• Keine Ergebnisse gefunden

Pharmacological assessment of the antiprotozoal activity, cytotoxicity and genotoxicity of medicinal plants used in the treatment of malaria in

4.9 Human S9 liver fraction treatment of extracts

Human S9 liver fraction was incorporated into the Salmonella reverse mutagenicity assay to also assess the human metabolic activation (or deactivation) of potentially mutagenic plant extracts. Pooled hepatic S9 fraction represents the post-mitochondrial supernatant fraction from homogenized human liver, and S9 fractions from the same batch only were used for the experiments (Lot# SLBR5681V,

153 S2442, Sigma Aldrich, always stored at í70°C). A sterile 0.1 M ß-nicotinamide adenine dinucleotide phosphate disodium salt (NADP, Sigma Aldrich) solution was freshly prepared and kept on ice. A 1 M glucose-6-phosphate solution and a MgCl2 (123 mg/mL) – KCl (81.4 mg/mL) salt solution were aseptically prepared. Subsequently, a 4% S9 mixture was freshly prepared by first mixing 69.125 mL of sterile H2O, 87.5 mL of sterile 0.2 M phosphate buffer (pH 7.4), 875 μL of glucose-6-phosphate solution, 3.5 mL of MgCl2 – KCl salt solution, and 7 mL of NADP solution, and then adding 7.0 mL of pooled human S9 liver fraction. The S9 mixture was kept on ice and quickly introduced to the following steps.

Sample extracts and controls were treated with the S9 mixture via a pre-incubation assay. A total of 50 μL of extract solution and 50 μL DMSO were added to 500 μL S9 mixture, vortexed, and incubated at 37°C with constant shaking at 100 rpm for exactly 30 min. The mutagenic substance 2-aminofluorene (2-AF, 1 mg/mL DMSO) was used as a positive control for both Salmonella strains.

After incubation and metabolic activation of samples, the samples were introduced to the Salmonella reverse mutagenicity assay by adding 2.0 mL TBA top agar and 100 μL of aliquot of the test strain suspension (overnight culture) as described in section 4.8. Each plate contained 20 μL human liver S9 fraction. Further information is given in Supplementary Table S4. Figure 2 was created using biorender.com software.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author Contributions

F.S. wrote the manuscript. F.S. and L.P. designed the overall strategy of the study. F.S. and G.A.

collected and processed the plant material. G.A. prepared herbarium voucher specimens and taxonomically identified the plant species. F.S. performed the extraction procedures and created the extract library. F.S. and O.F.O. prepared the extract solutions for all assays and performed the heme biocrystallization inhibition assay. G.C. and L.P. performed the antiplasmodial and the cytotoxicity experiments. F.S., A.N. and O.F.O. conducted the genotoxicity experiments. F.S., O.F.O., A.N. and L.P. analyzed the data. J.S. contributed toward the background on P. hadiensis in Wakiso district.

L.A.G. provided oversight of lab work and directed the study. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by two grants from the BMBF—German Federal Ministry of Education and Research (13FH026IX5, 13FH066PX5; PI: L.A.G. and Co-I: F.S.). We acknowledge support for the Article Processing Charge from the German Research Foundation (DFG, 414051096) and the Open Access Publication Fund of Neubrandenburg University of Applied Sciences (HSNB). The content is solely the responsibility of the authors and does not necessarily reflect the official views of the DFG, HSNB, or BMBF.

This is a provisional file, not the final typeset article 154 Acknowledgments

Greatest thanks to the Ugandan traditional healers in the Greater Mpigi region and neighboring regions who provided the ethnobotanical information that forms the foundation of this study and who provided guidance during the collection of plant materials. Thanks to research assistant Tidjani Cisse for assisting during the extractions of plant material. Thanks to student assistant Kristine Kossol for assistance in graphic design. The authors acknowledge An Matheeussen, Natascha Van Pelt and Pim-Bart Feijens for their excellent technical assistance with the in vitro biological evaluation. Thanks to Dr. Akram Salam for fruitful discussions and advice after drafting the manuscript.

