• Keine Ergebnisse gefunden

PBS HEPES

H. contortus T. circumcincta Lectin

5.10 Future directions

These experiments have shown that it was possible to recover L3 H. contortus and T.

circumcincta off herbage and then to distinguish the species by lectin binding. Larvae were recovered more consistently from herbage, but the recovery required a long incubation period and was still low. To assess the use of the modified recovery method as a field method, much larger sample sizes of herbage will have to be examined to evaluate if the recovery percentage and consistency are still reliable.

The lectin binding was also incomplete on the surface of larvae of H. contortus and T.

circumcincta. The differentiating lectin for sheathed H. contortus was AAL, which bound to a high percentage of, but not all larvae besides the lectin binding being weak and only visible on the head region of the larvae at high magnification. For this method of speciation to be reliable, lectins which bind all the larvae of one species but none of the larvae of other species tested would be ideal, but may not be achievable. In addition, stronger fluorescence based on lectin binding is desirable, as this would allow better imaging and therefore faster and possibly automated counting of the larvae. At this stage, differentiation of H. contortus and T. circumcincta larvae using lectin binding offers little advantage over traditional methods based on morphological differentiation. For this method to be a field method, another way of visualising lectin binding rather than fluorescence is required, since a fluorescence microscope is specialised equipment. One approach could be to visualise lectin binding with coloured beads, which could probably be developed on eggs, as they show more binding to the surface. It has been demonstrated that lectin binding offers opportunities for a novel method of speciation and possibly for other sheep parasitic nematodes and life cycle stages.

6 Summary

Katharina Hillrichs (2010)

Investigations on the binding capacity of lectins to sheep parasitic nematodes to improve recovery and differentiation of infective larvae

To maximise growth, fecundity and animal health of livestock, it is important to understand, control and manage nematode parasite burdens. A central issue regarding infection of livestock with gastrointestinal parasites is the degree of contamination of pasture with the infectious larval stages of these nematodes, often referred to as larval challenge. Assessing the degree of larval challenge is essential in managing the degree of infection in grazing animals. Traditionally it has been difficult to assess the pasture contamination for two reasons: firstly because of the difficulty of identification and differentiation of nematode larvae and secondly, because of poor and inconsistent recovery of these larvae of pasture. Both problems were addressed by using a panel of 19 lectins to differentiate L3 of H. contortus and T. circumcincta and by modifying the Baermann method as a recovery method of larvae from grass. When counted numbers of larvae were incubated on grass, recovery was most consistent when the incubation period was extended to 48 hours, which resulted in recovery of larvae of 55 % (CV 7 %). Lectin binding to the surface of L3 of both species was weak, patchy and inconsistent. Sheathed larvae could be distinguished by AAL binding to the head of H. contortus only. Exsheathed larvae did not show any binding to the surface, but binding to the mouth region, amphids and phasmids was more consistent. Exsheathed L3 could be differentiated by binding of BGS I to the head of H. contortus only. In comparison to L3, other life cycle stages like eggs and adults showed intense lectin binding and could be distinguished easily.

When the two methods were combined and a mixed population of H. contortus and T. circumcincta were placed in grass, 53 % of larvae could be recovered with Baermann separation and the H. contortus distinguished by AAL binding.

7 Zusammenfassung

Katharina Hillrichs (2010)

Untersuchungen zur Lektinbindungskapazität von Nematoden des Schafes zur Speziesdifferenzierung und Gewinnung von infektiösen Larven aus Weidegras

