• Keine Ergebnisse gefunden

The correlation between the stratigraphical organisation of the human vocal fold’s lamina propria and its oscillatory characteristics is well understood. However, the effects of the porcine vocal folds’ specific structural features on (porcine) vocal fold oscillation are still unknown. In this respect, the findings of the present study can be interpreted as follows:

The fibro-elastic subepithelial layer (SEL) present in CraF and CauF was placed like a membrane (approx. 20 µm thick) over the loose, i.e. soft, superficial layer (SL).

According to the body-cover theory of vocal fold vibration (see chapter 2.3: The stratigraphical organisation of the lamina propria), the loose superficial tissue of the vocal fold represents the ‘cover’, which moves relatively freely upon the underlying

‘body’ (HIRANO 1974; YUMOTO and KADOTA 1998). The aforementioned fibro-elastic membrane covering this loose tissue can be assumed to sustain the shape of the ‘cover’ and thus limit its range of movement. There is a similar structure, i.e. the basement membrane zone (BMZ), in humans, but there is no data reporting on how thick it is, nor has there been an attempt to incorporate it into functional considerations (see Paper II, Discussion: Functional considerations – The phoniatrical body-cover model).

In the ‘old’ minipigs, the superficial layer (SL) of CraF and CauF was no longer as loose (i.e. sparse in fibres) as before, but rather contained high amounts of fibres (Paper II). A related loss of flexibility may be further increased by the ageing of the fibres: Aged fibres become stiffer and less elastic (GRAY et al. 2000; BAILEY 2001;

SHERRATT 2009).

Consequently, the entire ‘cover’ could be assumed to be stiffer and less elastic in the

‘old’ animals. These changes appeared much more pronounced in the minipigs compared to humans, as in the latter, the cover’s structure mostly remained relatively loose (see chapter 2.4: The structural features of maturation and ageing of the vocal folds; and Paper II).

The intermediate layer (IL) of the ‘young’ minipigs resembled the human ILLP with regard to the location of the peak values of elastic fibre amounts (Paper II). In humans, this distinct structural item is an essential component of the vocal ligament.

Therefore, the structure of the IL of the ‘young’ minipigs may reflect the CraF’s role during phonation: ALIPOUR and JAISWAL (2008, 2009) have proposed the cranial vocal fold as the main oscillator of the porcine glottis.

Finally, the dense accumulations of collagen fibre bundles in the depth of the CraF deserve major attention in terms of function, as they occurred in a location equivalent to that of the muscle in the CraF and also in the human vocal fold.

Apparently, the phoniatrical ‘body’ of the CraF is completely fibrous, rather than fibro-muscular (see Paper II).

6 Summary

Anja Lang

Histomorphometrical analysis of the fibrous components of the porcine vocal folds – Stratigraphical features and their relevance for models in phoniatry

The stratigraphical organisation of the Cranial and the Caudal Vocal Fold (CraF, CauF) of the porcine glottis was examined with regard to the criteria of the phoniatrical body-cover model. The aim of this examination was the elaboration of histological features of tissue maturation and aging, in order to elucidate the potentials of the pig as an animal model in human phoniatry. With regard to the procedure of Object Definition, the potentials and limitations of histomorphometry of non-corpuscular structures (i.e. fibres) are emphasised.

For this purpose, the collagenous and elastic fibre apparatus of CraF and CauF was examined in ‘young’ (2-3 months, n = 6), ‘adult’ (11-27 months, n = 11), and ‘old’ (54-84 months, n = 6) female minipigs. Cross sections of the glottis were selectively stained by Masson’s trichrome for collagen structures, or resorcin-fuchsin for elastic fibres. The amounts of these fibres were examined by semi-automated histo-morphometry in Adobe Photoshop, in which Object Definition was based on colour selection of collagen and elastic fibres. Technical problems related to differences in staining intensities were solved by visual control and manual adjustment of the system. A different – presumably biological – problem of Object Definition occurred when collagen fibres the CraF of the ‘old’ specimens were unexpectedly stained reddish (instead of green). These two kinds of problems are discussed with special emphasis on the limitations of histomorphometrical procedures. In addition to the analysis of fibre amounts, the diameters of the collagen structures were analysed with the aid of a semiquantitative scoring system. The distinction of layers and the determination of their boundaries required extensive statistical data analysis. A key

element of this procedure was the assignment of proportional subunits and hypothetical zones.