Data Availability Statement

The data presented in this study are available in this article and in the Supplementary Material.

Ethnobotanical data are available in Schultz, F.; Anywar, G.; Wack, B.; Quave, C. L.; Garbe, L.-A., Ethnobotanical study of selected medicinal plants traditionally used in the rural Greater Mpigi region of Uganda. J. Ethnopharmacol. 2020, 256, 112742.

References

Alexiades, M.N., and Sheldon, J.W. (1996). Selected Guidelines for Ethnobotanical Research: A Field Manual. New York Botanical Garden.

Ames, B.N., Durston, W.E., Yamasaki, E., and Lee, F.D. (1973). Carcinogens are Mutagens: A Simple Test System Combining Liver Homogenates for Activation and Bacteria for Detection. Proceedings of the National Academy of Sciences 70(8), 2281. doi:

10.1073/pnas.70.8.2281.

Azubuike, S.O., Muirhead, C., Hayes, L., and McNally, R. (2018). Rising global burden of breast cancer: the case of sub-Saharan Africa (with emphasis on Nigeria) and implications for regional development: a review. World J Surg Oncol 16(1), 63. doi: 10.1186/s12957-018-1345-2.

Babii, O., Afonin, S., Ishchenko, A.Y., Schober, T., Negelia, A.O., Tolstanova, G.M., et al. (2018).

Structure–Activity Relationships of Photoswitchable Diarylethene-Based ȕ-Hairpin Peptides as Membranolytic Antimicrobial and Anticancer Agents. Journal of Medicinal Chemistry 61(23), 10793-10813. doi: 10.1021/acs.jmedchem.8b01428.

Baelmans, R., Deharo, E., Bourdy, G., Muñoz, V., Quenevo, C., Sauvain, M., et al. (2000). A search for natural bioactive compounds in Bolivia through a multidisciplinary approach. Part IV. Is a new haem polymerisation inhibition test pertinent for the detection of antimalarial natural products? J Ethnopharmacol 73(1-2), 271-275. doi: 10.1016/s0378-8741(00)00330-5.

Becker, K., Tilley, L., Vennerstrom, J.L., Roberts, D., Rogerson, S., and Ginsburg, H. (2004).

Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol 34(2), 163-189. doi: 10.1016/j.ijpara.2003.09.011.

Bhatt, S., Weiss, D.J., Cameron, E., Bisanzio, D., Mappin, B., Dalrymple, U., et al. (2015). The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526(7572), 207-211. doi: 10.1038/nature15535.

155 Bhattachar, S. (2011). Natural Antimutagens: A Review. Research Journal of Medicinal Plant 5,

116-126. doi: 10.3923/rjmp.2011.116.126.

Bilal, I., Chowdhury, A., Davidson, J., and Whitehead, S. (2014). Phytoestrogens and prevention of breast cancer: The contentious debate. World journal of clinical oncology 5(4), 705-712. doi:

10.5306/wjco.v5.i4.705.

Brennan, M. (2017). Breast cancer in ethnic minority groups in developed nations: Case studies of the United Kingdom and Australia. Maturitas 99, 16-19. doi:

https://doi.org/10.1016/j.maturitas.2017.01.015.

CDC (2021). Malaria's Impact Worldwide [Online]. Global Health, Division of Parasitic Diseases and Malaria. Available: https://www.cdc.gov/malaria/malaria_worldwide/impact.html [Accessed 02/05/2021 2021].

Chandrasekharan, N.V., and Simmons, D.L. (2004). The cyclooxygenases. Genome biology 5(9), 241-241. doi: 10.1186/gb-2004-5-9-241.

Chlebowski, R.T., Chen, Z., Anderson, G.L., Rohan, T., Aragaki, A., Lane, D., et al. (2005).

Ethnicity and breast cancer: factors influencing differences in incidence and outcome. J Natl Cancer Inst 97(6), 439-448. doi: 10.1093/jnci/dji064.

