• Keine Ergebnisse gefunden

4.5 Ausblick

4.5.1 Hormonell bedingte Neuroplastizität als möglicher Ansatzpunkt therapeutischer

Die Auswirkung der Hormone auf das menschliche Hirn bietet möglicherweise einen Ansatzpunkt medikamentöser Therapien von strukturellen Hirnerkrankungen. So wird im Rahmen der Alzheimer-Forschung die Hormonersatztherapie postmenopausaler Frauen als eine mögliche Therapieoption diskutiert, da das Krankheitsgeschehen durch den Abfall der zirkulierenden endogenen Östrogenkonzentration nach der Menopause möglicherweise negativ beeinflusst wird 55. Diese Hypothese wird durch neuroprotektive Effekte des Östrogens gestützt 93,94. Der Einsatz der Hormonersatztherapie zur

Prävention neurodegenerativer Prozesse im Alter ist aktuell Gegenstand kontroverser Diskussionen und findet lediglich sehr zurückhaltend Anwendung, da die Datenlage sehr heterogen ist. Bagger und Kollegen sowie Sherwin berichten von gemildertem

kognitiven Abbau im Alter bei zeitnaher Applikation der Hormonersatztherapie nach Beginn einer natürlichen oder induzierten Menopause 95,96. Demgegenüber stehen Ergebnisse, dass die Hormonersatztherapie das Risiko für die Entstehung einer dementiellen Erkrankung erhöht 97. Darüber hinaus wird der langfristigen Anwendung von exogen zugeführtem Östrogen ein negativer Effekt auf das Hippocampusvolumen zugeschrieben 98.

5 Literaturverzeichnis

1. Czoty PW, Riddick NV, Gage HD, Sandridge M, Nader SH, Garg S, Bounds M, Garg PK & Nader MA. Effect of menstrual cycle phase on dopamine D2 receptor availability in female cynomolgus monkeys. Neuropsychopharmacology 34, 548–

54 (2009).

2. Desmond NL & Levy WB. Ovarian Steroidal Control of Connectivity in the Female Hippocampus : An Overview of Recent Experimental Findings and Speculations on Its Functional Consequences. Hippocampus 245, 239–245 (1997).

3. Qiu LR, Germann J, Spring S, Alm C,Vousden DA, Palmert MR & Lerch JP.

Hippocampal volumes differ across the mouse estrous cycle , can change within 24 hours , and associate with cognitive strategies. Neuroimage 83, 593–598 (2013).

4. Woolley CS & McEwen BS. Roles of Estradiol and Progesterone in Regulation of Hippocampal Dendritic Spine Density During the Estrous Cycle in the Rat. J.

Comp. Neurol. 306, 293–306 (1993).

5. Woolley CS. Estrogen-Mediated Structural and Functional Synaptic Plasticity in the Female Rat Hippocampus. Horm. Behav. 148, 140–148 (1998).

6. Driemeyer J, Boyke J, Gaser C, Büchel C & May A. Changes in gray matter induced by learning - Revisited. PLoS One 3, (2008).

7. Lövdén M, Wenger E, Mårtensson J, Lindenberger U & Bäckman L. Structural brain plasticity in adult learning and development. Neurosci. Biobehav. Rev. 37, 2296–2310 (2013).

8. Woolley CS, Gould E, Frankfurt M & McEwen BS. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J. Neurosci.

10, 4035–4039 (1990).

9. Woolley CS, Weiland NG, McEwen BS & Schwartzkroin PA. Estradiol increases the sensitivity of hippocampal CA1 pyramidal cells to NMDA receptor-mediated synaptic input: correlation with dendritic spine density. J. Neurosci. 17, 1848–59 (1997).

10. Woolley CS, Wenzel HJ & Schwartzkroin PA. Estradiol increases the frequency of multiple synapse boutons in the hippocampal CA1 region of the adult female rat.

J. Comp. Neurol. 373, 108–17 (1996).

11. Pawluski JL, Brummelte S, Barha CK, Crozier TM & Galea LAM. Effects of steroid hormones on neurogenesis in the hippocampus of the adult female rodent during the estrous cycle, pregnancy, lactation and aging. Front. Neuroendocrinol. 30, 343–57 (2009).