Um Gewichtszunahmen, Fruchtbarkeit und Gesundheit einer Schafherde zu maximieren, ist es wichtig, den Parasitenbefall mit Nematoden des Magen-Darm-Traktes zu verstehen und zu kontrollieren. Ein bedeutender Punkt in Bezug auf das Infektionsrisiko der Herde ist die Kontamination der Weide mit dem infektiösen Larvenstadium (L3) der Nematoden. Um die Infektionsrate der weidenden Tiere zu kontrollieren, ist es wichtig, den Infektionsdruck zu bemessen. Traditionsgemäß ist es aus zwei Gründen schwierig, die Kontamination der Weide einzuschätzen: erstens wegen der Schwierigkeit, die verschiedenen Larven zu identifizieren und zu differenzieren und zweitens wegen der niedrigen und inkonsistenten Rückgewinnungsrate der Larven vom Weidegras. Beide Probleme wurden bearbeitet, indem eine Auswahl 19 fluoreszierender Lektinen auf ihre Eignung untersucht wurden, Larven von H. contortus and T. circumcincta leichter zu unterscheiden und die Baermann Methode zur Rückgewinnung der Larven vom Weidegras modifiziert wurde. Die konstanteste Rückgewinnungsrate wurde nach einer Auswanderzeit von 48 h erzielt. Die Rückgewinnungsrate lag bei 55 % (CV 7

%). Die Fluoreszenz der Lektine, die an die Oberfläche der L3 beider Spezies gebunden haben, war schwach, ungleichmäßig und unregelmäßig. Bescheidete Larven konnten durch Bindung von AAL nur an der Kopfregion von H. contortus unterschieden werden. Kein Lektin zeigte Bindungsfähigkeit zur Oberfläche von entscheideten Larven, aber die Bindung zu Amphiden und Phasmiden war konsistenter. Entscheidete Larven konnten durch Bindung von BGS I nur an der Kopfregion von H. contortus differenziert werden. Im Vergleich zum Larvenstadium, zeigten die Lektine höhere Bindungsfähigkeit zu anderen Entwicklungsstadien, wie

Eiern und Adulten. Beide Methoden wurden kombiniert und eine gemischte Population von bescheideten H. contortus und T. circumcincta Larven wurden auf Gras präinkubiert. Mit der modifizierten Baermann Methode konnten 53% der Larven zurück gewonnen und mit AAL unterschieden werden.

8 Bibliography

ABRAHAM, D., R. B. GRIEVE and M. MIKAGRIEVE (1988):

Dirofilaria immitis – surface properties of 3rd stage and 4th stage larvae.

Exp. Parasitol. 65, 157-167

ANDERSEN, F. L. and G. T. WALTERS (1973):

Efficacy of the Baermann technique for recovery of Dictyocaulus viviparus larvae from bovine feces.

Am. J. Vet. Res. 34, 39-40

ANDREWS, R. K. and M. C. BERNDT (2000):

Snake venom modulators of platelet adhesion receptors and their ligands.

Toxicon 38, 775-791

APFEL, H., W. F. EISENBEISS and T. F. MEYER (1992):

Changes in the surface-composition after transmission of Acanthocheilonema viteae 3rd stage larvae into the jird.

Mol. Biochem. Parasitol. 52, 63-74

APPLETON, J. A., L. R. SCHAIN and D. D. MCGREGOR (1988):

Rapid expulsion of Trichinella spiralis in suckling rats: mediation by monoclonal antibodies.

Immunol. 65, 487-492

ARAUJO, A. C. G., T. SOUTOPADRON and W. DESOUZA (1993):

Cytochemical localization of carbohydrate residues in microfilariae of Wuchereria bancrofti and Brugia malayi.

J. Histochem. Cytochem. 41, 571-578

ASHMAN, K., J. MATHER, C. WILTSHIRE, H. J. JACOBS and E. MEEUSEN (1995):

Isolation of a larval surface glycoprotein from Haemonchus contortus and its possible role in evading host Immunity.

Mol. Biochem. Parasitol. 70, 175-179

AUMONT, G., D. FRAULI, R. SIMON, R. POUILLOT, S. DIAW and N. MANDONNET (1996):

Comparison of methods for counting third stage larvae of gastrointestinal nematodes of small ruminants in tropical pastures.

Vet. Parasitol. 62, 307-315 BAERMANN, G. (1917):

Eine einfache Methode zur Auffindung von Ankylostomum - (Nematoden) - Larven in Erdproben.

