• Keine Ergebnisse gefunden

Hierarchical Grouping of Interesting Subspaces

CFGIJK CFGIJKL CFGIK CFGJK CFGIKL CFGJKL CFGK CFIKL CFGKL CFIJKL CFIK CFIJK CFKL CFHK CFJKL CFHKL CFHJK CFHIKL CFHJKL CFHIJKL CFK CFJK CFIJL CFHIK CFHIJL CFGHK CFHIJK CFGHJK CFGHIK CFGHKL CFGHIJK CFGHJKL CFIL CFJL CFHIL CFHJL CFL CFHI CFHL CFHIJ CFICFJCDICDJ CFIJ CFH CFG CDG CDK CDH CDL CFGI CDGI CDIK CDIL CDIJ CDHI CFHJ CFGJ CFGH CFGL CDGJ CDGL CDKL CDJK CDIJL CDHJ CDHL CDJL CFGIJ CFGIL CDGK CDGIJ CDGIL CDHIK CDIKL CDHK CDIJK CDHIL CDHIJ CDGH CFGHI CFGHJ CFGHL CFGJL CDGIK CDGJK CDGHI CDGJL CDHKL CDJKL CDHJK CDHJL CFGHIJ CFGHIL CFGIJL CDGIJK CDGHK CDGKL CDGIKL CDGIJL CDGHL CDHIKL CDIJKL CDHIJK CDHIJL CDGHJ CFGHJL CDGJKL CDGHIJ CDGHIL CDGHIK CDGHJL CDHJKL CFGHIJL CFGHIKL CDGHJK CDGHKL CDGIJKL CDGHIJL CDHIJKL CDGHIKL CDGHIJK CFGHIJKL CDGHJKL CDGHIJKL CFBCF CDF BCDF BCCD BCD CDFI CDFJ CDFL CDFH CDFK CDFG CDFIL CDFIJ CDFGI CDFHI CDFIK CDFGJ CDFJL CDFHJ CDFHL CDFJK CDFKL CDFGL CDFGH CDFIJL CDFHIL CDFGIL CDFGIJ CDFHIJ CDFGK CDFIJK CDFHK CDFIKL CDFGJL CDFHJL CDFGHI CDFGIK CDFHJK CDFHIK CDFJKL CDFGJK CDFGHJ CDFGHL CDFHIJL CDFGIJL CDFHIJK CDFGHK CDFHIKL CDFHKL CDFIJKL CDFGKL CDFGIJK CDFGHJL CDFGHIL CDFGHIJ CDFGHIK CDFHJKL CDFGIKL CDFGJKL CDFGHIJL CDFGHJK CDFHIJKL CDFGHKL CDFGIJKL CDFGHIJK CDFGHIKL CDFGHJKL CDFGHIJKL BL FLDLFHBHDHDGFGBGDFBDBF BDF BIFI DIBJ FJDJ IL

IJGIJLHIIKGLHLGJHJKLJKGHBKFKDKHKGKCICLCJCHCKCILCGICIJCGCHICIKCJLCHLCGJCHJCKLCJK CHIL CIJL CGIJ CHIJ CGL CGH CIKL CIJK CGK CHK CGIL CGJL CHJL CGHI CGIK CHIK CJKL CHJK CGIJL CHIJL CGHL CGHJ CIJKL CHIJK CGJK CGHK CGKL CHKL CGHIL CGHIJ CGIKL CGIJK CGHIK CHIKL CHJKL CGHJL CHIJKL CGJKL CGHJK CGHKL CGHIJL CGIJKL CGHIKL CGHIJK CGHJKL CGHIJKL

0 5 10 15 20 25 30

hierarchical agglomerative grouping synthetic dataset Subspaces

Distance (Similarity)

Figure A.23: Hierarchical agglomerative grouping of the 296 interesting subspaces. The red line shows the threshold for 6 groups shown in the subspace group view. Each group is marked by a colored rectangle. The colors are maintained in Figure 5.14.

Bibliography

[1] ggplot2. http://had.co.nz/ggplot2/.

[2] Protovis. http://vis.stanford.edu/protovis/.

[3] Tableau. http://www.tableausoftware.com/.

[4] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and J. S. Park. Fast algorithms for projected clustering. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD ’99), pages 61–72. ACM, 1999.