12. Walf AA, Koonce CJ & Frye CA. Progestogens’ effects and mechanisms for object recognition memory across the lifespan. Behav Brain Res 294, 50–61 (2015).

13. Brunton PJ. Neuroactive steroids and stress axis regulation: Pregnancy and beyond. J. Steroid Biochem. Mol. Biol. 1–9 (2015).

14. Guennoun R, Labombarda F, Gonzalez Deniselle MC, Liere P, De Nicola AF &

Schumacher M. Progesterone and allopregnanolone in the central nervous system: Response to injury and implication for neuroprotection. J. Steroid Biochem. Mol. Biol. 146, 48–61 (2015).

15. Wang JM, Johnston PB, Ball BG & Brinton RD. The neurosteroid

allopregnanolone promotes proliferation of rodent and human neural progenitor cells and regulates cell-cycle gene and protein expression. J. Neurosci. 25, 4706–

4718 (2005).

16. Tanapat P, Hastings NB & Gould E. Ovarian steroids influence cell proliferation in the dentate gyrus of the adult female rat in a dose- and time-dependent manner.

J. Comp. Neurol. 481, 252–265 (2005).

17. Sherman BM & Korenman SG. Hormonal characteristics of the human menstrual cycle throughout reproductive life. J. Clin. Invest. 55, 699–706 (1975).

18. Kiechle M. Gynäkologie und Geburtshilfe. 1. Auflage, München: Elsevier Urban &

Fischer Verlag, 2007, pp.129-130.

19. Santoru F, Berretti R, Locci A, Porcu P & Concas A. Decreased allopregnanolone induced by hormonal contraceptives is associated with a reduction in social behavior and sexual motivation in female rats. Psychopharmacology (Berl). 3351–

3364 (2014).

20. Lobo R & Stanczyk F. New knowledge in the physiology of hormonal contraceptives. Am. J. Obstet. Gynecol. 170, 1499–1507 (1994).

21. Loose-Mitchell D & Stancel G. in Goodman & Gilman’s the pharmagological basis of therapeutics (eds. Hardman J, Limbrid L & Goodman Gilman A) New York:

McGraw Hill, 2001, p 1597.

22. Amy J & Tripathi V. Contraception for women: an evidence based overview. BMJ 339, b2895 (2009).

23. Stegeman BH, de Bastos M, Rosendaal FR, van Hylckama Vlieg A, Helmerhorst FM, Stijnen T & Dekkers OM. Different combined oral contraceptives and the risk of venous thrombosis: systematic review and network meta-analysis. BMJ 347, f5298–f5298 (2013).

24. Aktories K, Förstermann U, Hofmann F & Starke K. in Allgemeine und spezielle Pharmakologie und Toxikologie (eds. Forth W, Henschler D & Rummel W München: Elsevier Urban & Fischer Verlag, 2009, pp. 704–709.

25. Phillips ML, Drevets WC, Rauch SL & Lane R. Neurobiology of emotion

perception I: The neural basis of normal emotion perception. Biol. Psychiatry 54, 504–514 (2003).

26. Kishi T, Tsumori T, Yokota S & Yasui Y. Topographical projection from the

hippocampal formation to the amygdala: A combined anterograde and retrograde tracing study in the rat. J. Comp. Neurol. 496, 349–368 (2006).

27. Squire LR, Stark CE & Clark RE. The medial temporal lobe. Annu. Rev. Neurosci.

27, 279–306 (2004).

28. Brown MW & Aggleton JP. Recognition memory: what are the roles of the perirhinal cortex and hippocampus? Nat. Rev. Neurosci. 2, 51–61 (2001).

29. Colciago A, Casati L, Negri-Cesi P & Celotti F. Learning and memory: Steroids and epigenetics. J. Steroid Biochem. Mol. Biol. 150, 64–85 (2015).

30. Protopopescu X, Butler T, Pan H, Root J, Altemus M, Polanecsky M, McEwen B, Silbersweig D & Stern E. Hippocampal structural changes across the menstrual cycle. Hippocampus 18, 985–8 (2008).