Tijdschr. Diergeneesk. 57, 131-137

Local immune responses in sensitized sheep following challenge infection with Teladorsagia circumcincta.

Parasite Immunol. 25, 375

BETSCHART, B. and J. M. JENKINS (1987):

Distribution of iodinated proteins in Dipetalonema viteae after surface labelling.

Mol. Biochem. Parasitol. 22, 1-8 BIRD, A. F. (1988):

Cuticle printing of nematodes Int. J. Parasitol. 18, 869-871 BIRD, A. F. and J. BIRD (1991):

The structure of nematodes.

2nd edition, academic press, San Diego BIRD, A. F. and B. M. ZUCKERMAN (1989):

Studies on the surface-coat (glycocalyx) of the dauer larva of Anguina agrostis.

Int. J. Parasitol. 19, 235-240

BLAXTER, M. L. and W. M. ROBERTSON (1998):

The Cuticle.

in: R. N. PERRY and D. J. WRIGHT (edit.): The physiology and biochemistry of free-living and plant-parasitic nematodes

CABI Press, Oxford, UK, p. 25-48

BLAXTER, M. L., A. P. PAGE, W. RUDIN and R. M. MAIZELS (1992):

Nematode surface coats - actively evading immunity.

Parasitol. Today 8, 243-247

BOISVENUE, R. J., M. I. STIFF, L. V. TONKINSON and G. N. COX (1991):

Protective studies in sheep immunized with cuticular collagen proteins and peptides of Haemonchus contortus.

Parasite Immunol. 13, 227-240

BONE, L. W. and K. P. BOTTJER (1985):

Cuticular carbohydrates of three nematode species and chemoreception by Trichostrongylus colubriformis.

J. Parasitol. 71, 235-238

BOWMAN, D. D., D. ABRAHAM, M. MIKAGRIEVE and R. B. GRIEVE (1988):

Binding of Concavalin-A to areas compatible with the locations of the amphids and phasmids of larvae of Dirofilaria immitis (Nematoda, Filarioidea) and Toxocara canis (Nematoda, Ascaridoidea)

Proc. Helminthol. Soc. Wash. 55, 94-96

MEDINADELAGARZA (1991):

Eosinophil-larval-interaction in Onchocerciasis - heterogeneity of in vitro adherence of eosinophils to infective 3rd and 4th stage larvae and microfilariae of Onchocerca volvulus.

Parasite Immunol. 13, 13-22

CALLINAN, A. P. L. and J. M. WESTCOTT (1986):

Vertical distribution of Trichostrongylid larvae on herbage and in soil.

Int. J. Parasitol. 16, 241-244

CAVENESS, F. E. and H. J. JENSEN (1955):

Modification of the centrifugal flotation technique for the isolation and concentration of nematodes and their eggs from soil and plant tissue.

Proc. Helminthol. Soc. Wash. 22, 87-89

CIPOLLO, J. F., A. AWAD, C. E. COSTELLO, P. W. ROBBINS and C. B.

HIRSCHBERG (2004):

Biosynthesis in vitro of Caenorhabditis elegans phosphorylcholine oligosaccharides.

Proc. Natl. Acad. Sci. U. S. A. 101, 3404-3408

COLDITZ, I. G., L. F. LE JAMBRE and R. HOSSE (2002):

Use of lectin binding characteristics to identify gastrointestinal parasite eggs in faeces.

Vet. Parasitol. 105, 219-227

CORT, W. W., J. L. ACKERT, D. L. AUGUSTINE and F. K. PAYNE (1922):

Investigations on the control of hookworm disease II, the description of an apparatus for isolating infective hookworm larvae from soil.

Am. J. Hyg. 2, 1-16

COX, G. N., S. STAPRANS and R. S. EDGAR (1981a):

The cuticle of Caenorhabditis elegans 2nd stage-specific changes in ultrastructure and protein-composition during post-embryonic development.

