• Keine Ergebnisse gefunden

FUSION REACTORS

Im Dokument Fusion and Fast Breeder Reactors (Seite 160-177)

STRAIGHT TUBE HELICAL TUBE Figure IV-6: SNR 300 Steam Generators

2. FUSION REACTORS

Table IV-IV: Summary of Material Environments for Various D-T Fusion Reactor Designs Reference [IV- 6 I [IV- 71 [IV- 81 [IV- 91 [IV-101 [IV-Ill [IV-131 [IV-141 [IV-151 [IV-191 [IV-211 [IV-221 [IV-231 [IV-241 [IV-261 [IV;27]

Coolant L i L i He Li He He He He He Li L i He Li L i Li

Maximum First Wall Temperature ( OC) 1050 500 550 1000 663 470 630 400-700 400 not stated 500-1 100 850 max 482 2650 =800 550-850 Cycles Per Year 1.3~10: 4.7'10 4.7.10' l.2.104 4.1*103 not stat2d 4.2'10 4.2'10' not stated 2.1.10' 2.5.108 2.5.10' 2.5.106 < 10 <10 8.5-lo6

Average Neutron Wall Loading (Nw/m2 ) 0.5 1.25 1.16 2.5 1.8 2.9 2.0 1.6 1.0 1.8 1 .O 2.5 1.6 1.6 3.1 2.0

First Wall Material Nb-1Zr SS 316 SS 316 TZM PE16 Nb Incoloy 80C Mo alloy SAP Nb Nb Nb Cr Mo-steel SS V alloy Nb

Type Reactor TOKAMAK ORNL UWMAK- I UWMAK- I I UWMAK- I I1 PPPL Culham-I JAERI-I JAERI-I1 BNL-I Laser LASL-I LLL Jtilich-Saturn ORNL-Blascon Mirror LLL LLL Theta LASL-ANL Pinch Power :W'(th) ) 1,000 5,000 5,000 5,000 5,546 5.000 2,000 2,000 3,125 3,745 760 5,000 150 640 2.030 12,000

We have chosen the T O W l A K reactors as a reference for this study hecause they have been studied in greatest detail; they also seem to be the lead reactor concept in most national pro- grams. The great number of TOKAMAK reactor designs helps to insure that the appropriate diversity will be achieved with respect to coolants, tritium inventory, radioactive materials inventory, and materials resource demands. We will attempt to develop an envelope of characteristics for all the reactors now under consideration as we assess the requirements of fusion power.

It is worthwhile to point out how the reactor designs have changed since the first full-scale reactor designs by A.P. Fraas [IV-61, and the Culham group [IV-111, The first thing of note is the trend toward austenitic steels and, consequently, lower operating temperatures. This tends to give a different picture with respect to long-lived radio- isotopes than previous articles, and it also lowers the effi- ciency of the reactors to that currently typical of present fission or future breeder reactors.

Another change since those early reactors is the inclusion of helium as a coolant and the potential for lower tritium inventories in the blanket by the use of solid lithium breeding coumpunds [IV-8, IV-14 to IV-161. While this does not eliminate the problems of tritium accidents, it does tend to reduce them in the area of the blanket.

A third change is the attention paid to the balance of plant design and the inclusion of that part of the system in the materials resource demands, cost estimates, and safety hazards. This area still needs more attention, but recent

studies of balance of plant designs have revealed a few sur- prises which were not considered in the earlier work. These are, for example, the need for load leveling systems, attention to external piping cost of high temperature systems, and the effect of magnetic field leakage [IV-7 to IV-91

.

The final point is that power levels have been increased in order to find an optimum size from the standpoint of costs.

Several TOKAMAK studies have fixed on the 5000 M\J(th) size, while the reference Theta Pinch reactor is up to 12,000 MW(th).

Considering that fusion reactor designs are still very preliminary, it is not worthwhile to describe them in the de- tail given in Section IV.l of this chapter. Certainly there is more detail than given here, and the reader is referred to a recent publication [IV-301, which includes more of the plasma-physics, thermal, and mechanical design details.