Chou, A.C., Chevli, R., and Fitch, C.D. (1980). Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry 19(8), 1543-1549. doi: 10.1021/bi00549a600.

Chow, S.C. (2014). Bioavailability and Bioequivalence in Drug Development. Wiley Interdiscip Rev Comput Stat 6(4), 304-312. doi: 10.1002/wics.1310.

Chugh, M., Sundararaman, V., Kumar, S., Reddy, V.S., Siddiqui, W.A., Stuart, K.D., et al. (2013).

Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc Natl Acad Sci U S A 110(14), 5392-5397. doi: 10.1073/pnas.1218412110.

Cohen, S.N., Phifer, K.O., and Yielding, K.L. (1964). COMPLEX FORMATION BETWEEN CHLOROQUINE AND FERRIHAEMIC ACID IN VITRO, AND ITS EFFECT ON THE ANTIMALARIAL ACTION OF CHLOROQUINE. Nature 202, 805-806. doi:

10.1038/202805a0.

Combrinck, J.M., Mabotha, T.E., Ncokazi, K.K., Ambele, M.A., Taylor, D., Smith, P.J., et al. (2013).

Insights into the role of heme in the mechanism of action of antimalarials. ACS Chem Biol 8(1), 133-137. doi: 10.1021/cb300454t.

Coronado, L.M., Nadovich, C.T., and Spadafora, C. (2014). Malarial hemozoin: from target to tool.

Biochimica et biophysica acta 1840(6), 2032-2041. doi: 10.1016/j.bbagen.2014.02.009.

Cos, P., Vlietinck, A.J., Berghe, D.V., and Maes, L. (2006). Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. Journal of

Ethnopharmacology 106(3), 290-302. doi: https://doi.org/10.1016/j.jep.2006.04.003.

Cox, J.A., Fellows, M.D., Hashizume, T., and White, P.A. (2016). The utility of metabolic activation mixtures containing human hepatic post-mitochondrial supernatant (S9) for in vitro genetic toxicity assessment. Mutagenesis 31(2), 117-130. doi: 10.1093/mutage/gev082.

Davis, J.D., and Lin, S.-Y. (2011). DNA damage and breast cancer. World journal of clinical oncology 2(9), 329-338. doi: 10.5306/wjco.v2.i9.329.

Dharani, N. (2019). Field Guide to Common Trees & Shrubs of East Africa. Pippa Parker.

This is a provisional file, not the final typeset article 156

Dharani, N., and Yenesew, A. (2010). Medicinal Plants of East Africa Drongo Editing & Publishing.

Egan, T. (2004). Haemozoin Formation as a Target for the Rational Design of New Antimalarials.

Drug Design Reviews - Online 1, 93-110. doi: 10.2174/1567269043480744.

Egan, T.J. (2001). Structure-function relationships in chloroquine and related 4-aminoquinoline antimalarials. Mini Rev Med Chem 1(1), 113-123. doi: 10.2174/1389557013407188.

Egan, T.J. (2002). Physico-chemical aspects of hemozoin (malaria pigment) structure and formation.

J Inorg Biochem 91(1), 19-26. doi: 10.1016/s0162-0134(02)00372-0.

EMA (2013). ICH S2 (R1) Genotoxicity testing and data interpretation for pharmaceuticals intended for human use [Online]. EMA/CHMP/ICH/126642/2008, European Medicines Agency.

Available: https://www.ema.europa.eu/en/ich-s2-r1-genotoxicity-testing-data-interpretation-pharmaceuticals-intended-human-use [Accessed 24th March 2021].

Foerster, M., Anderson, B.O., McKenzie, F., Galukande, M., Anele, A., Adisa, C., et al. (2019).

Inequities in breast cancer treatment in sub-Saharan Africa: findings from a prospective multi-country observational study. Breast Cancer Research 21(1), 93. doi: 10.1186/s13058-019-1174-4.

Githinji, E.K., Irungu, L.W., Tonui, W.K., Rukunga, G.M., Mutai, C., Muthaura, C.N., et al. (2010).