Dev. Biol. 86, 456-470

COX, G. N., M. KUSCH and R. S. EDGAR (1981b):

Cuticle of Caenorhabditis elegans - its isolation and partial characterization..

J. Cell Biol. 90, 7-17

COX, G. N., L. M. SHAMANSKY and R. J. BOISVENUE (1989):

Identification and preliminary characterization of cuticular surface-proteins of Haemonchus contortus.

Mol. Biochem. Parasitol. 36, 233-241 CROFTON, H. D. (1954):

The ecology of the immature phase of Trichostrongyle parasites.

Parasitol. 44, 313-324

Identification and characterization of excreted-secreted products and surface coat antigens of animal and plant-parasitic nematodes.

Parasitol. 118, 397-405

DE MENDOZA, M. E. L., J. MODHA, M. C. ROBERTS, R. CURTIS and J. R. KUSEL (2000):

Changes in the lipophilicity of the surfaces of Meloidogyne incognita and Haemonchus contortus during exposure to host signals.

Parasitol. 120, 203-209

DEBOSE-BOYD, R. A., A. K. NYAME, D. P. JASMER and R. D. CUMMINGS (1998):

The ruminant parasite Haemonchus contortus expresses an alpha

1,3-fucosyltransferase capable of synthesizing the Lewis x and sialyl Lewis x antigens.

Glycoconj. J. 15, 789-798

DEEHAN, M. R., M. J. FRAME, R. M. E. PARKHOUSE, S. D. SEATTER, S. D.

REID, M. M. HARNETT and W. HARNETT (1998):

A phosphorylcholine-containing filarial nematode-secreted product disrupts B lymphocyte activation by targeting key proliferative signalling pathways.

J. Immunol. 160, 2692-2699

DELL, A., S. M. HASLAM, H. R. MORRIS and K. H. KHOO (1999):

Immunogenic glycoconjugates implicated in parasitic nematode diseases.

Biochim. Biophys. Act, 1455, 353-362

DENNIS, R. D., S. BAUMEISTER, C. SMUDA, C. LOCHNIT, T. WAIDER and E.

GEYER (1995):

Initiation of chemical studies on the immunoreactive glycolipids of adult Ascaris suum.

Parasitol. 110, 611-623

DEVANEY, E., B. BETSCHART and W. RUDIN (1990):

The analysis of the 30 kDa antigen of Brugia pahangi and its interaction with the cuticle - a short review.

Acta Tropica 47, 365-372

DEVANEY, E. and R. M. JECOCK (1991):

The expression of the MR 30000 antigen in the 3rd stage larvae of Brugia pahangi.

Parasite Immunol. 13, 75-87 DINABURG, A. G. (1942):

The efficiency of the Baermann apparatus in the recovery of larvae of Haemonchus contortus.

J. Parasitol. 28, 433-440

DUNPHY, J. L., A. BALIC, G. J. BARCHAM, A. J. HORVATH, A. D. NASH and E. N.

T. MEEUSEN (2000):

Isolation and characterization of a novel inducible mammalian galectin.

J. Biol. Chem. 275, 32106-32113

APPLETON (1997):

Terminal β-linked tyvelose creates unique epitopes in Trichinella spiralis glycan antigens.

Glycobiol. 7, 383-390 EYSKER, M. (1997):

The sensitivity of the Baermann method for the diagnosis of primary Dictyocaulus viviparus infections in calves.

Vet. Parasitol. 69, 89-93

EYSKER, M. and F. N. J. KOOYMAN (1993):

Notes on necropsy and herbage processing techniques for gastrointestinal nematodes of ruminants.

Vet. Parasitol. 46, 205-213 FETTERER, R. H. (1989):

The cuticular proteins from free-living and parasitic stages of Haemonchus contortus.

1. Isolation and partial characterization.

Comp. Biochem. Physiol. B 94, 383-388

FETTERER, R. H. and M. L. RHOADS (1990):

Tyrosine-derived cross-linking amino-acids in the sheath of Haemonchus contortus infective larvae.