I RASMA II. HOT CELL REWIR AREA 2 TCUOIDAL FIELD COIL (PI 6. LI PRIMARY SYSTEM (ONE FOR EACH ff t? UWULESI t? MAGNET SHIELD 1 RETRACTABLE DIMRTOR COlL (81 7 No SECONDARY SISTEM( '

. . . .

I R. BLANKET 4. T~ORYER COIL (101 8 DlVERmR Li PRIMARY SYSTEM 14. DIVERTOR UXLECTICU AREA 5 EWCUATEO PRIMARY CONTAINMENT BUILDING 9. DIVERTOR No SEMIIDARY SYSTEM IS uomlzm MDDUE SUPPORT VEHICLE 10 TURBINE-GENERATOR BUILDING 16 AUXILIARY EWIPMENT AREA Figure IV-14: Wisconsin TOKAMAK Fusion Reactor, UWMAK-I

I TOROIDAL FIELD MAGNETS (241 6 LATERAL SUPPORT STRUCTURE

2 PLASMA CHAYBER B SECONDARY VACWM WALL

3 CENTRAL SUPPORT COLUMN 7 FUELING PORTS141

4 BLANKET MODULES 8 SHIELD

5 BLANKET REYOVAL TRACKS 9 HELIUM COOLANT HEADERS 10 TRANSFORMER COlL (18)

II OVERHEAD SUPPORT BEAMS 12 VERTICAL FIELD COlL SUPPORTS 13 HELIUM INLET B OUTLET PIPES 14 ROOF SUPPORT COLUMNS IS NEUTRAL BEAM INJECTORS

F i g u r e I V - 1 5 : W i s c o n s i n TOKAMAK F u s i o n R e a c t o r , UWMAK-I1

l e a r

Figure IV-22: Conceptual Mirror Fusion Reactor with Direct Conversion (Courtesy of G. Carlson, Lawrence Livermore Laboratory)

irl

z:

ha,

6

m 3 k

(6 7

4J 0 7 U

u -

3. CONCLUSIONS

A u s e f u l c o m p a r i s o n o f f u s i o n and f i s s i o n b r e e d e r s r e q u i r e s t h a t t h e a n a l y s i s b e u n d e r t a k e n a t a l e v e l o f d e t a i l t h a t c a n o n l y be p r o v i d e d by r e f e r e n c e t o s p e c i f i c r e a c t o r d e s i g n s .

The b a s i s f o r o u r c h o i c e i n f i s s i o n i s t h a t t h e L i q u i d M e t a l F a s t B r e e d e r R e a c t o r (LMFBR) c l e a r l y d o m i n a t e s r e s e a r c h and d e v e l o p m e n t programs on b r e e d e r r e a c t o r s a r o u n d t h e w o r l d , making t h e LMFBR by f a r t h e most l i k e l y b r e e d e r f o r commercial- i z a t i o n . H i s t o r i c a l l y , f a s t r e a c t o r s h a v e b e e n p r e f e r r e d t o t h e r m a l b r e e d e r s b e c a u s e o f t h e i r h i g h e r b r e e d i n g r a t i o s , which p r o v i d e optimum f u e l u t i l i z a t i o n and t h e p o s s i b i l i t y o f a r e l a t i v e l y r a p i d e x p a n s i o n o f t h e number o f r e a c t o r s . Among f a s t r e a c t o r s , l i q u i d - m e t a l - c o o l e d r e a c t o r s h a v e r e c e i v e d much more a t t e n t i o n t h a n g a s - c o o l e d r e a c t o r s f o r p a r t l y t e c h n i c a l and p a r t l y h i s t o r i c a l r e a s o n s . I n any c a s e , no p r o t o t y p e g a s - c o o l e d f a s t r e a c t o r s a r e u n d e r c o n s t r u c t i o n a t p r e s e n t . Among v a r i o u s e x i s t i n g LMFBR d e s i g n s w e c h o s e t h e German/Belgian/

Dutch f a s t b r e e d e r p r o t o t y p e r e a c t o r SNR 300 b e c a u s e we had f u l l a c c e s s t o a l l t h e d e t a i l s o f t h e program.