[5] C. C. Aggarwal and P. S. Yu. Redefining clustering for high-dimensional applications. IEEE Transactions on Knowledge and Data Engineering, 14(2):210–225, 2002.

[6] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. InProceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD ’98), volume 27, pages 94–105.

ACM, 1998.

[7] R. Agrawal, T. Imielinski, and A. Swami. Mining Association Rules between Sets of Items in Large Databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD ’93), pages 207–216. ACM, 1993.

[8] G. Albuquerque, M. Eisemann, D. J. Lehmann, H. Theisel, and M. Magnor. Improving the Visual Analysis of High-dimensional Datasets Using Quality Measures. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (VAST ’10), pages 19–26.

IEEE CS Press, 2010.

[9] M. Ankerst, S. Berchtold, and D. A. Keim. Similarity clustering of dimensions for an en-hanced visualization of multidimensional data. InProceedings of the IEEE Symposium In-formation Visualization (InfoVis ’98), pages 52–60. IEEE CS Press, 1998.

[10] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: ordering points to identify the clustering structure. InProceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD ’99), pages 49–60. ACM, 1999.

[11] M. Ankerst, M. Ester, and H. P. Kriegel. Towards an effective cooperation of the user and the computer for classification. InProceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’00), pages 179–188, 2000.

[12] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook.The Traveling Salesman Problem:

A Computational Study (Princeton Series in Applied Mathematics). Princeton University Press, 2007.

[13] D. Asimov. The Grand Tour: A Tool for Viewing Multidimensional Data. Journal on Scientific and Statistical Computing, 6(1):128–143, 1985.

[14] I. Assent, R. Krieger, E. M¨uller, and T. Seidl. VISA: Visual Subspace Clustering Analysis.

ACM SIGKDD Explorations Newsletter - Special Issue on Visual Analytics, 9(2):5–12, 2007.

[15] R. A. Baeza-Yates and B. Ribeiro-Neto.Modern Information Retrieval. ACM Press/Addison-Wesley, 1999.

[16] C. Baumgartner, C. Plant, K. Kailing, H.-P. Kriegel, and P. Kr¨oger. Subspace selection for clustering high-dimensional data. In Proceedings of the Fourth IEEE Conference on Data Mining (ICDM ’04), pages 11–18. IEEE CS Press, 2004.

[17] R. Becker and W. Cleveland. Brushing scatterplots. Technometrics, 29:127–142, 1987.

[18] R. A. Becker, W. S. Cleveland, and M.-J. Shyu. The visual design and control of trellis display. Journal of Computational and Graphical Statistics, 5(2):123–155, 1996.

[19] B. B. Bederson, J. D. Hollan, K. Perlin, J. Meyer, D. Bacon, and G. Furnas. Pad++: A Zoomable Graphical Sketchpad For Exploring Alternate Interface Physics. Journal of Visual Languages & Computing, 7(1):3–32, 1996.

[20] R. Bellman. Dynamic Programming. Princeton University Press, 1st edition, 1957.

[21] P. Berkhin. A Survey of Clustering Data Mining Techniques. Grouping Multidimensional Data, pages 25–71, 2006.

[22] J. Bertin. Semiology of graphics. University of Wisconsin Press, 1983.

[23] E. Bertini and D. Lalanne. Investigating and reflecting on the integration of automatic data analysis and visualization in knowledge discovery. ACM SIGKDD Explorations Newsletter, 11:9–18, 2010.

[24] E. Bertini and G. Santucci. Quality Metrics for 2D Scatterplot Graphics: Automatically Reducing Visual Clutter. In Proceedings Smart Graphics (SG), volume 3031, pages 77–89, 2004.

[25] E. Bertini and G. Santucci. Give chance a chance: modeling density to enhance scatter plot quality through random data sampling. Information Visualization, 5(2):95–110, 2006.

[26] E. Bertini and G. Santucci. Visual Quality Metrics. In Proceedings of the 2006 AVI work-shop on BEyond time and errors: noveL evaluation methods for Information Visualization (BELIV), pages 1–5. ACM, 2006.

[27] E. Bertini, A. Tatu, and D. A. Keim. Quality Metrics in High-Dimensional Data Visualiza-tion: An Overview and Systematization.Proceedings of the IEEE Symposium on Information Visualization (InfoVis ’11), 17(12):2203–2212, 2011.