J. Parasitol. 76, 619-624

FETTERER, R. H. and M. L. RHOADS (1993):

Biochemistry of the nematode cuticle - relevance to parasitic nematodes of livestock.

Vet. Parasitol. 46, 103-111

FETTERER, R. H. and J. F. URBAN (1988):

Developmental changes in cuticular proteins of Ascaris suum.

Comp. Biochem. Physiol. B 90, 321-327

FORSYTH, K. P., D. B. COPEMAN and G. F. MITCHELL (1984):

Differences in the surface radioiodinated proteins of skin and uterine microfilariae of Onchocerca gibsoni.

Mol. Biochem. Parasitol. 10, 217-229

FUJIMOTO, D., K. HORIUCHI and M. HIRAMA (1981):

Isotrityrosine, a new crosslinking amino acid isolated from cuticle collagen.

Biochem. Biophys. Res. Commun. 99, 637-643 FUJIMOTO, D. and S. KANAYA (1973):

Cuticlin - noncollagen structural protein from Ascaris cuticle.

Arch. Biochem. Biophys. 157, 1-6

Characterization of the exposed carbohydrates on the sheath surface of in vitro-derived Brugia pahangi microfilariae by analysis of lectin binding.

J. Parasitol. 69, 1043-1047

FURMAN, A. and L. R. ASH (1983b):

Analysis of Brugia pahangi microfilariae surface carbohydrates - comparison of the binding of a panel of fluoresceinated lectins to mature in vivo-derived and immature in utero-derived microfilariae.

Acta Tropica 40, 45-51

GELDHOF, P., G. F. J. NEWLANDS, K. NYAME, R. CUMMINGS, W. D. SMITH and D. P. KNOX (2005):

Presence of the LDNF glycan on the host-protective H-gal-GP fraction from Haemonchus contortus.

Parasite Immunol. 27, 55-60

GETTINBY, G., Q. A. MCKELLAR, K. BAIRDEN, Y. THEODORIDIS and A.

WHITELAW (1985):

Comparison of two techniques used for the recovery of nematode infective larvae from pasture.

Res. Vet. Sci. 39, 99-102

GILLEARD, J. S., J. L. DUNCAN and A. TAIT (1995a):

Dictyocaulus viviparus - surface - antigens of the L3 cuticle and sheath.

Exp. Parasitol. 80, 441-453

GILLEARD, J. S., J. L. DUNCAN and A. TAIT (1995b):

An immunodominant antigen on the Dictyocaulus viviparus L3 sheath surface-coat and a related molecule in other strongylid nematodes.

Parasitol. 111, 193-200

GOUNARIS, K., V. P. SMITH and M. E. SELKIRK (1996):

Structural organisation and lipid composition of the epicuticular accessory layer of infective larvae of Trichinella spiralis.

Biochim. Biophys. Acta 1281, 91-100

GREENHALGH, C. J., S. A. BECKHAM and S. E. NEWTON (1999a):

Galectins from sheep gastrointestinal nematode parasites are highly conserved.

Mol. Biochem. Parasitol. 98, 285-289

GREENHALGH, C. J. and S. E. NEWTON (1999b):

Recombinant expression of a galectin from the sheep gastrointestinal parasite Teladorsagia circumcincta: its use in isolating galectin-glycoconjugates.

Prot. Exp. Purific. 16, 152-159

GREENHALGH, C. J., A. LOUKAS, D. DONALD, S. NIKOLAOU and S. E. NEWTON (2000):

A family of galectins from Haemonchus contortus.

Mol. Biochem. Parasitol. 107, 117-121

The 2 Caenorhabditis elegans basement membrane (type IV) collagen genes are located on separate chromosomes.

J. Biol. Chem. 264, 17574-17582

HARRISON, G. B. L., H. D. PULFORD, W. R. HEIN, T. K. BARBER, R. J. SHAW, M.

MCNEILL, S. J. WAKEFIELD and C. B. SHOEMAKER (2003a):

Immune rejection of Trichostrongylus colubriformis in sheep; a possible role for intestinal mucus antibody against an L3-specific surface antigen.

