• Keine Ergebnisse gefunden

We determine the intermediate integral separately:

where F(θ, m) is the incomplete elliptic integral of the first kind [57], and C is a constant which we will let be absorbed by f(v, w). We note that for v >0, w >0,F(0, m)≡0 so that

where K(m) is the complete elliptic integral of the first kind [57]. In all, we have managed to find the integral

I(u, v, w) = 2π3/2i We can now find the original integral by differentiating. Especially we need

Z e−ax2−by2−cz2x2 As a bonus, we also note thatI(a, b, c) corresponds to the Coulomb matrix element of two electrons in a harmonically confined quantum dot.

The Probability Distribution of the Overhauser Field in a Quantum Dot

In this section we show that probability distribution of a weighted sum of N identical stochastic variables approaches a Gaussian distribution when N → ∞. The aim is to find the probability density function for the sum

Y = XN n=1

anXn, (C.1)

where Xn are identically distributed strochastic variables with expectation value E[X] and variance σ2, and an are finite coefficients which, in general, also depend on N. For a QD we may choose the coefficients to match the electron position probability density function:

an= |Ψ (nl/N)|2

N , (C.2)

which implies that

N→∞lim XN n=1

an = lim

N→∞

XN n=1

|Ψ (nl/N)|2 N

= Z l

0 |Ψ (x)|2dx= 1,

(C.3)

wherel is the size of the quantum dot. We introduce the new variables with vanishing expectation value

n =Xn−E[Xn], (C.4)

109

and form the new sum

Y˜ = XN n=1

ann, (C.5)

which is related to Y by

Y = ˜Y + Σ(N)E[X], (C.6)

The characteristic function of ˜Y is given by ϕY˜(t) =

where ϕX˜ is the characteristic function of any of the ˜Xn which we expand Taylor series to the second order in the second step. Now we consider

ϕY˜(t)≈exp

We make the restriction that |Ψ(x)|2 is bounded on [0, l] which means that there is some contant C such that |Ψ(x)|2 ≤ C. This also ensures the ex-istence of all Sk and for N approaching infinity we may keep only the first term in Eq. (C.11) and we get

and we obtain the probability density function of ˜Y as fY˜(y) =

√N σ√

2πS1

exp

− Ny2 2S1σ2

, (C.14)

which is a Gaussian distribution with variance S1σ2/N. S1 depends on the the coefficients an but the general form is always a Gaussian distribution regardless of what wave function is considered.

[1] W. K. Wooters and W. H. ˙Zurek, “A single quantum cannot be cloned,”

Nature, vol. 299, pp. 802–803, Oct 1982.

[2] K. D. Petersson, J. R. Petta, H. Lu, and A. C. Gossard, “Quantum coherence in a one-electron semiconductor charge qubit,” Phys. Rev.

Lett., vol. 105, p. 246804, Dec 2010.

[3] M. Nielsen and I. Chuang, Quantum Computation and Quantum In-formation. Cambridge Series on Information and the Natural Sciences, Cambridge University Press, 2000.

[4] D. P. DiVincenzo, “The physical implementation of quantum compu-tation,”Fortschritte der Physik, vol. 48, no. 9-11, pp. 771–783, 2000.

[5] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H.

Sherwood, and I. L. Chuang, “Experimental realization of shor’s quan-tum factoring algorithm using nuclear magnetic resonance,” Nature, vol. 414, pp. 883–887, Dec 2001.

[6] J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys. Rev. Lett., vol. 74, pp. 4091–4094, May 1995.

[7] D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A, vol. 57, pp. 120–126, Jan 1998.

[8] J. Jackson, Classical electrodynamics. Wiley, 1975.

113

[9] O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett., vol. 84, pp. 2513–2516, Mar 2000.

[10] A. Uhlmann, “The “transition probability” in the state space of a ∗ -algebra,”Reports on Mathematical Physics, vol. 9, no. 2, pp. 273 – 279, 1976.

[11] W. K. Wootters, “Entanglement of formation and concurrence,”Quant.

Inf. and Comp., vol. 1, pp. 27–44, 2001.