On t h e f u s i o n s i d e , i t i s i m p o s s i b l e t o s t a t e w i t h a n y c e r t a i n t y which c o n f i g u r a t i o n w i l l a c t u a l l y l e a d t o a w o r k i n g r e a c t o r . A t t h e p r e s e n t t i m e , t h e TOKAMAK c o n c e p t seems t o p r o v i d e t h e g r e a t e s t p r o m i s e o f s u c c e s s from a s c i e n t i f i c s t a n d p o i n t a n d , t h e r e f o r e , h a s been t h e o b j e c t o f m o s t con- c e p t u a l r e a c t o r d e s i g n s . However, i t s t o r o i d a l g e o m e t r y and complex magnet c o n f i g u r a t i o n make t h e TOKAMAK a v e r y d i f f i c u l t s y s t e m t o d e s i g n f o r e l e c t r i c i t y p r o d u c t i o n ; t h e c o n s t r u c t i o n o f s u c h l a r g e - s c a l e power p l a n t s w i l l u n d o u b t e d l y be more d i f f i c u l t t h a n t h a t o f s i m i l a r - s i z e d f i s s i o n b r e e d e r r e a c t o r s . P e r h a p s some o t h e r a p p r o a c h t o f u s i o n ( M i r r o r s , l a s e r f u s i o n , e t c . ) w i l l l e a d more e a s i l y t o a r e a c t o r t h a n t h e TOKAMAK

c o n c e p t , b u t i t i s t o o e a r l y t o s a y . W e h a v e c h o s e n t o d i s c u s s h e r e t h e l i q u i d - l i t h i u m c o o l e d TOKAMAK b e c a u s e more e x t e n s i v e and d e t a i l e d i n f o r m a t i o n h a s been a c c e s s i b l e f o r t h i s c o n c e p t t h a n seems t o b e a v a i l a b l e f o r o t h e r a p p r o a c h e s .

REFERENCES

[IV-I] ~ e t r o s i a n t s , A . M . , Atomnaya E n e r g i y a , Nauka, Moscow, 1976.

[IV-21 D a l l e Donne, M . , and C.A. Goetzmann, D e s i g n and S a f e t y C o n s i d e r a t i o n s f o r a 1000 MW(e) Gas-Cooled F a s t R e a c t o r , N u c l e a r Energy M a t u r i t y , F i r s t European N u c l e a r C o n f e r e n c e , P a r i s , A p r i l 21-25, 1975, ANS T r a n s a c t i o n s ,

20,

468-471, American N u c l e a r S o c i e t y , H i n s d a l e , I l l . , 1975.

[ I V - 3 1 M e l e s e - d l H o s p i t a l , G . a n d L. M e y e r , S t a t u s o f t h e US G a s - C o o l e d F a s t R e a c t o r D e m o n s t r a t i o n P l a n t P r o g r a m , NUCLEX 7 5 I n t e r n a t i o n a l N u c l e a r I n d u s t r i e s F a i r , O c t o b e r 7 - 1 1 , 1 9 7 5 , B a s e l , S w i t z e r l a n d , 1 9 7 5 .

[ I V - 4 1 L a r r i m o r e , J . A . , G a s - C o o l e d B r e e d e r S a f e t y , J o i n t ASME/ANS I n t e r n a t i o n a l C o n f e r e n c e o n A d v a n c e d N u c l e a r E n e r g y S y s t e m s , P i t t s b u r g , P a . , March 1 4 - 1 7 , 1 9 7 6 ,

A m e r i c a n S o c i e t y o f M e c h a n i c a l E n g i n e e r s and A m e r i c a n N u c l e a r S o c i e t y , P r o c e e d i n g s t o be p u b l i s h e d .