Parasite Immunol. 25, 45-53

HARRISON, G. B. L., H. D. PULFORD, W. R. HEIN, W. B. SEVERN and C. B.

SHOEMAKER (2003b):

Characterization of a 35-kDa carbohydrate larval antigen (CarLA) from Trichostrongylus colubriformis; a potential target for host immunity.

Parasite Immunol. 25, 79-86

HASLAM, S. M., G. C. COLES, E. A. MUNN, T. S. SMITH, H. F. SMITH, H. R.

MORRIS and A. DELL (1996):

Haemonchus contortus glycoproteins contain N-linked oligosaccharides with novel highly fucosylated core structures.

J. Biol. Chem. 271, 30561-30570

HASLAM, S. M., G. C. COLES, A. J. REASON, H. R. MORRIS and A. DELL (1998):

The novel core fucosylation of Haemonchus contortus N-glycans is stage specific.

Mol. Biochem. Parasitol. 93, 143-147

HASLAM, S. M., K. H. KHOO, K. M. HOUSTON, W. HARNETT, H. R. MORRIS and A. DELL (1997):

Characterisation of the phosphorylcholine-containing N-linked oligosaccharides in the excretory-secretory 62 kDa glycoprotein of Acanthocheilonema viteae.

Mol. Biochem. Parasitol. 85, 53-66

HASLAM, S. M., H. R. MORRIS and A. DELL (2001):

Mass spectrometric strategies: providing structural clues for helminth glycoproteins.

Trends Parasitol. 17, 231-235

HAM, P. J., A. J. SMAIL and B. K. GROEGER (1988):

Surface carbohydrate changes on Onchocerca lienalis larvae as they develop from microfilariae to the infective 3rd stage in Simulium ornatum.

J. Helminthol. 62, 195-205

HEIN, W. R. and G. B. L. HARRISON (2005):

Vaccines against veterinary helminths.

Vet. Parasitol. 132, 217-222

HILL, D. E., R. H. FETTERER and J. F. URBAN JR (1991):

Ascaris suum: stage-specific differences in lectin binding to the larval cuticle.

Exp. Parasitol. 73, 376-383

Elektronenmikroskopische Untersuchungen an Parascaris equorum (Integument, Isolationsgewebe, Muskulatur und Nerven).

Protoplasma 56, 202-241

JACOBS, H. J., C. WILTSHIRE, K. ASHMAN and E. N. T. MEEUSEN (1999):

Vaccination against the gastrointestinal nematode, Haemonchus contortus, using a purified larval surface antigen.

Vacc. 17, 362-368

JEYAPRAKASH, A., H. B. JANSSON, N. MARBANMENDOZA and B. M.

ZUCKERMAN (1985):

Caenorhabditis elegans - lectin mediated modification of chemotaxis.

Exp. Parasitol. 59, 90-97

JOACHIM, A., B. RUTTKOWSKI and A. DAUGSCHIES (1999):

Changing surface antigen and carbohydrate patterns during the development of Oesophagostomum dentatum.

Parasitol. 119, 491-501 JØRGENSEN, R. J. (1975a):

In vitro migration of Dictyocaulis viviparus larvae: migration of the infective stage in agar gel.

Int. J. Parasitol. 5, 199-202 JØRGENSEN, R. J. (1975b):

Isolation of infective Dictyocaulis larvae from herbage.

Vet. Parasitol. 1, 61-67

JØRNDRUP, S. and K. BUCHMANN (2005):

Carbohydrate localization on Gyrodactylus salaris and G. derjavini and

corresponding carbohydrate binding capacity of their hosts Salmo salar and S. trutta.

J. Helminthol. 79, 41-46

KASUGA-AOKI, H., N. TSUJI, K. SUZUKI, T. ISOBE and S. YOSHIHARA (2000):

Identification of surface proteins and antigens from larval stages of Ascaris suum by two-dimensional electrophoresis.