[12] N. Ashcroft and N. Mermin, Solid state physics. Science: Physics, Saunders College, 1976.

[13] C. Kittel, Introduction to solid state physics. Wiley, 1971.

[14] J. J. Sakurai,Modern Quantum Mechanics (Revised Edition). Addison Wesley, 1 ed., Sept. 1993.

[15] B. Bransden and C. Joachain, Introduction to quantum mechanics.

Longman Scientific & Technical, 1989.

[16] E. Merzbacher, Quantum Mechanics. Wiley, 1998.

[17] H. Haug and S. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific Publishing Company, Incorporated, 2009.

[18] W. S. Massey, “Cross products of vectors in higher dimensional eu-clidean spaces,”The American Mathematical Monthly, vol. 90, no. 10, pp. pp. 697–701, 1983.

[19] G. Strang, Linear Algebra and Its Applications. Thomson Brooks/Cole Cengage learning, 2006.

[20] E. Kreyszig, Introductory Functional Analysis With Applications. Wi-ley Classics Library, John WiWi-ley & Sons, 1978.

[21] J. M. Luttinger and W. Kohn, “Motion of electrons and holes in per-turbed periodic fields,” Phys. Rev., vol. 97, pp. 869–883, Feb 1955.

[22] J. R. Schrieffer and P. A. Wolff, “Relation between the anderson and kondo hamiltonians,” Phys. Rev., vol. 149, pp. 491–492, Sep 1966.

[23] S. Bravyi, D. P. DiVincenzo, and D. Loss, “Schrieffer-wolff transfor-mation for quantum many-body systems,”Annals of Physics, vol. 326, no. 10, pp. 2793 – 2826, 2011.

[24] R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems. Heidelberg: Springer-Verlag Berlin, 2003.

[25] P. Basu and P. Basu, Theory of Optical Processes in Semiconduc-tors: Bulk and Microstructures. Oxford science publications, Clarendon Press, 2003.

[26] S. Chuang,Physics of Optoelectronic Devices. Wiley Series in Pure and Applied Optics, Wiley, 1995.

[27] A. Pimpinelli and J. Villain, Physics of Crystal Growth. Collection Alea-Saclay: Monographs and Texts in Statistical Physics, Cambridge University Press, 1998.

[28] B. J. Riel, “An introduction to self-assembled quantum dots,” Ameri-can Journal of Physics, vol. 76, no. 8, pp. 750–757, 2008.

[29] J. H. Davies, The Physics of Low-dimensional Semiconductors: An Introduction. Cambridge University Press, 1998.

[30] C. Gerry and P. Knight, Introductory Quantum Optics. Cambridge University Press, 2005.

[31] W. Heitler,The Quantum Theory of Radiation. Dover Books on Physics and Chemistry, Dover Publications, 1954.

[32] B. Streetman and S. Banerjee,Solid State Electronic Devices. Pearson Education, Limited, 2006.

[33] R. J. Elliott, “Intensity of optical absorption by excitons,” Phys. Rev., vol. 108, pp. 1384–1389, Dec 1957.

[34] E. Welander and G. Burkard, “Electric control of the exciton fine struc-ture in nonparabolic quantum dots,” Phys. Rev. B, vol. 86, p. 165312, Oct 2012.

[35] G. G. Macfarlane, T. P. McLean, J. E. Quarrington, and V. Roberts,

“Fine structure in the absorption-edge spectrum of Si,” Phys. Rev., vol. 111, pp. 1245–1254, Sep 1958.

[36] M. D. Sturge, E. Cohen, and R. A. Logan, “Dynamics of intrinsic and nitrogen-induced exciton emission in indirect-gap Ga1−xAlxAs,” Phys.

Rev. B, vol. 27, pp. 2362–2373, Feb 1983.

[37] A. J. Bennett, M. A. Pooley, R. M. Stevenson, M. B. Ward, R. B. Patel, A. B. de la Giroday, N. Skold, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Electric-field-induced coherent coupling of the exciton states in a single quantum dot,” Nat Phys, vol. 6, pp. 947–950, Dec 2010.