[28] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When Is ”Nearest Neighbor” Mean-ingful? InProceedings of the 7th International Conference on Database Theory (ICDT ’99), pages 217–235, 1999.

[29] E. A. Bier, M. C. Stone, K. Pier, K. Fishkin, T. Baudel, M. Conway, W. Buxton, and T. DeRose. Toolglass and Magic Lenses: The See-Through Interface. InConference Com-panion on Human Factors in Computing Systems (CHI ’94), pages 445–446. ACM, 1994.

[30] T. Boogaerts, L.-C. Tranchevent, G. A. Pavlopoulos, J. Aerts, and J. Vandewalle. Visualizing high dimensional datasets using parallel coordinates: Application to gene prioritization. In IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE ’12), pages 52–57. IEEE CS Press, 2012.

[31] I. Borg and P. Groenen. Modern Multidimensional Scaling: Theory and Applications.

Springer, 2005.

[32] R. Brath. Metrics for effective information visualization. InProceedings of the IEEE Sym-posium Information Visualization (InfoVis ’97), pages 108–111, 1997.

[33] S. Bremm, T. v. Landesberger, J. Bernard, and T. Schreck. Assisted descriptor selection based on visual comparative data analysis. Computer Graphics Forum, 30(3):891–900, 2011.

[34] S. Bremm, T. v. Landesberger, M. Heß, T. Schreck, P. Weil, and K. Hamacher. Interactive visual comparison of multiple trees. InProceedings of IEEE Symposium on Visual Analytics Science and Technology (VAST ’11), pages 31–40. IEEE CS Press, 2011.

[35] N. Cao, D. Gotz, J. Sun, and H. Qu. DICON: Interactive Visual Analysis of Multidimen-sional Clusters. IEEE Transactions on Visualization and Computer Graphics (TVCG ’ 11), 17:2581–2590, 2011.

[36] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings in information visualization:

using vision to think. Morgan Kaufmann Publishers Inc., 1999.

Bibliography 165 [37] D. B. Carr, R. J. Littlefield, and W. L. Nichloson. Scatterplot Matrix Techniques for Large N. InProceedings of the Seventeenth Symposium on the Interface of Computer Sciences and Statistics on Computer Science and Statistics, pages 297–306. Elsevier North-Holland, Inc., 1986.

[38] C.-H. Cheng, A. W. Fu, and Y. Zhang. Entropy-based subspace clustering for mining numer-ical data. InProceedings of the fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’99), pages 84–93. ACM, 1999.

[39] E. H. Chi. A Taxonomy of Visualization Techniques Using the Data State Reference Model.

In Proceedings of the IEEE Symposium on Information Visualization (InfoVis ’00), pages 69–75. IEEE CS Press, 2000.

[40] K. W. Church and P. Hanks. Word association norms, mutual information, and lexicography.

Computational Linguistics, 16(1):22–29, 1990.

[41] T. Cox and M. Cox. Multidimensional Scaling. Chapman & Hall, 1994.

[42] Q. Cui, M. Ward, E. Rundensteiner, and J. Yang. Measuring Data Abstraction Quality in Multiresolution Visualizations.IEEE Transactions on Visualization and Computer Graphics (TVCG ’06), 12:709–716, 2006.

[43] A. Dasgupta and R. Kosara. Pargnostics: Screen-Space Metrics for Parallel Coordinates.

IEEE Transactions on Visualization and Computer Graphics (TVCG ’10), 16:1017–1026, 2010.

[44] R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley-Interscience, 2nd edition, 2001.

[45] C. Dunne and B. Shneiderman. Improving graph drawing readability by incorporating read-ability metrics: A software tool for network analysts. Technical Report HCIL-2009-13, Uni-versity of Maryland, 2009.

[46] S. G. Eick and G. J. Wills. High Interaction Graphics. European Journal of Operations Research, 81(3):445–459, 1995.

[47] M. Eisen, P. Spellman, P. Brown, and D. Botstein. Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences, 95(25):14863–

14868, 1998.

[48] G. Ellis and A. Dix. Enabling Automatic Clutter Reduction in Parallel Coordinate Plots.

IEEE Transactions on Visualization and Computer Graphics (TVCG ’06), 12:717–724, 2006.

[49] G. Ellis and A. Dix. A taxonomy of clutter reduction for information visualisation. IEEE Transactions on Visualization and Computer Graphics (TVCG ’07), 13:1216–1223, 2007.