31. Li C, Brake WG, Romeo RD, Dunlop JC, Gordon M, Buzescu R, Magarinos AM, Allen PB, Greengard P, Luine V & McEwen BS. Estrogen alters hippocampal dendritic spine shape and enhances synaptic protein immunoreactivity and spatial memory in female mice. Proc. Natl. Acad. Sci. U. S. A. 101, 2185–2190 (2004).

32. McEwen B. Estrogen actions throughout the brain. Recent Prog. Horm. Res. 57, 357–84 (2002).

33. Pereira AC, Huddleston DE, Brickman AM, Sosunov AA, Hen R, McKhann GM, Sloan R, Gage FH, Brown TR & Small SA. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc. Natl. Acad. Sci. U. S. A.

104, 5638–5643 (2007).

34. Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA

& Gage FH. Neurogenesis in the adult human hippocampus. Nat. Med. 4, 1313–

1317 (1998).

35. Fanselow MS & Dong HW. Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures? Neuron 65, 7–19 (2010).

36. Kühn S & Gallinat J. Gray matter correlates of posttraumatic stress disorder: A quantitative meta-analysis. Biol. Psychiatry 73, 70–74 (2013).

37. Altman J & Das GD. Autoradiographic and Histological Evidence of Postnatal Hippocampal Neurogenesis in Rats ’. J. Comp. Neurol. 124, 319–335 (1965).

38. Gould E, McEwen BS, Tanapat P, Galea LAM & Fuchs E. Neurogenesis in the Dentate Gyrus of the Adult Tree Shrew Is Regulated by Psychosocial Stress and NMDA Receptor Activation. J. Neurosci. 17, 2492–2498 (1997).

39. Kaplan S & Bell H. Mitotic neuroblasts in the 9-day-old and 11-months-old rodent hippocampus. J. Neurosci. 4, 1429–1441 (1984).

40. Reichert H. Neurobiologie. 2. neubearbeitete Auflage, Stuttgart: Thieme, 2000, pp 219-228.

41. Draganski B, Gaser C, Kempermann G, Kuhn HG, Winkler J, Büchel C & May A.

Temporal and spatial dynamics of brain structure changes during extensive learning. J. Neurosci. 26, 6314–6317 (2006).

42. Busch V, Schuierer G, Bogdahn U & May A. Changes in grey matter induced by training Newly honed juggling skills show up as a transient feature on a brain-imaging scan . Nature 427, 311–312 (2004).

43. McEwen BS, Akama KT, Spencer-Segal JL, Milner TA & Waters EM. Estrogen effects on the brain: actions beyond the hypothalamus via novel mechanisms.

Behav. Neurosci. 126, 4–16 (2012).

44. McEwen B, Gould E, Orchinik M, Weiland N & Woolley C. Oestrogens and the structural and functional plasticity of neurons: implications for memory, ageing and neurodegenerative processes. Ciba Found Symp. 191:52-66, discussion 66–

73 (1995).

45. Barker JM & Galea LAM. Repeated estradiol administration alters different aspects of neurogenesis and cell death in the hippocampus of female, but not male, rats. Neuroscience 152, 888–902 (2008).

46. Galea LA, Spritzer MD, Barker JM & Pawluski JL. Gonadal hormone modulation of hippocampal neurogenesis in the adult. Hippocampus 16, 225–32 (2006).

47. Galea LAM, Uban KA, Epp JR, Brummelte S, Barha CK, Wilson WL, Lieblich SE

& Pawluski JL. Endocrine Regulation of Cognition and Neuroplasticity : Our Pursuit to Unveil the Complex Interaction Between Hormones, the Brain, and Behaviour. Can. J. Exp. Psychol. 62, 247–260 (2008).

48. Peper JS, Brouwer RM, Schnack HG, van Baal GC, van Leeuwen M, van den Berg SM, Delemarre-Van de Waal HA, Boomsma, DI, Kahn RS & Hulshoff Pol HE. Sex steroids and brain structure in pubertal boys and girls.

Psychoneuroendocrinology 34, 332–342 (2009).