[38] C. L. Salter, R. M. Stevenson, I. Farrer, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “An entangled-light-emitting diode,” Nature, vol. 465, pp. 594–597, Jun 2010.

[39] K. Edamatsu, G. Oohata, R. Shimizu, and T. Itoh, “Generation of ultraviolet entangled photons in a semiconductor,” Nature, vol. 431, pp. 167–170, Sep 2004.

[40] R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled pho-ton pairs,”Nature, vol. 439, pp. 179–182, Jan 2006.

[41] R. M. Stevenson, A. J. Hudson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Biphoton interference with a quantum dot entangled light source,”Opt. Express, vol. 15, pp. 6507–6512, May 2007.

[42] R. M. Stevenson, A. J. Hudson, A. J. Bennett, R. J. Young, C. A.

Nicoll, D. A. Ritchie, and A. J. Shields, “Evolution of entangle-ment between distinguishable light states,” Phys. Rev. Lett., vol. 101, p. 170501, Oct 2008.

[43] R. J. Young, R. M. Stevenson, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “Improved fidelity of triggered entangled photons from single quantum dots,”New Journal of Physics, vol. 8, no. 2, p. 29, 2006.

[44] R. M. Stevenson, C. L. Salter, J. Nilsson, A. J. Bennett, M. B. Ward, I. Farrer, D. A. Ritchie, and A. J. Shields, “Indistinguishable entangled photons generated by a light-emitting diode,”Phys. Rev. Lett., vol. 108, p. 040503, Jan 2012.

[45] N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Ger-shoni, B. D. Gerardot, and P. M. Petroff, “Entangled photon pairs from

semiconductor quantum dots,”Phys. Rev. Lett., vol. 96, p. 130501, Apr 2006.

[46] C. Santori, D. Fattal, M. Pelton, G. S. Solomon, and Y. Yamamoto,

“Polarization-correlated photon pairs from a single quantum dot,”

Phys. Rev. B, vol. 66, p. 045308, Jul 2002.

[47] K. F. Karlsson, M. A. Dupertuis, D. Y. Oberli, E. Pelucchi, A. Rudra, P. O. Holtz, and E. Kapon, “Fine structure of exciton complexes in high-symmetry quantum dots: Effects of symmetry breaking and sym-metry elevation,”Phys. Rev. B, vol. 81, p. 161307, Apr 2010.

[48] G. Bester, S. Nair, and A. Zunger, “Pseudopotential calcula-tion of the excitonic fine structure of million-atom self-assembled In1−xGaxAs/GaAs quantum dots,” Phys. Rev. B, vol. 67, p. 161306, Apr 2003.

[49] E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J. A.

T¨offlinger, A. Lochmann, A. I. Toropov, S. A. Moshchenko, D. V.

Dmitriev, V. A. Haisler, and D. Bimberg, “Single-photon emission from ingaas quantum dots grown on (111) GaAs,” Applied Physics Letters, vol. 96, no. 9, pp. –, 2010.

[50] R. Singh and G. Bester, “Lower bound for the excitonic fine structure splitting in self-assembled quantum dots,” Phys. Rev. Lett., vol. 104, p. 196803, May 2010.

[51] R. Seguin, A. Schliwa, S. Rodt, K. P¨otschke, U. W. Pohl, and D. Bimberg, “Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots,” Phys. Rev. Lett., vol. 95, p. 257402, Dec 2005.

[52] M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P.

Reithmaier, F. Klopf, and F. Sch¨afer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,”

Phys. Rev. B, vol. 65, p. 195315, May 2002.

[53] E. Kadantsev and P. Hawrylak, “Theory of exciton fine structure in semiconductor quantum dots: Quantum dot anisotropy and lateral electric field,” Phys. Rev. B, vol. 81, p. 045311, Jan 2010.

[54] H. Tong and M. W. Wu, “Theory of excitons in cubic III-V semicon-ductor GaAs, InAs and GaN quantum dots: Fine structure and spin relaxation,” Phys. Rev. B, vol. 83, p. 235323, Jun 2011.

