0.1­micron­to­10­nanometers.­“Artistic­

depictions­of­cellular­environments”­built­on­the­cellPACK­suite­can­integrate­

data­from­ultrastructural­(light­and­electron­microscopy),­infrastructural­

atomic­(x-ray­crystallography­and­NMR­spectroscopy),­and­biochemical­

(for­concentrations­and­interactions)­sources­(Johnson­et­al.­2015,­85-91).­

“Ingredients”­from­these­data­sources­produce­scientific­“recipes”­(as­the­lab’s­

extended­cooking­metaphor­runs)­for­various­parts­of­the­model.­Fig.­2b­is­an­

image,­HIV-in-Blood Plasma,­made­up­of­seven­different­recipes­(each­with­a­

different­color­coding)­that­are­unified­into­a­single­model.­Endless­updates­to­

the­“editable­model­of­HIV”­become­possible­in­these­plastic,­malleable­liquid­

images.­The­Olson­Lab’s­HIV-1­ultrastructure­(the­HIV­envelope)­functions­as­

the­polyhedral­“mesh”­or­Euclidean­“state­space”­(adding­time­to­geometric­

coordinates)­for­packing­ingredients­(De­Landa­2011).­This­is­accomplished­by­

cellPACK’s­virtuoso­“packing­algorithms”­that­determine­how­the­mesh­is­filled­

out­to­produce­a­scalable­image­(see­fig.­3).­

Of Liquid Images and Vital Flux 179

[Figure­3]­Packing­the­HIV-1­mesh

Such a drive toward consistent precision in modelling biomolecular structures enables­the­study­of­“active­sites”­on­cellular­surfaces­that­drug­therapies­

target­to­block­the­successful­“docking”­of­HIV.­Stefano­Forli,­who­is­the­bio-tech­interface­at­the­lab,­explained­how­animating­3-D­models­on­new­media­

platforms­not­only­provided­the­opportunity­to­circle,­view,­and­analyze­

cellular­structures,­but­it­also­enabled­calculating­the­densities,­forces,­and­

propensities of molecules as they interacted with each other. Real-time video-tracking­allowed­for­moving­molecules­around,­accelerating­or­decelerating­

molecular­motion.­As­the­molecules­vibrated­in­Brownian­motion,­Olson­

noted,­scientists­could­better­understand­the­electrostatic­complementarity­

and hydrogen bonding that forms molecular structures. They could zoom into specific­sites­of­structural­uncertainty­and­then­out­to­the­bigger­picture—the­

HIV-1­viral­capsid­in­the­extracellular­environment.­

This­example­of­liquid­images­discloses­their­infinite­malleability.­To­be­sure,­

these­“technical­images,”­to­recall­Vilém­Flusser­(1985),­concretizing­a­“universe­

of­particles­moving­toward­dissipation,”­are­as­plastic­as­are­all digital images.

Each­image­liquidates­and­reconfigures­the­previous­trace.­And­yet,­the­point­

of the constant update is to keep up with high volumes of incoming data:

the­Olson­Lab’s­release­of­HIV­1.6­demonstrated­the­possibility­of­integrating­

crowd-sourced structural data at speeds commensurate with the fast pace of

180 Pandemic Media

research­(Johnson­et­al.­2014,­23-44).­Further,­when­animated,­scientists­were­

able to experiment with multiple outcomes for the molecules in motion—

colliding,­adhering,­separating.­Such­dynamism­is­critical­to­simulating­the­

changeful­interactivity­of­parasitic­relations.­As­obligate­parasites,­bits­of­

nucleic­acid­with­a­protein­coat­and­without­cell­walls,­we­know­that­viruses­

“come­alive”­as­secondary­organisms­always­in­vital­relation­to­a­host;­they­

need host resources to replicate.14 But this biological partnership is con-stantly negotiated as virus-host vital relations continue to emerge.15 Computer animations­can­simulate­the­processualities­of­emergences,­predicting­a­range­

of probable outcomes for the form and evolution of vital relations.

Investigating­simulations­of­living­systems,­Manuel­De­Landa­(2011)­examines­

the computational rendering of biologic “possibility­spaces”—the­space­of­

genes,­the­space­of­structural­proteins,­the­space­of­spatial­structures—into­

synthetic possibility­spaces.­The­efficacy­of­the­scalable liquid image lies in rendering biological possibilities as calculable mathematical probabilities.

In­this­enriched­mechanistic­account­of­life,­De­Landa­asks:­What­“individual­

singularities”­arise­in­interactions­between­agents­within­a­possibility­space?­

Defining­individual­singularities­as­new properties,­De­Landa­argues­that­

hydrogen­and­oxygen­produce­a­liquid­state­more­than­the­sum­of­its­parts,­a­

state whose properties (such as the temperature at which water boils) are dis-tinct from the two gaseous entities. Secondary mutations of HIV that evolve as

14­ Ever­since­its­discovery­in­the­late­19th­century,­the­virus­has­always­been­a­border­

object,­in­the­sense­that­it­lacks­an­important­definitive­feature­of­living­organisms—the­

as opposed to a facultative parasite that can live independently but becomes parasite under­certain­conditions.­The­virus­can­only­live­within­hosts.­It­literally­“comes­alive”­

from dormant crystalline states when it senses a host.