The study revealed the presence of a four-layered stratigraphy in both CraF and CauF, comprising subepithelial, superficial, intermediate, and deep layers (SEL, SL, IL, DL).

The subepithelial layer (SEL) was thin, but characterised by dense accumulations of fibres located directly underneath the epithelium in both folds of all age groups. This fibro-elastic membrane resembled the so-called basement membrane zone of humans described in the literature. It was assumed to limit the range of movement of the underlying tissue during vocal fold oscillation in pigs.

Underneath the SEL, a superficial layer (SL) was present in CraF and CauF. It was histologically similar to the loose and flexible superficial layer of humans (Reinke’s space), which is supposed to act as a phoniatrically relevant part of the ‘cover’. In the

‘old’ minipigs, the loose composition of the SL was lost due to a strong increase in fibre amounts. In the CauF, this increase was encountered in the entire lamina propria, as has been reported to occasionally occur in geriatric humans.

In the CauF, the tissue underneath the SL (i.e. IL and DL) displayed no clearly demarcated accumulations of thick fibre bundles which could be interpreted as a

‘vocal ligament’. Elastic fibres – known to be superimposed on collagen fibres in the human vocal ligament – were rather homogeneously mixed with the collagen fibres.

Consequently, the application of the term ‘vocal ligament’ to the intermediate and deep layers (IL, DL) of the CauF did not appear appropriate.

Only in the CraF of the ‘young’ minipigs, peak values of elastic fibre amounts were detected in the intermediate layer (IL), i.e. spread over the collagen fibres of the deep layer (DL). This similarity between porcine CraF and human vocal fold was presumed to reflect the CraF’s role as the main oscillator. With increasing age, however, this

similarity between pigs and humans vanished due to a strong increase in elastic fibre amounts throughout all layers, but with a certain concentration in the superficial regions of the porcine vocal folds.

Large amounts of thick collagen fibre bundles were present in the depth of the CraF, i.e. in a location equivalent to that of the vocal muscle in the CauF and in the human vocal fold. This fibre arrangement in the CraF was discussed to adopt a functional role (similar to that of the vocal muscle) as part of the phoniatrical ‘body’ during vocal fold oscillation. This assumption was supported by the fact that these bundles developed as a result of histological maturation rather than of ageing.

In conclusion, the histological data support the assumption (from the literature) that the CraF is suited to act as the main oscillator of the porcine glottis. Considering Reinke’s space, however, it is the CauF which deserves major attention, because its superficial layer was twice as thick as that of the CraF.

7 Zusammenfassung

Anja Lang

Histomorphologische Untersuchungen am Faserapparat der Stimmfalten des Schweins – Stratigraphische Merkmale und deren Relevanz für phoniatrische Modelle

Die stratigraphische Organisation der Kranialen und der Kaudalen Stimmfalte (CraF, CauF) des Schweines wurde mit Blick auf die Kriterien des phoniatrischen Body-Cover-Modells untersucht. Hierbei sollte die Darstellung der Eigenschaften der Reifung und Alterung des Bindegewebes eine Einschätzung des Potentials eines Modells „Schwein“ für die Human-Phoniatrie ermöglichen. Im Mittelpunkt dieser Arbeit standen insbesondere die Möglichkeiten und die Grenzen der Histomorpho-metrie nicht-korpuskulärer Strukturen.