[55] G. E. Pikus and G. L. Bir, “Exchange interaction in excitons in semi-conductors,” Soviet Physics JETP, vol. 33, p. 108, Jul 1971.

[56] L. Debnath and D. Bhatta, Integral Transforms and Their Applica-tions, Second Edition. Taylor & Francis, 2006.

[57] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions:

With Formulas, Graphs, and Mathematical Tables. Applied mathemat-ics series, Dover Publications, 1972.

[58] R. Trotta, E. Zallo, E. Magerl, O. G. Schmidt, and A. Rastelli, “In-dependent control of exciton and biexciton energies in single quantum dots via electroelastic fields,” Phys. Rev. B, vol. 88, p. 155312, Oct 2013.

[59] A. J. Bennett, M. A. Pooley, R. M. Stevenson, I. Farrer, D. A. Ritchie, and A. J. Shields, “Free induction decay of a superposition stored in a quantum dot,” Phys. Rev. B, vol. 84, p. 195401, Nov 2011.

[60] M. Ghali, K. Ohtani, Y. Ohno, and H. Ohno, “Generation and control of polarization-entangled photons from gaas island quantum dots by an electric field,” Nat Commun, vol. 3, p. 661, Feb 2012.

[61] A. H¨ogele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D.

Gerardot, and P. M. Petroff, “Voltage-controlled optics of a quantum dot,”Phys. Rev. Lett., vol. 93, p. 217401, Nov 2004.

[62] G. Pfanner, M. Seliger, and U. Hohenester, “Entangled photon sources based on semiconductor quantum dots: The role of pure dephasing,”

Phys. Rev. B, vol. 78, p. 195410, Nov 2008.

[63] J. E. Avron, G. Bisker, D. Gershoni, N. H. Lindner, E. A. Meirom, and R. J. Warburton, “Entanglement on demand through time reordering,”

Phys. Rev. Lett., vol. 100, p. 120501, Mar 2008.

[64] T. M. Stace, G. J. Milburn, and C. H. W. Barnes, “Entangled two-photon source using biexciton emission of an asymmetric quantum dot in a cavity,” Phys. Rev. B, vol. 67, p. 085317, Feb 2003.

[65] M. M. Vogel, S. M. Ulrich, R. Hafenbrak, P. Michler, L. Wang, A. Rastelli, and O. G. Schmidt, “Influence of lateral electric fields on multiexcitonic transitions and fine structure of single quantum dots,”

Applied Physics Letters, vol. 91, no. 5, pp. –, 2007.

[66] B. D. Gerardot, S. Seidl, P. A. Dalgarno, R. J. Warburton, D. Grana-dos, J. M. Garcia, K. Kowalik, O. Krebs, K. Karrai, A. Badolato, and P. M. Petroff, “Manipulating exciton fine structure in quantum dots with a lateral electric field,” Applied Physics Letters, vol. 90, no. 4, pp. –, 2007.

[67] E. Welander, E. Chekhovich, A. Tartakovskii, and G. Burkard, “In-fluence of nuclear quadrupole moments on electron spin coherence in semiconductor quantum dots,” 2014.

[68] R. W. Grant, M. Kaplan, D. A. Keller, and D. A. Shirley, “Nuclear zeeman effect in gold atoms dissolved in iron, cobalt, and nickel,”Phys.

Rev., vol. 133, pp. 1062–A1070, Feb 1964.

[69] Y. Morino and M. Toyama, “Zeeman effect of the nuclear quadrupole resonance spectrum in crystalline powder,” The Journal of Chemical Physics, vol. 35, no. 4, pp. 1289–1296, 1961.

[70] E. Ikonen, P. Helisto, J. Hietaniemi, and T. Katila, “Magnetic phase modulation of recoilless gamma radiation by nuclear zeeman effect,”

Phys. Rev. Lett., vol. 60, pp. 643–646, Feb 1988.

[71] D. Suter, “Optically excited zeeman coherences in atomic ground states: Nuclear-spin effects,” Phys. Rev. A, vol. 46, pp. 344–350, Jul 1992.