[50] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. InProceedings of the Second ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’96), pages 226–

231. AAAI Press, 1996.

[51] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39:27–34, 1996.

[52] B. J. Ferdosi, H. Buddelmeijer, S. Trager, M. H. F. Wilkinson, and J. B. T. M. Roerdink.

Finding and visualizing relevant subspaces for clustering high-dimensional astronomical data using connected morphological operators. InProceedings of the IEEE Symposium on Visual Analytics Science and Technology (VAST ’11), pages 35–42. IEEE CS Press, 2010.

[53] A. Frank and A. Asuncion. University of California Irvine (UCI) Machine Learning Reposi-tory, 2010.

[54] J. H. Friedman and J. W. Tukey. A projection pursuit algorithm for exploratory data analysis.

IEEE Transactions on Computers, 23:881–890, 1974.

[55] Y.-H. Fua, M. Ward, and E. Rundensteiner. Hierarchical parallel coordinates for exploration of large data sets. InProceedings of the Conference on Visualization (VIS ’99), pages 43–50.

IEEE CS Press, 1999.

[56] K. Fukunaga. Introduction to statistical pattern recognition. Academic Press Professional, Inc., 2nd edition, 1990.

[57] S. Guha, R. Rastogi, and K. Shim. Cure: an efficient clustering algorithm for large databases.

In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD ’98), pages 73–84. ACM, 1998.

[58] S. G¨unnemann, E. M¨uller, I. F¨arber, and T. Seidl. Detection of orthogonal concepts in sub-spaces of high dimensional data. InProceedings of the 18th ACM conference on Information and knowledge management (CIKM ’09), pages 1317–1326, 2009.

[59] D. Guo. Coordinating computational and visual approaches for interactive feature selection and multivariate clustering. Information Visualization, 2(4):232–246, 2003.

[60] D. Guo, J. Chen, A. M. MacEachren, and K. Liao. A visualization system for space-time and multivariate patterns (vis-stamp). IEEE Transactions on Visualization and Computer Graphics (TVCG ’06), 12(6):1461–1474, 2006.

[61] I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine Learning Research - Special Issue on Variable and Feature Selection, (3):1157–1182, 2003.

[62] M. Hahsler, K. Hornik, and C. Buchta. Getting things in order: An introduction to the R package seriation. Journal of Statistical Software, 25(3):1–34, 2008.

[63] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann Pub-lishers Inc., 1st edition, 2000.

[64] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann Pub-lishers Inc., 2nd edition, 2006.

[65] S. Haroz and K.-L. Ma. Natural visualization. InProceedings of Eurographics Visualization Symposium, pages 43–50, 2006.

[66] P. N. Hart, N. Nilsson, and B. Raphael. A Formal Basis for the Heuristic Determination of Minimum Cost Paths.IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.

[67] C. G. Healey, K. S. Booth, and J. T. Enns. High-speed visual estimation using preattentive processing.ACM Transactions on Computer-Human Interaction (TOCHI ’96), 3(2):107–135, 1996.

[68] C. G. Healey and J. T. Enns. Building perceptual textures to visualize multidimensional datasets. InProceedings of the Conference on Visualization (VIS ’98), pages 111–118. IEEE CS Press, 1998.

[69] A. Hinneburg, C. C. Aggarwal, and D. A. Keim. What is the nearest neighbor in high dimensional spaces? In Proceedings of the 26th International Conference on Very Large Data Bases (VLDB ’00), pages 506–515. Morgan Kaufmann Publishers Inc., 2000.

[70] A. Hinneburg and D. A. Keim. An Efficient Approach to Clustering in Large Multimedia Databases with Noise. InProceedings 4th International Conference on Knowledge Discovery in Databases (KDD ’98), pages 58–65, 1998.

[71] A. Hinneburg and D. A. Keim. Optimal grid-clustering: Towards breaking the curse of dimen-sionality in high-dimensional clustering. InProceedings of the 25th International Conference on Very Large Data Bases (VLDB ’99), pages 506–517. Morgan Kaufmann Publishers Inc., 1999.

Bibliography 167 [72] P. Hoffman, G. Grinstein, and D. Pinkney. Dimensional anchors: a graphic primitive for multidimensional multivariate information visualizations. InProceedings Workshop on New Paradigms in Information Visualization and Manipulation (NPIVM ’99), pages 9–16.