15­ One­of­the­foremost­scholars­of­parasitism,­Angela­Douglas­characterizes­symbiosis­as­

a derived state: a gradual evolutionary transition from antagonism (including virulent pathogenesis)­to­mutually­beneficial­relations­including­a­stable,­managed­partitioning­

of resources.One­partner,­usually­the­host,­takes­control­of­resource­distribution­over­

time,­imposing­sanctions­and­controlling­transmissions­for­both­partners,­even­as­both­

organisms­develop­novel­capacities­(a­lateral,­not­hereditary,­transfer­of­properties)­in­

order to live with the perturbations that the other generates. Symbiosis-at-risk is one step­on­a­spectrum­of­relations­between­parasites­and­hosts;­and­some­relationships­

(e.g. human-Ebola) never move past that point. Symbiotic relations are those that are mutually­beneficial­to­the­participants­for­the­major­duration­of­their­lifetime.­This­does­

not­mean­that­parasitism­is­not­symbiotic,­but­that­pathogenic­parasitism­is­not.­Less­

virulent­parasites­are­at­a­selective­advantage­in­this­regard,­since­they­do­not­deplete­

the­resources­of­the­host.­We­can­“live­with”­virulent­pathogens­like­HIV­only­with­the­

technological­mediation­of­drug­therapies.­See,­Angela­Douglas,­The Symbiotic Habit (Princeton­UP,­2010),­Symbiotic Interaction­(1994),­and­The Biology of Symbiosis­(1987).

Of Liquid Images and Vital Flux 181

drug resistance are examples of such individual singularities: these properties emerge­at­negotiations­between­host­resources,­viral­particles,­and­chemical­

drug­molecules.­While­such­new­properties­can­be­decoded­and­documented,­

what remains speculative are the capacities and tendencies that come into play within living systems. Enter liquid images: the attempt to predict outcomes of new individual singularities arising in cellular environments.

As­an­image­composed­at­one­scale­liquidates­to­reassemble­into­another,­

perhaps­larger,­whole,­or­vice­versa,­liquid­images­not­only­present­variable­

trajectories but they also predict what is not yet known. They are crucial sites for­creative­actualizations­of­scientific­hypotheses­based­on­mathematical­

possibilities. Whether those hypotheses concern envisioning the capacities and­tendencies­of­complex­systems,­or­tracking­evolving­changes­in­new­

after years of study. Even though HIV is relatively simple in its composition (made­of­just­eight­structural­proteins),­the­“HIV­trimer”­was­on­the­“most­

wanted”­list­of­protein­macromolecules­until­2013,­when­the­scientific­com-munity­could­agree­on­its­definitive­crystalline­structure.­The­liquid­image­is­

an object lesson in patience.

We­will­have­to­inhabit­the­molecular­fantastic­of­SARS-Cov2­for­the­fore-seeable­future,­watching­as­this­increasingly­familiar­orb­circles­and­enters­

its­new­hosts,­leaving­cellular­ruin­in­its­wake.­­The­liquid­image­is­always­at­

a­lag­for­vital­flux­continues­to­exceed­all­synthetic­transcription.­Delving­

deeper,­moving­faster,­these­speculative­images­remain­in­hot­pursuit­of­ever-emergent virus-host vital relations.

References

Beckman,­Karen,­ed.­2014. Animating Film Theory.­Durham,­NC:­Duke­University­Press.­

De­Landa,­Manuel.­2011.­Philosophy and Simulation: The Emergence of Synthetic Reason. New York:

Continuum.

Douglas,­Angela.­1987.­The Biology of Symbiosis.­Princeton,­NJ:­Princeton­University­Press.

—­—­—­­.­1994.­Symbiotic Interaction. Oxford: Oxford University Press.

—­—­—­­.­2010.­The Symbiotic Habit.­Princeton,­NJ:­Princeton­University­Press.­­

Ghosh,­Bishnupriya.­2016­“Toward­Symbiosis:­Human-viral­Futures­in­the­‘Molecular­Movies.’”­In­

Sustainable Media: Critical Approaches to Media and Environment,­edited­by­Nicole­Starosielski­

and­Janet­Walker,­232–47.­Durham,­NC:­Duke­University­Press.

Johnson,­Graham­T.­et­al.­2014.­“3D­Molecular­Models­of­Whole­HIV-1­Virions­Generated­with­

cellPACK.”­Faraday Discuss,­Nov­23:­23–44.

182 Pandemic Media

Johnson,­Graham­T.­et­al.­2015.­“cellPACK:­A­Virtual­Mesoscape­to­Model­and­Visualize­Structural­

Systems­Biology.”­Nature Methods­12­(1):­85–91.

Kember,­Sarah,­and­Johanna­Zylinska.­2010.­Life after New Media: Mediation as Vital Process.

Cambridge,­MA:­MIT­Press.

Myers,­Natasha.­2015.­Rendering Life Molecular: Models, Modelers, and Excitable Matter.­Durham,­

NC: Duke University Press.

Pickford,­Clifford,­and­Stuart­K.­Tewksbury.­1994.­Frontiers of Scientific Visualization.­Hoboken,­NJ:­

Wiley-Interscience Publication.

Tufte,­Edward.­2001.­The Visual Display of Information.­Cheshire,­CT:­Graphics­Press.

GOVERNMENTALITY

Im Dokument MEDIA MEDIA PANDEMIC (Seite 176-186)