[72] C. Slichter, Principles of Magnetic Resonance. Lecture Notes in Com-puter Science, World Publishing Company, 1990.

[73] J. Jeener, B. H. Meier, P. Bachmann, and R. R. Ernst, “Investigation of exchange processes by twodimensional nmr spectroscopy,”The Journal of Chemical Physics, vol. 71, no. 11, pp. 4546–4553, 1979.

[74] H. Y. Carr and E. M. Purcell, “Effects of diffusion on free precession in nuclear magnetic resonance experiments,” Phys. Rev., vol. 94, pp. 630–

638, May 1954.

[75] E. R. Andrew, “The narrowing of nmr spectra of solids by high-speed specimen rotation and the resolution of chemical shift and spin mul-tiplet structures for solids,” Progress in Nuclear Magnetic Resonance Spectroscopy, vol. 8, no. 1, pp. 1–39, 1971.

[76] R. A. Guyer, R. C. Richerdson, and L. I. Zane, “Excitations in quantum crystals (a survey of nmr experiments in solid helium),” Rev. Mod.

Phys., vol. 43, pp. 532–600, Oct 1971.

[77] R. L. Dixon and K. E. Ekstrand, “The physics of proton nmr,” Medical Physics, vol. 9, no. 6, pp. 807–818, 1982.

[78] D. Fenzke, D. Freude, T. Frhlich, and J. Haase, “NMR intensity mea-surements of half-integer quadrupole nuclei,”Chemical Physics Letters, vol. 111, no. 12, pp. 171 – 175, 1984.

[79] H. Hamaguchi, C. Kato, and M. Tasumi, “Observation of transient resonance raman spectra of the S1 state of trans-stilbene,” Chemical Physics Letters, vol. 100, no. 1, pp. 3 – 7, 1983.

[80] T. T. P. Cheung, “Spin diffusion in nmr in solids,”Phys. Rev. B, vol. 23, pp. 1404–1418, Feb 1981.

[81] R. de Sousa and S. Das Sarma, “Theory of nuclear-induced spectral dif-fusion: Spin decoherence of phosphorus donors in si and gaas quantum dots,”Phys. Rev. B, vol. 68, p. 115322, Sep 2003.

[82] B. Herzog and E. L. Hahn, “Transient nuclear induction and double nuclear resonance in solids,” Phys. Rev., vol. 103, pp. 148–166, Jul 1956.

[83] L. Cywi´nski, W. M. Witzel, and S. Das Sarma, “Electron spin dephas-ing due to hyperfine interactions with a nuclear spin bath,”Phys. Rev.

Lett., vol. 102, p. 057601, Feb 2009.

[84] W. Yao, R.-B. Liu, and L. J. Sham, “Theory of electron spin deco-herence by interacting nuclear spins in a quantum dot,”Phys. Rev. B, vol. 74, p. 195301, Nov 2006.

[85] S. K. Saikin, W. Yao, and L. J. Sham, “Single-electron spin decoherence by nuclear spin bath: Linked-cluster expansion approach,” Phys. Rev.

B, vol. 75, p. 125314, Mar 2007.

[86] P. Robyr, B. Meier, and R. Ernst, “Radio-frequency-driven nuclear spin diffusion in solids,” Chemical Physics Letters, vol. 162, no. 6, pp. 417 – 423, 1989.

[87] D. E. Woessner, “Nuclear transfer effects in nuclear magnetic resonance pulse experiments,” The Journal of Chemical Physics, vol. 35, no. 1, pp. 41–48, 1961.

[88] S. I. Erlingsson, Y. V. Nazarov, and V. I. Fal’ko, “Nucleus-mediated spin-flip transitions in gaas quantum dots,” Phys. Rev. B, vol. 64, p. 195306, Oct 2001.

[89] I. A. Merkulov, A. L. Efros, and M. Rosen, “Electron spin relaxation by nuclei in semiconductor quantum dots,” Phys. Rev. B, vol. 65, p. 205309, Apr 2002.