[73] P. V. C. Hough. Method and means for recognizing complex patterns. US Patent, 3069654, 1962.

[74] P. J. Huber. Projection pursuit. The Annals of Statistics, 13(2):435–475, 1985.

[75] C. B. Hurley and R. W. Oldford. Pairwise display of high-dimensional information via eulerian tours and hamiltonian decompositions. Journal of Computational and Graphical Statistics, 19(4):861–886, 2010.

[76] S. Ingram, T. Munzner, V. Irvine, M. Tory, S. Bergner, and T. M¨oller. DimStiller: Workflows for dimensional analysis and reduction. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology (VAST ’10). IEEE CS Press, 2010.

[77] A. Inselberg. The plane with parallel coordinates. The Visual Computer, 1(4):69–91, 1985.

[78] A. Inselberg and B. Dimsdale. Parallel coordinates: a tool for visualizing multi-dimensional geometry. In Proceedings of the IEEE Conference on Visualization (VIS ’90). IEEE CS Press, 1990.

[79] H. J¨anicke and M. Chen. A Salience-based Quality Metric for Visualization. Computer Graphics Forum (Proc. EuroVis), 29(3):1183–1192, 2010.

[80] J. Johansson and M. Cooper. A Screen Space Quality Method for Data Abstraction. Com-puter Graphics Forum (Proc. EuroVis), 27(3):1039–1046, 2008.

[81] J. Johansson, C. Forsell, M. Lind, and M. Cooper. Perceiving patterns in parallel coordi-nates: determining thresholds for identification of relationships. Information Visualization, 7(2):152–162, 2008.

[82] S. Johansson and J. Johansson. Interactive Dimensionality Reduction Through User-defined Combinations of Quality Metrics.IEEE Transactions on Visualization and Computer Graph-ics (TVCG ’09), 15:993–1000, 2009.

[83] I. T. Jolliffe. Principal Component Analysis. Springer, 2nd edition, 2002.

[84] K. Kailing, H.-P. Kriegel, P. Kr¨oger, and S. Wanka. Ranking interesting subspaces for clus-tering high dimensional data. InProceedings of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD ’03), pages 241–252, 2003.

[85] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. Wiley-Interscience, 9th edition, 1990.

[86] D. A. Keim, M. Ankerst, and M. Sips. Visual Data-Mining Techniques, pages 813–825.

Kolam Publishing, 2004.

[87] D. A. Keim, M. C. Hao, U. Dayal, and M. Hsu. Pixel bar charts: A visualization technique for very large multi-attribute data sets. Information Visualization, 1(1):20–34, 2002.

[88] D. A. Keim, F. Mansmann, J. Schneidewind, J. Thomas, and H. Ziegler. Visual analytics:

Scope and challenges. In S. J. Simoff, M. H. B¨ohlen, and A. Mazeika, editors,Visual Data Mining: Theory, Techniques and Tools for Visual Analytics, pages 76–90. Springer-Verlag, 2008.

[89] Y. Koren and L. Carmel. Visualization of labeled data using linear transformations. Pro-ceedings of the IEEE Symposium on Information Visualization (InfoVis ’03), 0:16, 2003.

[90] H.-P. Kriegel, P. Kr¨oger, and A. Zimek. Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Transactions on Knowledge Discovery from Data (TKDD ’09), 3(1):1–58, 2009.

[91] J. LeBlanc, M. O. Ward, and N. Wittels. Exploring N-dimensional databases. InProceedings of the IEEE Conference on Visualization (VIS ’90). IEEE CS Press, 1990.

[92] Y. K. Leung and M. D. Aerley. A review and taxonomy of distortion-oriented presentation techniques. ACM Transactions on Computer-Human Interaction, 1(2):126–160, 1994.

[93] A. Lex, M. Streit, C. Partl, and D. Schmalstieg. Comparative analysis of multidimensional, quantitative data.IEEE Transactions on Visualization and Computer Graphics (TVCG ’10), 16(6):1027–1035, 2010.

[94] J. Li, J.-B. Martens, and J. J. van Wijk. Judging correlation from scatterplots and parallel coordinate plots. Information Visualization, 9(1):13–30, 2008.