In vitro effects of Warburgia ugandensis, Psiadia punctulata and Chasmanthera dependens on Leishmania major promastigotes. Afr J Tradit Complement Altern Med 7(3), 264-275. doi:

10.4314/ajtcam.v7i3.54791.

Gupta, P., Mehrotra, S., Sharma, A., Chugh, M., Pandey, R., Kaushik, A., et al. (2017). Exploring Heme and Hemoglobin Binding Regions of Plasmodium Heme Detoxification Protein for New Antimalarial Discovery. J Med Chem 60(20), 8298-8308. doi:

10.1021/acs.jmedchem.7b00089.

Hamel, A., Roy, M., and Proudlock, R. (2016). "Chapter 4 - The Bacterial Reverse Mutation Test," in Genetic Toxicology Testing, ed. R. Proudlock. (Boston: Academic Press), 79-138.

Heilmann, T., Leuschner, I., Hilpert, F., Kümper, C., Strauss, A., Mundhenke, C., et al. (2012).

Diagnosis and management of an unilateral giant fibroadenoma of the breast in pregnancy.

Archives of Gynecology and Obstetrics 285(1), 235-237. doi: 10.1007/s00404-011-1923-9.

Heinrich, M., Lardos, A., Leonti, M., Weckerle, C., Willcox, M., Applequist, W., et al. (2018). Best practice in research: Consensus Statement on Ethnopharmacological Field Studies –

ConSEFS. Journal of Ethnopharmacology 211, 329-339. doi:

https://doi.org/10.1016/j.jep.2017.08.015.

Hempelmann, E. (2007). Hemozoin biocrystallization in Plasmodium falciparum and the antimalarial activity of crystallization inhibitors. Parasitol Res 100(4), 671-676. doi: 10.1007/s00436-006-0313-x.

Herraiz, T., Guillén, H., González-Peña, D., and Arán, V.J. (2019). Antimalarial Quinoline Drugs Inhibit ȕ-Hematin and Increase Free Hemin Catalyzing Peroxidative Reactions and Inhibition of Cysteine Proteases. Scientific Reports 9(1), 15398. doi: 10.1038/s41598-019-51604-z.

Heshmati Afshar, F., Delazar, A., Janneh, O., Nazemiyeh, H., Pasdaran, A., Nahar, D.L., et al.

(2011). Evaluation of antimalarial, free-radical-scavenging and insecticidal activities of Artemisia scoparia and A. Spicigera, Asteraceae. Revista Brasileira de Farmacognosia 21, 986-990. doi: 10.1590/S0102-695X2011005000144.

157 Isono, K., and Yourno, J. (1974). Chemical carcinogens as frameshift mutagens: Salmonella DNA

sequence sensitive to mutagenesis by polycyclic carcinogens. Proc Natl Acad Sci U S A 71(5), 1612-1617. doi: 10.1073/pnas.71.5.1612.

Jeruto, P., Nyangacha, R., and Mutai, C. (2015). In vitro and in vivo antiplasmodial activity of extracts of selected Kenyan medicinal plants.

Jia, L., and Liu, X. (2007). The conduct of drug metabolism studies considered good practice (II): in vitro experiments. Current drug metabolism 8(8), 822-829. doi:

10.2174/138920007782798207.

Jurado, J., Alejandre-Durán, E., and Pueyo, C. (1993). Genetic differences between the standard Ames tester strains TA100 and TA98. Mutagenesis 8(6), 527-532. doi:

10.1093/mutage/8.6.527.

Kapishnikov, S., Staalsø, T., Yang, Y., Lee, J., Pérez-Berná, A.J., Pereiro, E., et al. (2019). Mode of action of quinoline antimalarial drugs in red blood cells infected by <em>Plasmodium falciparum</em> revealed in vivo. Proceedings of the National Academy of Sciences 116(46), 22946. doi: 10.1073/pnas.1910123116.