[90] A. V. Khaetskii, D. Loss, and L. Glazman, “Electron spin decoher-ence in quantum dots due to interaction with nuclei,”Phys. Rev. Lett., vol. 88, p. 186802, Apr 2002.

[91] W. A. Coish and J. Baugh, “Nuclear spins in nanostructures,” physica status solidi (b), vol. 246, no. 10, pp. 2203–2215, 2009.

[92] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D.

Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent ma-nipulation of coupled electron spins in semiconductor quantum dots,”

Science, vol. 309, no. 5744, pp. 2180–2184, 2005.

[93] W. A. Coish and D. Loss, “Hyperfine interaction in a quantum dot: Non-markovian electron spin dynamics,” Phys. Rev. B, vol. 70, p. 195340, Nov 2004.

[94] J. Fischer, M. Trif, W. Coish, and D. Loss, “Spin interactions, relax-ation and decoherence in quantum dots,”Solid State Communications, vol. 149, no. 3536, pp. 1443 – 1450, 2009. Fundamental Phenomena and Applications of Quantum Dots.

[95] P. Maletinsky, A. Badolato, and A. Imamo¯glu, “Dynamics of quantum dot nuclear spin polarization controlled by a single electron,” Phys.

Rev. Lett., vol. 99, p. 056804, Aug 2007.

[96] A. S. Bracker, E. A. Stinaff, D. Gammon, M. E. Ware, J. G. Tischler, A. Shabaev, A. L. Efros, D. Park, D. Gershoni, V. L. Korenev, and I. A.

Merkulov, “Optical pumping of the electronic and nuclear spin of single

charge-tunable quantum dots,”Phys. Rev. Lett., vol. 94, p. 047402, Feb 2005.

[97] C. W. Lai, P. Maletinsky, A. Badolato, and A. Imamo¯glu, “Knight-field-enabled nuclear spin polarization in single quantum dots,” Phys.

Rev. Lett., vol. 96, p. 167403, Apr 2006.

[98] A. Imamo¯glu, E. Knill, L. Tian, and P. Zoller, “Optical pumping of quantum-dot nuclear spins,” Phys. Rev. Lett., vol. 91, p. 017402, Jul 2003.

[99] R. Yates and D. Goodman, Probability and stochastic processes: a friendly introduction for electrical and computer engineers. John Wiley

& Sons, 2005.

[100] S. E. Economou and E. Barnes, “Theory of dynamic nuclear polariza-tion and feedback in quantum dots,”Phys. Rev. B, vol. 89, p. 165301, Apr 2014.

[101] W. M. Witzel and S. Das Sarma, “Quantum theory for electron spin decoherence induced by nuclear spin dynamics in semiconductor quan-tum computer architectures: Spectral diffusion of localized electron spins in the nuclear solid-state environment,” Phys. Rev. B, vol. 74, p. 035322, Jul 2006.

[102] W. M. Witzel and S. Das Sarma, “Multiple-pulse coherence enhance-ment of solid state spin qubits,” Phys. Rev. Lett., vol. 98, p. 077601, Feb 2007.

[103] D. Stepanenko, G. Burkard, G. Giedke, and A. Imamoglu, “Enhance-ment of electron spin coherence by optical preparation of nuclear spins,”

Phys. Rev. Lett., vol. 96, p. 136401, Apr 2006.

[104] H. Ribeiro and G. Burkard, “Nuclear state preparation via landau-zener-stckelberg transitions in double quantum dots,”Phys. Rev. Lett., vol. 102, p. 216802, May 2009.

[105] B. Lee, W. M. Witzel, and S. Das Sarma, “Universal pulse sequence to minimize spin dephasing in the central spin decoherence problem,”

Phys. Rev. Lett., vol. 100, p. 160505, Apr 2008.

[106] K. Khodjasteh and D. A. Lidar, “Performance of deterministic dynam-ical decoupling schemes: Concatenated and periodic pulse sequences,”

Phys. Rev. A, vol. 75, p. 062310, Jun 2007.