[95] M. A. Little, P. E. McSharry, E. J. Hunter, and L. O. Ramig. Suitability of dysphonia measurements for telemonitoring of parkinson’s disease. InIEEE Transactions on Biomedical Engineering, pages 1015–1022, 2009.

[96] M. A. Little, P. E. Mcsharry, S. J. Roberts, D. A. E. Costello, and I. M. Moroz. Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection. BioMedical Engineering OnLine, 6(1):23, 2007.

[97] H. Liu and H. Motoda.Computational Methods of Feature Selection. Chapman & Hall/CRC, 2008. edited by Huan Liu and Hiroshi Motoda.; Includes bibliographical references and index.

[98] A. MacEachren, X. Dai, F. Hardisty, D. Guo, and G. Lengerich. Exploring high-D spaces with multiform matrices and small multiples. In Proceedings of the IEEE Symposium on Information Visualization (InfoVis ’03), pages 31–38. IEEE CS Press, 2003.

[99] J. Mackinlay. Automating the design of graphical presentations of relational information.

ACM Transactions on Graphics, 5(2):110–141, 1986.

[100] N. Miller, B. Hetzler, G. Nakamura, and P. Whitney. The need for metrics in visual informa-tion analysis. InProceedings of the Workshop on New Paradigms in Information Visualization and Manipulation. ACM, 1997.

[101] E. M¨uller, I. Assent, S. G¨unnemann, R. Krieger, and T. Seidl. Relevant subspace clustering:

Mining the most interesting non-redundant concepts in high dimensional data. InProceedings of the IEEE International Conference on Data Mining (ICDM ’09), pages 377–386, 2009.

[102] E. M¨uller, S. G¨unnemann, I. Assent, and T. Seidl. Evaluating clustering in subspace pro-jections of high dimensional data. In Proceedings of the International Conference on Very Large Data Bases (VLDB ’09), volume 2, pages 1270–1281, 2009.

[103] E. M¨uller, S. G¨unnemann, I. F¨arber, and T. Seidl. Discovering multiple clustering solutions:

Grouping objects in different views of the data. InProceedings of the 10th IEEE Conference on Data Mining (ICDM ’10), page 1220, 2010.

[104] E. M¨uller, S. G¨unnemann, I. F¨arber, and T. Seidl. Discovering multiple clustering solu-tions: Grouping objects in different views of the data. In Tutorial at the 16th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD ’12), 2012.

[105] T. Munzner. Visualization (Chapter 27). In Fundamentals of Graphics, pages 675–707. AK Peters, 3rd edition, 2009.

[106] E. MÃ ller, I. Assent, S. GÃ nnemann, T. Jansen, and T. Seidl. Opensubspace: An open source framework for evaluation and exploration of subspace clustering algorithms in weka.

InProceedings of the 1st Open Source in Data Mining Workshop (OSDM ’09) in conjunction with 13th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD ’09), pages 2–13, 2009.

[107] D. Niu, J. G. Dy, and M. I. Jordan. Multiple non-redundant spectral clustering views.

In Proceedings of the 27th International Conference on Machine Learning (ICML), pages 831–838. Omnipress, 2010.

Bibliography 169 [108] C. North. Toward measuring visualization insight. IEEE Computer Graphics and

Applica-tions, 26(3):6–9, 2006.

[109] D. Oelke, H. Janetzko, S. Simon, K. Neuhaus, and D. A. Keim. Visual Boosting in Pixel-based Visualizations. Computer Graphics Forum (Proc. EuroVis), 30(3):871–880, 2011.

[110] L. Parsons, E. Haque, and H. Liu. Subspace Clustering for High Dimensional Data: A Review.ACM SIGKDD Explorations Newsletter - Special Issue on Learning from Imbalanced Datasets, 6(1):90–105, 2004.

[111] F. Paulovich, M. Oliveira, and R. Minghim. The Projection Explorer: A Flexible Tool for Projection-based Multidimensional Visualization. In Proceedings of the XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI ’07), pages 27–36, Oct.

[112] W. Peng, M. O. Ward, and E. A. Rundensteiner. Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering. InProceedings of the IEEE Symposium on Information Visualization (InfoVis ’04), pages 89–96. IEEE CS Press, 2004.

[113] C. Plaisant, J.-D. Fekete, and G. Grinstein. Promoting insight-based evaluation of visual-izations: From contest to benchmark repository. IEEE Transactions on Visualization and Computer Graphics (TVCG ’08), 14(1):120–134, 2008.