[ I V - 5 1 P e r r y , A.M. a n d A.M. W e i n b e r g , T h e r m a l B r e e d e r R e a c t o r s , A n n u a l R e v i e w o f N u c l e a r S c i e n c e ,

22,

3 1 7 - 3 5 4 , 1 9 7 2 . [ I V - 6 1 F r a a s , A . P . , C o n c e p t u a l D e s i g n o f t h e B l a n k e t and S h i e l d

R e g i o n and R e l a t e d S y s t e m s f o r a F u l l S c a l e T o r o i d a l F u s i o n R e a c t o r , ORNL-TM-3096, Oak R i d g e N a t i o n a l L a b o r a t o r y , Oak R i d g e , T e n n . , 1 9 7 3 .

[ I V - 7 1 B a d g e r , B . , e t a l .

,

UWMAK-I, A W i s c o n s i n T o r o i d a l F u s i o n R e a c t o r D e s i g n , UWFDM-68, U n i v e r s i t y o f W i s c o n s i n , M a d i s o n ,

vol.

I , 1 9 7 4 , and V o l . 1 1 , 1 9 7 5 .

[ I V - 8 1 B a d g e r , B . , e t a l . , UWMAK-11, A C o n c e p t u a l Tokamak Power R e a c t o r D e s i g n , UWFDM-112, U n i v e r s i t y o f W i s c o n s i n , M a d i s o n , 1 9 7 5 .

[ I V - 9 1 B a d g e r , B . , e t a l .

,

UWMAK-111, H i g h P e r f o r m a n c e , Non- c i r c u l a r Tokamak Power R e a c t o r D e s i g n , UWFDM-150, U n i v e r s i t y o f W i s c o n s i n , M a d i s o n , 1 9 7 5 .

[ I V - 1 0 1 M i l l s , R.G., e d . , A F u s i o n Power P l a n t , MATT-1050, P r i n c e t o n U n i v e r s i t y P l a s m a P h y s i c s L a b o r a t o r y , P r i n c e t o n , N J , 1 9 7 4 .

[ I V - 1 1 1 H a n c o x , R . , Culham I R e a c t o r D e s i g n , I n t e r n a t i o n a l S c h o o l o f F u s i o n R e a c t o r T e c h n o l o g y , E r i c e , 1 9 7 2 , p . 1 3 5 ; and p r i v a t e c o m m u n i c a t i o n w i t h R. H a n c o x , C u l h a m L a b o r a t o r y , A b i n g d o n , U K , 1 9 7 5 .

[ I V - 1 2 1 M i t c h e l l , J.T.D., e t a l . , A D e s i g n C o n c e p t f o r a F u s i o n R e a c t o r B l a n k e t and Magnet S h i e l d S t r u c t u r e , CLM-R-121, C u l h a m L a b o r a t o r y , A b i n g d o n , U K , 1 9 7 2 . [ I V - 1 3 1 S a k o , K . , e t a l . , D e s i g n S t u d y o f a Tokamak R e a c t o r

IAEA-CN/33/Gl-5, i n P l a s m a P h y s i c s and C o n t r o Z Z e d N u c l e a r F u s i o n R e s e a r c h

-

1 9 7 4 , I n t e r n a t i o n a l A t o m i c E n e r g y A g e n c y , V i e n n a , 1 9 7 5 .

[ I V - ~ ~ I S a k o , K . , e t a l . , C o n c e p t u a l D e s i g n o f a Gas C o o l e d Tokamak R e a c t o r , JAERI-M-5502, J a p a n A t o m i c E n e r g y R e s e a r c h I n s t i t u t e , T o k y o , 1 9 7 3 .

Powell, J.R., et al., Preliminary Reference Design of Fusion Reactor Blanket Exhibiting Very Low Residual Radioactivity, BNL-19565, Brookhaven National Laboratory, Upton, NY, 1974.