[107] G. S. Uhrig, “Keeping a quantum bit alive by optimized π-pulse se-quences,” Phys. Rev. Lett., vol. 98, p. 100504, Mar 2007.

[108] S. Takahashi, R. Hanson, J. van Tol, M. S. Sherwin, and D. D.

Awschalom, “Quenching spin decoherence in diamond through spin bath polarization,”Phys. Rev. Lett., vol. 101, p. 047601, Jul 2008.

[109] C. Kloeffel, P. A. Dalgarno, B. Urbaszek, B. D. Gerardot, D. Brunner, P. M. Petroff, D. Loss, and R. J. Warburton, “Controlling the interac-tion of electron and nuclear spins in a tunnel-coupled quantum dot,”

Phys. Rev. Lett., vol. 106, p. 046802, Jan 2011.

[110] H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V. Umansky, and A. Yacoby, “Dephasing time of gaas electron-spin qubits coupled to a nuclear bath exceeding 200µs,” Nat Phys, vol. 7, pp. 109–113, Feb 2011.

[111] H. Bluhm, S. Foletti, D. Mahalu, V. Umansky, and A. Yacoby, “En-hancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath,” Phys. Rev. Lett., vol. 105, p. 216803, Nov 2010.

[112] R. I. Dzhioev and V. L. Korenev, “Stabilization of the electron-nuclear spin orientation in quantum dots by the nuclear quadrupole interac-tion,” Phys. Rev. Lett., vol. 99, p. 037401, Jul 2007.

[113] E. A. Laird, J. R. Petta, A. C. Johnson, C. M. Marcus, A. Yacoby, M. P. Hanson, and A. C. Gossard, “Effect of exchange interaction on spin dephasing in a double quantum dot,” Phys. Rev. Lett., vol. 97, p. 056801, Jul 2006.

[114] J. R. Petta, J. M. Taylor, A. C. Johnson, A. Yacoby, M. D. Lukin, C. M.

Marcus, M. P. Hanson, and A. C. Gossard, “Dynamic nuclear polariza-tion with single electron spins,” Phys. Rev. Lett., vol. 100, p. 067601, Feb 2008.

[115] E. A. Chekhovich, M. N. Makhonin, K. V. Kavokin, A. B. Krysa, M. S.

Skolnick, and A. I. Tartakovskii, “Pumping of nuclear spins by optical excitation of spin-forbidden transitions in a quantum dot,”Phys. Rev.

Lett., vol. 104, p. 066804, Feb 2010.

[116] R. V. Cherbunin, K. Flisinski, I. Y. Gerlovin, I. V. Ignatiev, M. S.

Kuznetsova, M. Y. Petrov, D. R. Yakovlev, D. Reuter, A. D. Wieck,

and M. Bayer, “Resonant nuclear spin pumping in (in,ga)as quantum dots,”Phys. Rev. B, vol. 84, p. 041304, Jul 2011.

[117] S. Verbin, I. Gerlovin, I. Ignatiev, M. Kuznetsova, R. Cherbunin, K. Flisinski, D. Yakovlev, and M. Bayer, “Dynamics of nuclear polar-ization in ingaas quantum dots in a transverse magnetic field,”Journal of Experimental and Theoretical Physics, vol. 114, no. 4, pp. 681–690, 2012.

[118] E. L. Hahn, “Spin echoes,” Phys. Rev., vol. 80, pp. 580–594, Nov 1950.

[119] A. Abragam,The Principles of Nuclear Magnetism. International series of monographs on physics, Clarendon Press, 1961.

[120] L. Mandel and E. Wolf,Optical Coherence and Quantum Optics. Cam-bridge University Press, 1995.

[121] S. Varwig, A. Ren´e, A. Greilich, D. R. Yakovlev, D. Reuter, A. D.

Wieck, and M. Bayer, “Temperature dependence of hole spin coher-ence in (In,Ga)As quantum dots measured by mode-locking and echo techniques,” Phys. Rev. B, vol. 87, p. 115307, Mar 2013.