[114] W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336):846–850, 1971.

[115] R. Rao and S. K. Card. The table lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information. InProceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’94). ACM, 1994.

[116] R. A. Rensink and G. Baldridge. The perception of correlation in scatterplots. Computer Graphics Forum (Proc. EuroVis), 29(3):1203–1210, 2010.

[117] D. J. Rogers and T. T. Tanimoto. A Computer Program for Classifying Plants. Science, 132(3434):1115–1118, 1960.

[118] R. Rosenholtz, Y. Li, J. Mansfield, and Z. Jin. Feature congestion: a measure of display clutter. InProceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’05), pages 761–770. ACM, 2005.

[119] M. Schaefer, L. Zhang, T. Schreck, A. Tatu, J. A. Lee, M. Verleysen, and D. A. Keim.

Improving projection-based data analysis by feature space transformations. InProceedings of SPIE 8654, Visualization and Data Analysis (VDA ’13), volume 8654, pages 86540H–

86540H–15, 2013.

[120] J. Schneidewind, M. Sips, and D. A. Keim. Pixnostics: Towards measuring the value of visu-alization. InProceedings of the IEEE Symposium on Visual Analytics Science and Technology (VAST ’06), pages 199–206. IEEE CS Press, 2006.

[121] T. Schreck, T. von Landesberger, and S. Bremm. Techniques for precision-based visual analysis of projected data. Palgrave Macmillan Information Visualization, 9(3):181–193, 2010.

[122] M. Sedlmair, A. Tatu, T. Munzner, and M. Tory. A taxonomy of visual cluster separation factors. Computer Graphics Forum (Proc. EuroVis), 31(3):1335–1344, 2012.

[123] E. Segel and J. Heer. Narrative visualization: Telling stories with data. IEEE Transactions on Visualization and Computer Graphics (TVCG ’10), 16:1139–1148, 2010.

[124] J. Seo and B. Shneiderman. Interactively exploring hierarchical clustering results.Computer, 35(7):80–86, 2002.

[125] J. Seo and B. Shneiderman. A rank-by-feature framework for unsupervised multidimensional data exploration using low dimensional projections. In Proceedings of IEEE Symposium on Information Visualization (InfoVis ’04), pages 65–72. IEEE CS Press, 2004.

[126] J. Seo and B. Shneiderman. A rank-by-feature framework for interactive exploration of multidimensional data. Information Visualization, 4(2):96–113, 2005.

[127] B. Shneiderman. The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. In Proceedings of the IEEE Symposium on Visual Languages (VL), pages 336–343. IEEE CS Press, 1996.

[128] J. H. Siegel, E. J. Farrell, R. M. Goldwyn, and H. P. Friedman. The surgical implication of physiologic patterns in myocardial infarction shock. Surgery, 72:126–141, 1972.

[129] M. Sips, B. Neubert, J. P. Lewis, and P. Hanrahan. Selecting good views of high-dimensional data using class consistency. Computer Graphics Forum (Proc. EuroVis), 28(3):831–838, 2009.

[130] A. Strauss and J. M. Corbin. Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory. SAGE Publications, 1998.

[131] W. Street, W. Wolberg, and O. Mangasarian. Nuclear feature extraction for breast tu-mor diagnosis. IS&T / SPIE International Symposium on Electronic Imaging: Science and Technology, 1905:861–870, 1993.

[132] A. Tatu, G. Albuquerque, M. Eisemann, P. Bak, H. Theisel, M. Magnor, and D. A. Keim.

Automated Visual Analysis Methods for an Effective Exploration of High-Dimensional Data.

IEEE Transactions on Visualization and Computer Graphics (TVCG ’11), 17(5):pp. 584–

597, 2011.

[133] A. Tatu, G. Albuquerque, M. Eisemann, J. Schneidewind, H. Theisel, M. Magnor, and D. Keim. Combining automated analysis and visualization techniques for effective exploration of high dimensional data. Proceedings of the IEEE Symposium on Visual Analytics Science

[133] A. Tatu, G. Albuquerque, M. Eisemann, J. Schneidewind, H. Theisel, M. Magnor, and D. Keim. Combining automated analysis and visualization techniques for effective exploration of high dimensional data. Proceedings of the IEEE Symposium on Visual Analytics Science