Parasitol. 121, 671-677

KAUSHAL, N. A., A. J. G. SIMPSON, R. HUSSAIN and E. A. OTTESEN (1984):

Brugia malayi: Stage-specific expression of carbohydrates containing N-acetyl-d-glucosamine on the sheathed surfaces of microfilariae.

Exp. Parasitol. 58, 182-187 KAUZAL, G. P. (1940):

Experiments on the recovery of sheep nematode larvae from pastures.

J. Counc. Sci. Ind. Res. Australia 13, 95-106

Stage-specific cuticular proteins of Ostertagia circumcincta and Ostertagia ostertagi.

Int. J. Parasitol. 20, 1037-1045

KENNEDY, M. W., M. FOLEY, Y. M. KUO, J. R. KUSEL and P. B. GARLAND (1987a):

Biophysical properties of the surface lipid of parasitic nematodes.

Mol. Biochem. Parasitol. 22, 233-240

KENNEDY, M. W., R. M. MAIZELS, M. MEGHJI, L. YOUNG, F. QURESHI and H. V.

SMITH (1987b):

Species-specific and common epitopes on the secreted and surface-antigens of Toxocara cati and Toxocara canis infective larvae.

Parasite Immunol. 9, 407-420

KIEFER, E., W. RUDIN and H. HECKER (1989):

Cytochemical demonstration of lectin binding sites in the cuticle and tissues of Acanthocheilonema viteae (Filarioidea).

Acta Tropica 46, 3-15

KORNFELD, R. and S. KORNFELD (1985):

Assemby of asparagine linked oligosaccarides.

Ann. Rev. Biochem. 54, 631-664

KRAMER, J. M., G. N. COX and D. HIRSH (1982a):

Comparisons of the complete sequences of 2 collagen genes from Caenorhabditis elegans.

Cell 30, 599-606

KRAMER, J. M., G. N. COX and D. HIRSH (1982b):

Organisation and sequence anaysis of the collagen multigene family of Caenorhabditis elegans.

J. Cell Biol. 95, A222-A222

KRAMER, J. M., G. N. COX and D. HIRSH (1985):

Expression of Caenorhabditis elegans collagen genes col-1 and col-2 is developmentally regulated.

J. Biol. Chem. 260, 1945-1951

KRECEK, R. C., H. T. GROENEVELD and J. A. VANWYK (1991):

Effects of time of day, season and stratum on Haemonchus contortus and Haemonchus placei 3rd-stage larvae on irrigated pasture.

Vet. Parasitol. 40, 87-98

KRECEK, R. C. and N. MAINGI (2004):

Comparison of two techniques used for the recovery of third-stage strongylid nematode larvae from herbage.

Vet. Parasitol. 122, 233-243

Distinction of hookworm larvae based on lectin binding characteristics.

Parasite Immunol. 14, 233-237

KUMAR, S. and D. I. PRITCHARD (1994):

Apparent feeding behaviour of enssheathed 3rd stage infective larvae of human hookworms.

Int. J. Parasitol. 24, 133-136 LEE, D. L. (1961):

Localization of esterase in the cuticle of the nematode Ascaris lumbricoides.

Nature 192, 282-283 LEE, D. L. (1977):

The nematode epidermis and collagenous cuticle, its formation and ecdysis.

Symp. Zool. Soc. Lond. 39, 145-170 LEE, D. L. (2002):

Cuticle, moulting and exsheathment.

in: D. L. LEE (edit.): The biology of nematodes Taylor and Francis, London, p. 338-414

LI, C. H., X. F. WEI, L. X. XU and X. R. LI (2007):

Recombinant galectins of male and female Haemonchus contortus do not hemagglutinate erythrocytes of their natural host.

Vet. Parasitol. 144, 299-303

LIN, H. J. and M. A. MCCLURE (1996):

Surface coat of Meloidogyne incognita.