[122] G. Ithier, E. Collin, P. Joyez, P. J. Meeson, D. Vion, D. Esteve, F. Chiarello, A. Shnirman, Y. Makhlin, J. Schriefl, and G. Sch¨on, “De-coherence in a superconducting quantum bit circuit,” Phys. Rev. B, vol. 72, p. 134519, Oct 2005.

[123] J. Blatt and V. Weisskopf, Theoretical Nuclear Physics. Dover Books on Physics Series, Dover Publications, 1991.

[124] E. A. Chekhovich, M. Hopkinson, M. S. Skolnick, and A. I. Tar-takovskii, “Quadrupolar induced suppression of nuclear spin bath fluc-tuations in self-assembled quantum dots,” 2014.

[125] K. Flisinski, I. Y. Gerlovin, I. V. Ignatiev, M. Y. Petrov, S. Y. Verbin, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Optically detected magnetic resonance at the quadrupole-split nuclear states in (In,Ga)As/GaAs quantum dots,”Phys. Rev. B, vol. 82, p. 081308, Aug 2010.

[126] C. Bulutay, “Quadrupolar spectra of nuclear spins in strained InxGa1−xAs quantum dots,” Phys. Rev. B, vol. 85, p. 115313, Mar 2012.

[127] P. Maletinsky, M. Kroner, and A. Imamoglu, “Breakdown of the nuclear-spin-temperature approach in quantum-dot demagnetization experiments,” Nat Phys, vol. 5, pp. 407–411, Jun 2009.

[128] M. S. Kuznetsova, K. Flisinski, I. Y. Gerlovin, M. Y. Petrov, I. V. Ig-natiev, S. Y. Verbin, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, “Nuclear magnetic resonances in (In,Ga)As/GaAs quan-tum dots studied by resonant optical pumping,”Phys. Rev. B, vol. 89, p. 125304, Mar 2014.

[129] N. A. Sinitsyn, Y. Li, S. A. Crooker, A. Saxena, and D. L. Smith,

“Role of nuclear quadrupole coupling on decoherence and relaxation of central spins in quantum dots,” Phys. Rev. Lett., vol. 109, p. 166605, Oct 2012.

[130] R. M. Stevenson, R. J. Young, P. See, D. G. Gevaux, K. Cooper, P. Atkinson, I. Farrer, D. A. Ritchie, and A. J. Shields, “Magnetic-field-induced reduction of the exciton polarization splitting in inas quantum dots,” Phys. Rev. B, vol. 73, p. 033306, Jan 2006.

[131] M. Bayer, A. Kuther, A. Forchel, A. Gorbunov, V. B. Timofeev, F. Sch¨afer, J. P. Reithmaier, T. L. Reinecke, and S. N. Walck, “Electron and hole g factors and exchange interaction from studies of the exci-ton fine structure in In0.60Ga0.40As quantum dots,” Phys. Rev. Lett., vol. 82, pp. 1748–1751, Feb 1999.

July 2014 Dissertation in Theoretical Physics aboutSpin and Photon Coherence and Entanglement in Semiconductor Quantum Dots under the supervision of Prof. Dr. Guido Burkard.

2009.11 - 2014.05 Graduate student at the University of Konstanz under the supervision of Prof. Dr. Guido Burkard.

2009.08 - 2009.11 Stipendium work and studies in the Theory and Modelling group, IFM, Link¨oping University

June 2009 Master of Science in Applied Physics with Diploma Thesis Electron Localization and Spin Polarization in a Quantum Circle

2005.08 - 2009.06 Studies of Applied Physics and Electrical Engineering at Technical University of Vienna and atLink¨oping Univeristy 2003.06 - 2005.08 Employment at Esca Food Solutions

2002.05 - 2003.06 Studies of Applied Physics and Electrical Engineering,Link¨oping University

2001.06 - 2002.04 Military service atEngineer Corps Bodens

2000.08 - 2001.06 Studies of Applied Physics and Electrical Engineering,Link¨oping University

127

1997.08 - 2000.06 High school, Scientific profile, atBerzeliusskolan, Link¨oping

1997.08 - 2000.06 High school, Scientific profile, atBerzeliusskolan, Link¨oping