49. De Bondt T, Jacquemyn Y, van Hecke W, Sijbers J & Sunaert S. Regional gray matter volume differences and sex-hormone correlations as a function of

menstrual cycle phase and hormonal contraceptives use. Brain Res. 1530, 22–31 (2013).

50. Lisofsky N, Mårtensson J, Eckert A, Lindenberger U, Gallinat J & Kühn S.

Hippocampal volume and functional connectivity changes during the female menstrual cycle. Neuroimage 118, 154–162 (2015).

51. Hagemann G, Ugur T, Schleussner E, Mentzel HJ, Fitzek C, Witte OW & Gaser C. Changes in brain size during the menstrual cycle. PLoS One 6, e14655 (2011).

52. Franke K, Hagemann G, Schleussner E & Gaser C. Changes of individual

BrainAGE during the course of the menstrual cycle. Neuroimage 115, 1–6 (2015).

53. Pletzer B, Kronbichler M, Aichhorn M, Bergmann J, Ladurner G & Kerschbaum HH. Menstrual cycle and hormonal contraceptive use modulate human brain structure. Brain Res. 1348, 55–62 (2010).

54. Petersen N, Touroutoglou A, Andreano JM & Cahill L. Oral contraceptive pill use is associated with localized decreases in cortical thickness. Hum. Brain Mapp. 36, 2644-2654 (2015).

55. Behl, C. Oestrogen as a neuroprotective hormone. Nat. Rev. Neurosci. 3, 433–

442 (2002).

56. Enmark E, Pelto-Huikko M, Grandien K, Lagercrantz S, Lagercrantz J, Fried G, Nordenskjöld M & Gustafsson JA. Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab 82, 4258–4265 (1997).

57. Hazell GGJ, Yao ST, Roper JA, Prossnitz ER, O'Carroll AM & Lolait SJ.

Localisation of GPR30, a novel G protein-coupled oestrogen receptor, suggests multiple functions in rodent brain and peripheral tissues. J. Endocrinol. 202, 223–

236 (2009).

58. Gruber C, Tschugguel W, Schneeberger C & Huber J. Production and Actions of Estrogens. NEJM 346, 340–352 (2002).

59. Pfaff DW & Ribeiro AC. Theoretical consequences of fluctuating versus constant liganding of oestrogen receptor-α in neurones. J. Neuroendocrinol. 22, 486–491 (2010).

60. Valverde MA, Rojas P, Amigo J & Hollenberg NK. Acute activation of Maxi-K channels (hSlo) by Estradiol binding to the β subunit. Curr. Hypertens. Rep. 2, 232 (2000).

61. Revankar CM, Cimino DF, Sklar LA, Arterburn JB & Prossnitz ER. A

transmembrane intracellular estrogen receptor mediates rapid cell signaling.

Science 307, 1625–1630 (2005).

62. Prossnitz ER, Arterburn JB, Smith HO, Oprea TI, Sklar LA & Hathaway HJ.

Estrogen Signaling through the Transmembrane G Protein–Coupled Receptor GPR30. Annu. Rev. Physiol. 70, 165–190 (2008).

63. Almey A, Milner TA & Brake WG. Estrogen receptors in the central nervous system and their implication for dopamine-dependent cognition in females. Horm.

Behav. (2015).

64. González M, Cabrera- Socorro A, Pérez-García CG, Fraser JD, López FJ, Alonso R & Meyer G. Distribution Patterns of Estrogen Receptor alpha and beta in the Human Cortex and Hippocampus During Development and Adulthood. J. Comp.

Neurol. 503, 790–802 (2007).

65. Osterlund MK, Keller E & Hurd YL. The human forebrain has discrete estrogen receptor alpha messenger RNA expression: high levels in the amygdaloid complex. Neuroscience 95, 333–342 (2000).

66. Blurton-Jones M & Tuszynski MH. Estradiol-Induced Modulation of Estrogen Receptor-beta and GABA within the Adult Neocortex: A Potential Transsynaptic Mechanism for Estrogen Modulation of BDNF. J. Comp. Neurol. 499, 603–612 (2006).