Katende, A.B., Birnie, A., and Tengnäs, B. (1995). Useful trees and shrubs for Uganda -

Identification, Propagation, and Management for Agricultural and Pastoral Communities.

Nairobi (Kenya) Regional Soil Conservation Unit

Kotepui, M., Kotepui, K.U., De Jesus Milanez, G., and Masangkay, F.R. (2020). Plasmodium spp.

mixed infection leading to severe malaria: a systematic review and meta-analysis. Scientific Reports 10(1), 11068. doi: 10.1038/s41598-020-68082-3.

Kumar, S., and Bandyopadhyay, U. (2005). Free heme toxicity and its detoxification systems in human. Toxicology Letters 157(3), 175-188. doi: https://doi.org/10.1016/j.toxlet.2005.03.004.

Kumar, S., Guha, M., Choubey, V., Maity, P., and Bandyopadhyay, U. (2007). Antimalarial drugs inhibiting hemozoin (beta-hematin) formation: a mechanistic update. Life Sci 80(9), 813-828.

doi: 10.1016/j.lfs.2006.11.008.

Macias, H., and Hinck, L. (2012). Mammary gland development. Wiley interdisciplinary reviews.

Developmental biology 1(4), 533-557. doi: 10.1002/wdev.35.

Makler, M.T., Ries, J.M., Williams, J.A., Bancroft, J.E., Piper, R.C., Gibbins, B.L., et al. (1993).

Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am J Trop Med Hyg 48(6), 739-741. doi: 10.4269/ajtmh.1993.48.739.

Maron, D.M., and Ames, B.N. (1983). Revised methods for the Salmonella mutagenicity test. Mutat Res 113(3-4), 173-215. doi: 10.1016/0165-1161(83)90010-9.

Martin, G. (2004). Ethnobotany: A Methods Manual. People and Plants International Conservation.

Routledge, 296 pages.

Martinson, H.A., Lyons, T.R., Giles, E.D., Borges, V.F., and Schedin, P. (2013). Developmental windows of breast cancer risk provide opportunities for targeted chemoprevention. Exp Cell Res 319(11), 1671-1678. doi: 10.1016/j.yexcr.2013.04.018.

Mathur, N., Bhatnagar, P., and Bakre, P. (2006). Assesing mutagenicity of textile dyes from Pali (Rajasthan) using AMES bioassay. J. Appl. Eco. and Environ. Res 4.

This is a provisional file, not the final typeset article 158

Mbwambo, Z., Erasto, P., Innocent, E., and Masimba, P. (2009). Antimicrobial and cytotoxic activities of fresh leaf extracts of Warburgia ugandensis. Tanzania Journal of Health Research (ISSN: 1821-6404) Vol 11 Num 2 11. doi: 10.4314/thrb.v11i2.45205.

McMillian, M.K., Li, L., Parker, J.B., Patel, L., Zhong, Z., Gunnett, J.W., et al. (2002). An improved resazurin-based cytotoxicity assay for hepatic cells. Cell Biology and Toxicology 18(3), 157-173. doi: 10.1023/A:1015559603643.

Menon, D.B., and Gopalakrishnan, V.K. (2015). Terpenoids Isolated From the Shoot of Plectranthus hadiensis Induces Apoptosis in Human Colon Cancer Cells Via the Mitochondria-Dependent Pathway. Nutrition and Cancer 67(4), 697-705. doi: 10.1080/01635581.2015.1019631.

Mesia, K., Cimanga, R.K., Dhooghe, L., Cos, P., Apers, S., Totté, J., et al. (2010). Antimalarial activity and toxicity evaluation of a quantified Nauclea pobeguinii extract. J Ethnopharmacol 131(1), 10-16. doi: 10.1016/j.jep.2010.05.008.

Minker, C., Sheridan, H., O'Meara, J., Johnse, L., Hook, I., Lobstein, A., et al. (2007). In vivo and in vitro evaluation of anti-inflammatory activity and cytotoxicity of extracts of seven

Plectranthus species. Planta Medica - PLANTA MED 73. doi: 10.1055/s-2007-986856.