Powell, J.R., e t al., Minimum Activity Blankets for Commercial and Experimental Power Reactors,

BNL-18439, Brookhaven National Laboratory, Upton, NY, 1973.

Bertolini, E., e t al., Design of a Minimum Size Toroidal DT Experimental Reactor, IAEA-CN/33/G1-1, in Plasma Physics and Controlled Nuclear Fusion Research

-

1974, Vol. 111, 485, International Atomic Energy Agency, Vienna, 1975.

Golovin, I., Kurchatov Institute, Moscow, t o be published.

Williams, J., et al., A Conceptual Laser Controlled Thermonuclear Reactor Power Plant, in G.R. Hopkins, ed., Proceedings of the First Topical Meeting on the Technology of Controlled Nuclear Fusion, Conf.-740402-PI, Vol. I , 7 0 , Technical Information Center, Oak Ridge, Tenn., 1974.

Booth, L.A., Central Station Power Generation by Laser-Driven Fusion, LA-4858-MS,-Vol. I , Los Ala- mos Scientific Laboratory, Los Alamos, NM, 1972.

Hovingh, J., e t al., The Preliminary Design of a Suppressed Ablation Laser Induced Fusion Reactor, in G.R. Hopkins, ed., Proceedings of the First Topical Meeting on the Technology of Controlled Nuclear Fusion, Conf.-740402-P2, Vol. I, 96,

National Technical Information Service, Springfield, Va., 1974.

Bohn, F.H., H. Conrads, J. Darvas, and S. Forester, Saturn

-

A Conceptual Design of a Laser Fusion Power Plant, in R.S. Pearse, ed., Pulsed Fusion Reactors, EUE5307, 364, Pergamon Press, Oxford,

1975.

Lubin, M.J., and A.P. Fraas, Fusion by Laser, Scienti- fic American,

224,

6 , 1971.

Werner, R.W., e t al., Progress Report No. 2 on the Design Considerations for a Low Power Experimental Fusion Reactor, UCRL-74054-2, Lawrence Livermore Laboratory, Livermore, Ca., 1974.

[IV-251 Wolkenhauer, W.C., et al., Conceptual Design of a Fusion-Fission Hybrid Reactor Based on a Mirror Fusion Reactor with a Subcritical Gas-Cooled

Fission Blanket, in G.R. Hopkins, ed., Proceedings of the First Topical Meeting on the Technology of Controlled Nuclear Fusion, Conf.-740402-Pl., Vol. I, 238, National Technical Information Ser- vice, Springfield, Va., 1974.

[IV-261 Carlson, G.A., and R.W. Moir, Mirror Fusion Reactor Study, UCRL-76985, Lawrence Livermore Laboratory, Livermore, Ca., 1975.

[IV-271 An Engineering Design Study of Reference Theta Pinch Reactor (RTPR), LA-5336, ANL-8019, Los Alamos

Scientific Laboratory, Los Alamos, PDT, and National Technical Information Service, Springfield, Va., March 1974.

[IV-281 Varnado, S.G., et al., PreZiminary Systems Consider- ations for an Electron Beam Induced Fusion Power Plant, SAND-74-0160, Sandia Laboratory, Albuquerque, NM, October 1974.

[IV-291 Booth, L.A., et al., Prospects of Generating Power with Laser Driven Fusion, proceedings of the IEEE,

64,

10, 1976.

[IV-301 Davis, J.W., and G.L. Kulcinski, Major Features of D-T Tokamak Fusion Reactor Systems, Nuclear Fusion, 16, 2 , 355, 1976.

-

A P P E N D I X T O C H A P T E R I V

A MORE DETAILED ANALYSIS OF FUTURISTIC FUSION REACTOR CONCEPTS

IV-A A TOKAMAK REACTOR AND AN WID ENERGY CONVERSION SYSTEM

Im Dokument Fusion and Fast Breeder Reactors (Seite 160-177)