67. Weiland NG, Orikasa C, Hayashi S & McEwen BS. Distribution and hormone regulation of estrogen receptor immunoreactive cells in the hippocampus of male and female rats. J. Comp. Neurol. 388, 603–612 (1997).

68. Orikasa C, McEwen BS, Hayashi H, Sakuma Y & Hayashi S. Estrogen receptor alpha, but not beta, is expressed in the interneurons of the hippocampus in prepubertal rats: An in situ hybridization study. Dev. Brain Res. 120, 245–254 (2000).

69. Blurton-Jones M, Kuan PN & Tuszynski MH. Anatomical Evidence for Transsynaptic Influences of Estrogen on Brain-Derived Neurotrophic Factor Expression. J. Comp. Neurol. 468, 347–360 (2004).

70. Parsons B, Rainbow TC, MacLusky NJ & McEwen BS. Progestin Receptor Levels in Rat Hypothalamic and Limbic Nuclei. J. Neurosci. 2, 1446–1452 (1982).

71. Waters EM, Torres-Reveron A, McEwen BS & Milner TA. Ultrastructural

localization of extranuclear progestin receptors in the rat hippocampal formation.

J. Comp. Neurol. 511, 34–46 (2008).

72. Sá SI, Pereira PA, Malikov V & Madeira MD. Role of estrogen receptor α and β in the induction of progesterone receptors in hypothalamic ventromedial neurons.

Neuroscience 238, 159–167 (2013).

73. Korol DL. Role of estrogen in balancing contributions from multiple memory systems. Neurobiol. Learn. Mem. 82, 309–323 (2004).

74. Lee I & Kim J. The shift from a response strategy to object-in-place strategy during learning is accompanied by a matching shift in neural firing correlates in the hippocampus. Learn. Mem. 17, 381–393 (2010).

75. Korol DL, Malin EL, Borden KA, Busby RA & Couper-Leo J. Shifts in preferred learning strategy across the estrous cycle in female rats. Horm. Behav. 45, 330–

338 (2004).

76. Karnath HO & Thier P. Kognitive Neurowissenschaften. 3. Auflage, Berlin- Heidelberg: Springer Verlag, 2012, pp 217-224.

77. Ridgway GR, Henley S, Rohrer JD, Scahill RI, Warren JS & Fox NC. Ten simple rules for reporting voxel-based morphometry studies. Neuroimage 40, 1429–1435 (2008).

78. Hayasaka S & Nichols TE. Combining voxel intensity and cluster extent with permutation test framework. Neuroimage 23, 54–63 (2004).

79. Quissell DO. Steroid Hormone Analysis in Human Saliva. Ann. N. Y. Acad. Sci.

694, 143–145 (1993).

80. Read GF, Walker RF, Wilson DW & Griffiths K. Steroid analysis in saliva for the assessment of endocrine function. Ann. N. Y. Acad. Sci. 595, 260–274 (1990).

81. Bixo M, Andersson A, Winblad B, Purdy RH & Bäckstörm T. Progesterone, 5alpha-pregnane-3,20-dione and 3alpha-hydroxy-5alpha-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res. 764, 173–178 (1997).

82. Zatorre RJ, Fields RD & Johansen-Berg H. Plasticity in gray and white:

neuroimaging changes in brain structure during learning. Nat. Neurosci. 15, 528–

536 (2012).

83. May A, Hajak G, Gänßbauer S, Steffens T, Langguth B, Kleinjung T &

Eichhammer P. Structural brain alterations following 5 days of intervention:

Dynamic aspects of neuroplasticity. Cereb. Cortex 17, 205–210 (2007).

84. Swain RA, Harris AB, Wiener EC, Dutka MV, Morris HD, Theien BE, Konda S, Engberg K, Lauterbur PC & Greenough WT. Prolonged exercise induces

angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience 117, 1037–1046 (2003).

85. Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E & Svoboda K. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

86. Kempermann G, Kuhn HG & Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 (1997).

87. Milner TA, Ayoola K, Drake CT, Herrick SP, Tabori NE, McEwen BS, Warrier S &

Alves SE. Ultrastructural localization of estrogen receptor β immunoreactivity in the rat hippocampal formation. J. Comp. Neurol. 491, 81–95 (2005).