Mortelmans, K., and Zeiger, E. (2000). The Ames Salmonella/microsome mutagenicity assay.

Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 455(1), 29-60.

doi: https://doi.org/10.1016/S0027-5107(00)00064-6.

Mothana, R.A.A., Abdo, S.A.A., Hasson, S., Althawab, F.M.N., Alaghbari, S.A.Z., and Lindequist, U. (2010). Antimicrobial, antioxidant and cytotoxic activities and phytochemical screening of some yemeni medicinal plants. Evidence-based complementary and alternative medicine : eCAM 7(3), 323-330. doi: 10.1093/ecam/nen004.

Muller, P.Y., and Milton, M.N. (2012). The determination and interpretation of the therapeutic index in drug development. Nature Reviews Drug Discovery 11(10), 751-761. doi:

10.1038/nrd3801.

Muregi, F.W., Chhabra, S.C., Njagi, E.N., Lang'at-Thoruwa, C.C., Njue, W.M., Orago, A.S., et al.

(2004). Anti-plasmodial activity of some Kenyan medicinal plant extracts singly and in combination with chloroquine. Phytother Res 18(5), 379-384. doi: 10.1002/ptr.1439.

Nagarathna, P.K.M., Wesley, M., Reddy, P., and Reena, K. (2013). Review on genotoxicity, its molecular mechanisms and prevention. International Journal of Pharmaceutical Sciences Review and Research 22, 236-243.

Nakaganda, A., Solt, K., Kwagonza, L., Driscoll, D., Kampi, R., and Orem, J. (2021). Challenges faced by cancer patients in Uganda: Implications for health systems strengthening in resource limited settings. Journal of Cancer Policy 27, 100263. doi:

https://doi.org/10.1016/j.jcpo.2020.100263.

Natarajan, R., Aljaber, D., Au, D., Thai, C., Sanchez, A., Nunez, A., et al. (2020). Environmental Exposures during Puberty: Window of Breast Cancer Risk and Epigenetic Damage.

International journal of environmental research and public health 17(2), 493. doi:

10.3390/ijerph17020493.

Ngure, P., Tonui, W., Ingonga, J., Mutai, C., Kigondu, E., Ng, Z., et al. (2009a). In vitro antileishmanial activity of extracts of Warburgia ugandensis (Canellaceae), a Kenyan medicinal plant. Journal of Medicinal Plants Research 3.

159 Ngure, P.K., Ng'ang'a, Z., Ingonga, J., Rukunga, G., and Tonui, W.K. (2009b). In vivo efficacy of

oral and intraperitoneal administration of extracts of Warburgia ugandensis (Canellaceae) in experimental treatment of Old World cutaneous leishmaniasis caused by Leishmania major.

Afr J Tradit Complement Altern Med 6(2), 207-212. doi: 10.4314/ajtcam.v6i2.57093.

Nyambati, G., Osiemo, Z., Maranga, R., Dr. Samuel, M.A., and Ozwara, H. (2013). In vitro

Antiplasmodial activity of Rubia cardifolia, Harizonnia abyssinica, Leucas calostachys Olive, Sanchus schweinfurthii Medicinal plants.

Park, S., Nixon, C.E., Miller, O., Choi, N.-K., Kurtis, J.D., Friedman, J.F., et al. (2020). Impact of Malaria in Pregnancy on Risk of Malaria in Young Children: Systematic Review and Meta-Analyses. The Journal of Infectious Diseases 222(4), 538-550. doi: 10.1093/infdis/jiaa139.

Peter, O., Magiri, E., Gabriel, M., Kariuki, D., and Bii, C. (2015). In vitro anti-Salmonella activity of extracts from selected Kenyan medicinal plants. Journal of Medicinal Plants Research 9, 254-261. doi: 10.5897/JMPR2014.5497.

Rein, M.J., Renouf, M., Cruz-Hernandez, C., Actis-Goretta, L., Thakkar, S.K., and da Silva Pinto, M.