J. Nematol. 28, 216-224

LOCHNIT, G., R. D. DENNIS, U. ZAHRINGER and R. GEYER (1997):

Structural analysis of neutral glycosphingolipids from Ascaris suum adults (Nematoda:Ascaridida).

Glycoconj. J. 14, 389-399

LOCHNIT, G., S. NISPEL, R. D. DENNIS and R. GEYER (1998a):

Structural analysis and immunohistochemical localization of two acidic glycosphingolipids from the porcine, parasitic nematode, Ascaris suum.

Glycobiol. 8, 891-899

LOCHNIT, G., R. D. DENNIS, A. J. ULMER and R. GEYER (1998b):

Structural elucidation and monokine-inducing activity of two biologically active zwitterionic glycosphingolipids derived from the porcine parasitic nematode Ascaris suum.

J. Biol. Chem. 273, 466-474

Immunohistochemical localization and differentiation of phosphocholine-containing antigens of the porcine, parasitic nematode, Ascaris suum.

Parasitol. 122, 359-370

LOUKAS, A., A. P. BROWN and D. I. PRITCHARD (2002):

Na-ctl-2, a cDNA encoding a C-type lectin expressed exclusively in adult Necator americanus hookworms.

DNA Seq. 13, 61-65

LOUKAS, A., A. DOEDENS, M. HINTZ and R. M. MAIZELS (2000a):

Identification of a new C-type lectin, TES-70, secreted by infective larvae of Toxocara canis, which binds to host ligands.

Parasitol. 121, 545-554

LOUKAS, A., M. HINTZ, D. LINDER, N. P. MULLIN, J. PARKINSON, K. K. A.

TETTEH and R. M. MAIZELS (2000b):

A family of secreted mucins from the parasitic nematode Toxocara canis bears diverse mucin domains but shares similar flanking six-cysteine repeat motifs.

J. Biol. Chem. 275, 39600-39607

LOUKAS, A., N. P. MULLIN, K. K. A. TETTEH, L. MOENS and R. M. MAIZELS (1999):

A novel C-type lectin secreted by a tissue-dwelling parasitic nematode.

Curr. Biol. 9, 825-828

LUSTIGMAN, S., T. HUIMA, B. BROTMAN, K. MILLER and A. M. PRINCE (1990):

Oncocerca volvulus - biochemical and morphological characteristics of the surface of 3rd stage and 4th stage larvae.

Exp. Parasitol. 71, 489-495

MAASS, D. R., G. B. L. HARRISON, W. N. GRANT and C. B. SHOEMAKER (2007):

Three surface antigens dominate the mucosal antibody response to gastrointestinal L3-stage strongylid nematodes in field immune sheep.

Int. J. Parasitol. 37, 953-962

MAIZELS, R. M., D. A. P. BUNDY, M. E. SELKIRK, D. F. SMITH and R. M.

ANDERSON (1993):

Immunological modulation and evasion by helminth parasites in human populations.

Nature 365, 797-805

MAIZELS, R. M., J. BURKE and D. A. DENHAM (1987a):

Phosphorylcholine-bearing antigens in filarial nematode parasites - analysis of somatic extracts, invitro secretions and infection sera from Brugia malayi and Brugia pahangi.

Parasite Immunol. 9, 49-66

SMITH (1987b):

Shared carbohydrate epitopes on distinct surface and secreted antigens of the parasitic nematode Toxocara canis.

J. Immunol. 139, 207-214

MAIZELS, R. M. and A. P. PAGE (1990):

Surface associated glycoproteins from Toxocara canis larval parasites.

Acta Tropica 47, 355-364

MAJUMDAR, G., S. SAMANTA and S. K. GHOSAL (1996):

Some histochemical observations on the cuticle of Ascaridia galli, a gastrointestinal nematode of poultry.

Helminthol. 33, 115-120

MARTIN, R. R., I. BEVERIDGE, A. L. PULLMAN and T. H. BROWN (1990):

A modified technique for the estimation of the number of infective nematode larvae

A modified technique for the estimation of the number of infective nematode larvae