88. Baudry M, Bi X & Aguirre C. Progesterone-estrogen interactions in synaptic plasticity and neuroprotection. Neuroscience 239, 280–294 (2013).

89. Simerly RB, Swanson LW, Chang C & Muramatsu M. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: An in situ

hybridization study. J. Comp. Neurol. 294, 76–95 (1990).

90. Spencer JL, Waters EM, Romeo RD, Wood GE, Milner TA & McEwen BS.

Uncovering the mechanisms of estrogen effects on hippocampal function. Front.

Neuroendocrinol. 29, 219–37 (2008).

91. Österlund MK & Hurd YL. Estrogen receptors in the human forebrain and the relation to neuropsychiatric disorders. Prog. Neurobiol. 64, 251–267 (2001).

92. Andreano JM & Cahill L. Menstrual cycle modulation of medial temporal activity evoked by negative emotion. Neuroimage 53, 1286–93 (2010).

93. Behl C. Sex hormones , neuroprotection and cognition. Prog. Brain Res. 138, 135–142 (2002).

94. Behl C. Estrogen can protect neurons: Modes of action. J. Steroid Biochem. Mol.

Biol. 83, 195–197 (2002).

95. Bagger YZ, Tankó LB, Alexandersen P, Qin G & Christiansen C. Early

postmenopausal hormone therapy may prevent cognitive impairment later in life.

Menopause (New York,N.Y.) 12, 12–7 (2005).

96. Sherwin BB. Estrogen and Cognitive Functioning in Women: Lessons We Have Learned. Behav. Neurosci. 126, 123–127 (2012).

97. Shumaker SA, Legault C, Rapp SR, Thal L, Wallace RB, Ockene JK, Hendrix SL, Jones BN, Assaf AR, Jackson RD, Kotchen JM, Wassertheil-Smoller S &

Wactawski-Wende J. Estrogen Plus Progestin and the Incidence of Dementia and Mild Cognitive Impairment in Postmenopausal Women. 289, 2651–2662 (2015).

98. Lord C, Buss C, Lupien SJ & Pruessner JC. Hippocampal volumes are larger in postmenopausal women using estrogen therapy compared to past users, never users and men: A possible window of opportunity effect. Neurobiol. Aging 29, 95–

101 (2008).

Eidesstattliche Versicherung

„Ich, Philine Miriam Dolz, versichere an Eides statt durch meine eigenhändige Unterschrift, dass ich die vorgelegte Dissertation mit dem Thema: Eine Untersuchung der neuronalen Veränderungen durch die Einnahme oraler hormoneller Kontrazeptiva mit besonderem Fokus auf Veränderungen des Hippocampus selbstständig und ohne nicht offengelegte Hilfe Dritter verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel genutzt habe.

Alle Stellen, die wörtlich oder dem Sinne nach auf Publikationen oder Vorträgen anderer Autoren beruhen, sind als solche in korrekter Zitierung (siehe „Uniform Requirements for Manuscripts (URM)“ des ICMJE -www.icmje.org) kenntlich gemacht. Die Abschnitte zu Methodik (insbesondere praktische Arbeiten, Laborbestimmungen, statistische Aufarbeitung) und Resultaten (insbesondere Abbildungen, Graphiken und Tabellen) entsprechen den URM (s.o) und werden von mir verantwortet.

Meine Anteile an etwaigen Publikationen zu dieser Dissertation entsprechen denen, die in der untenstehenden gemeinsamen Erklärung mit dem/der Betreuer/in, angegeben sind. Sämtliche Publikationen, die aus dieser Dissertation hervorgegangen sind und bei denen ich Autor bin, entsprechen den URM (s.o) und werden von mir verantwortet.

Die Bedeutung dieser eidesstattlichen Versicherung und die strafrechtlichen Folgen einer unwahren eidesstattlichen Versicherung (§156,161 des Strafgesetzbuches) sind mir bekannt und bewusst.“

Datum Unterschrift

Curriculum vitae

Mein Lebenslauf wird aus datenschutzrechtlichen Gründen in der elektronischen Version meiner Arbeit nicht veröffentlicht.