(2013). Bioavailability of bioactive food compounds: a challenging journey to bioefficacy.

British journal of clinical pharmacology 75(3), 588-602. doi: 10.1111/j.1365-2125.2012.04425.x.

Roy, K.K. (2017). Targeting the active sites of malarial proteases for antimalarial drug discovery:

approaches, progress and challenges. Int J Antimicrob Agents 50(3), 287-302. doi:

10.1016/j.ijantimicag.2017.04.006.

Samiei, M., Asgary, S., Farajzadeh, M., Bargahi, N., Abdolrahimi, M., Kananizadeh, U., et al.

(2015). Investigating the Mutagenic Effects of Three Commonly Used Pulpotomy Agents Using the Ames Test. Advanced Pharmaceutical Bulletin 5, 121-125.

Sarker, S.D., and Nahar, L. (2012). "An introduction to natural products isolation," in Natural products isolation. Springer), 1-25.

Schmitt, T.H., Frezzatti, W.A., Jr., and Schreier, S. (1993). Hemin-induced lipid membrane disorder and increased permeability: a molecular model for the mechanism of cell lysis. Arch Biochem Biophys 307(1), 96-103. doi: 10.1006/abbi.1993.1566.

Scholar, E. (2007). "Malaria," in xPharm: The Comprehensive Pharmacology Reference, eds. S.J.

Enna & D.B. Bylund. (New York: Elsevier), 1-5.

Schultz, F., Anywar, G., Quave, C.L., and Garbe, L.-A. (2021a). A Bibliographic Assessment Using the Degrees of Publication Method: Medicinal Plants from the Rural Greater Mpigi Region (Uganda). Evidence-Based Complementary and Alternative Medicine 2021, 6661565. doi:

10.1155/2021/6661565.

Schultz, F., Anywar, G., Tang, H., Chassagne, F., Lyles, J.T., Garbe, L.A., et al. (2020a). Targeting ESKAPE pathogens with anti-infective medicinal plants from the Greater Mpigi region in Uganda. Nature Scientific Reports. doi: 10.1038/s41598-020-67572-8.

Schultz, F., Anywar, G., Wack, B., Quave, C.L., and Garbe, L.-A. (2020b). Ethnobotanical study of selected medicinal plants traditionally used in the rural Greater Mpigi region of Uganda.

Journal of Ethnopharmacology 256, 112742. doi: https://doi.org/10.1016/j.jep.2020.112742.

Schultz, F., Dworak-Schultz, I., Olengo, A., Anywar, G., and Garbe, L.-A. (2021b). Transferring ethnopharmacological results back to traditional healers in rural indigenous communities –

This is a provisional file, not the final typeset article 160

The Ugandan Greater Mpigi region example. Video Journal of Education and Pedagogy (in review).

Schultz, F., Osuji, O.F., Wack, B., Anywar, G., and Garbe, L.-A. (2021c). Antiinflammatory Medicinal Plants from the Ugandan Greater Mpigi Region Act as Potent Inhibitors in the COX-2 / PGH2 Pathway. Plants 10(2). doi: 10.3390/plants10020351.

SáoczyĔska, K., PowroĨnik, B., PĊkala, E., and Waszkielewicz, A.M. (2014). Antimutagenic compounds and their possible mechanisms of action. J Appl Genet 55(2), 273-285. doi:

10.1007/s13353-014-0198-9.

Snow, R.W., Sartorius, B., Kyalo, D., Maina, J., Amratia, P., Mundia, C.W., et al. (2017). The prevalence of Plasmodium falciparum in sub-Saharan Africa since 1900. Nature 550(7677), 515-518. doi: 10.1038/nature24059.

Ssegawa, P., and Kasenene, J.M. (2007). Medicinal plant diversity and uses in the Sango bay area, Southern Uganda. J Ethnopharmacol 113(3), 521-540. doi: 10.1016/j.jep.2007.07.014.

Stavropoulou, E., Pircalabioru, G.G., and Bezirtzoglou, E. (2018). The Role of Cytochromes P450 in Infection. Frontiers in immunology 9, 89-89. doi: 10.3389/fimmu.2018.00089.

Stopper, H., Schmitt, E., and Kobras, K. (2005). Genotoxicity of phytoestrogens. Mutat Res 574(1-2), 139-155. doi: 10.1016/j.mrfmmm.2005.01.029.

Tejs, S. (2008). The Ames test: a methodological short review. Environ Biotechnol 4.

The Angiosperm Phylogeny, G. (2016). An update of the Angiosperm Phylogeny Group

classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181(1), 1-20. doi: 10.1111/boj.12385.

Tice, R.R., Agurell, E., Anderson, D., Burlinson, B., Hartmann, A., Kobayashi, H., et al. (2000).

Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing.

Environ Mol Mutagen 35(3), 206-221. doi: 10.1002/(sici)1098-2280(2000)35:3<206::aid-em8>3.0.co;2-j.

Touret, F., Gilles, M., Barral, K., Nougairède, A., van Helden, J., Decroly, E., et al. (2020). In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS-CoV-2 replication. Scientific Reports 10(1), 13093. doi: 10.1038/s41598-020-70143-6.

van de Waterbeemd, H., and Gifford, E. (2003). ADMET in silico modelling: towards prediction paradise? Nature Reviews Drug Discovery 2(3), 192-204. doi: 10.1038/nrd1032.

Verschaeve, L. (2015). Genotoxicity and Antigenotoxicity Studies of Traditional Medicinal Plants:

How Informative and Accurate are the Results? Nat Prod Commun 10(8), 1489-1493.

Vrbanac, J., and Slauter, R. (2017). "Chapter 3 - ADME in Drug Discovery," in A Comprehensive Guide to Toxicology in Nonclinical Drug Development (Second Edition), ed. A.S. Faqi.

(Boston: Academic Press), 39-67.

Weckerle, C.S., de Boer, H.J., Puri, R.K., van Andel, T., Bussmann, R.W., and Leonti, M. (2018).

Recommended standards for conducting and reporting ethnopharmacological field studies.

Journal of Ethnopharmacology 210, 125-132. doi: https://doi.org/10.1016/j.jep.2017.08.018.

Werck-Reichhart, D., and Feyereisen, R. (2000). Cytochromes P450: a success story. Genome biology 1(6), REVIEWS3003-REVIEWS3003. doi: 10.1186/gb-2000-1-6-reviews3003.

Were, P.S., Kinyanjui, P., Gicheru, M.M., Mwangi, E., and Ozwara, H.S. (2010). Prophylactic and curative activities of extracts from Warburgia ugandensis Sprague (Canellaceae) and

161 Zanthoxylum usambarense (Engl.) Kokwaro (Rutaceae) against Plasmodium knowlesi and Plasmodium berghei. J Ethnopharmacol 130(1), 158-162. doi: 10.1016/j.jep.2010.04.034.

WHO (2020). World malaria report 2020: 20 years of global progress and challenges.

Wube, A.A., Bucar, F., Gibbons, S., Asres, K., Rattray, L., and Croft, S.L. (2010). Antiprotozoal activity of drimane and coloratane sesquiterpenes towards Trypanosoma brucei rhodesiense and Plasmodium falciparum in vitro. Phytotherapy Research 24(10), 1468-1472. doi:

https://doi.org/10.1002/ptr.3126.

Zeiger, E., Anderson, B., Haworth, S., Lawlor, T., and Mortelmans, K. (1992). Salmonella

mutagenicity tests: V. Results from the testing of 311 chemicals. Environ Mol Mutagen 19 Suppl 21, 2-141. doi: 10.1002/em.2850190603.

Zhang, Z., Hamada, H., and Gerk, P.M. (2019). Selectivity of Dietary Phenolics for Inhibition of Human Monoamine Oxidases A and B. BioMed Research International 2019, 8361858. doi:

10.1155/2019/8361858.

162

Pharmacological assessment of antiprotozoal activity,