Der kollagene und elastische Faserapparat von „jungen“ (2-3 Monate, n = 6),

„adulten“ (11-27 Monate, n = 11) und „alten“ (54-84 Monate, n = 6) weiblichen Minipigs wurde untersucht, indem Querschnitte ihrer Glottis entweder mittels Masson-Trichrom für Kollagenfasern oder Resorcin-Fuchsin für elastische Fasern gefärbt wurden. Die Fasergehalte in diesen Querschnitten wurden mit Hilfe eines semiautomatischen histomorphometrischen Verfahrens im Bildbearbeitungspro-gramm Adobe Photoshop bestimmt. Die Object Definition beruhte dabei auf der Erfassung der kollagenen und elastischen Fasern anhand ihrer selektiven Farbewerte. Technische Probleme (unterschiedliche Intensität der Färbungen) konnten mit Hilfe von visuellen Kontrollen und manuellen Eingriffen in die Routine gelöst werden. Ein anderes – vermutlich biologisches – Problem trat in der CraF der

„alten“ Tiere auf. Hier wurden Kollagenfasern unerwarteterweise rötlich (anstatt grün) gefärbt. Die Auswirkungen dieser Art von Problemen wurden besonders mit Blick auf die Grenzen der Histomorphometrie diskutiert. Zusätzlich zu der Analyse der

Fasergehalte wurden die Durchmesser der Kollagenfasern und -faserbündel mit Hilfe eines semiquantitiativen Scoring-Systems ausgewertet. Die Bestimmung von Schichten und deren Grenzen bedurften einer aufwändigen statistischen Datenanalyse; ein wesentliches Element dieser Prozedur war eine Unterteilung in

„Proportionale Subunits“ und hypothetische „Zonen“.

In beiden Falten (CraF und CauF) der Glottis des Schweins wurde eine Vierschichtigkeit festgestellt. Diese zeichnete sich aus durch Subepithelial, Superficial, Intermediate und Deep Layer (SEL, SL, IL, DL).

Der Subepithelial Layer (SEL) bestand aus einem schmalen Saum dicht angehäufter Fasern direkt unterhalb des Epithels, und zwar in beiden Falten und in allen Altersgruppen. Diese fibro-elastische Membran ähnelte der aus dem Schrifttum bekannten sogenannten Basement Membrane Zone des Menschen. Faserart und Faserdichte des SEL legten nahe, dass er den Bewegungsspielraum des darunter liegenden lockeren Gewebes (d.h. des phoniatrischen „Covers“) während der Oszillation der Stimmfalten beeinflusst.

Unterhalb des SEL befand sich in CraF und CauF der Superficial Layer (SL).

Histologisch ähnelte er dem lockeren Superficial Layer in der Stimmfalte des Menschen (Reinke-Raum); von ihm wird angenommen, dass er den wesentlichen Anteil des „Covers“ ausmacht. Dieser lockere Bau des SL verlor sich jedoch in Folge eines starken Anstiegs der Fasermengen in beiden Falten der „alten“ Minipigs. In der CauF fand eine solche Zunahme der Fasermengen über die ganze Tiefe der Lamina propria statt; ähnliches wird im Schrifttum gelegentlich von geriatrischen Menschen berichtet.

Die CauF zeigte unterhalb des SL (also in IL und DL) keine klar abgegrenzte Ansammlung dicker Faserbündel welche man als Stimmband bezeichnen könnte.

Elastische Fasern, die beim menschlichen Stimmband den Kollagenfasern aufge-lagert sind, waren in der CauF des Schweins homogen mit den Kollagenfasern

vermischt. Demnach erschien es nicht angebracht, IL und DL als Stimmband (Ligamentum vocale) anzusprechen.

Nur in der CraF der „jungen“ Schweine wurden im Intermediate Layer (IL) Spitzenwerte an Mengen elastischer Fasern festgestellt; sie waren den Kollagenfasern des Deep Layers (DL) aufgelagert. Hierin besteht eine Gemein-samkeit von CraF und menschlicher Stimmfalte, die die Annahme einer Rolle der CraF als Hauptoszillator stützt. Mit zunehmendem Alter verschwand jedoch diese Gemeinsamkeit zwischen Schweinen und Menschen, und zwar aufgrund eines starken Anstiegs der Gehalte elastischer Fasern vor allem im oberflächlichen Bereich der Falte.

In der Tiefe der CraF – dort wo sich in der CauF und in der menschlichen Stimmfalte der Stimmmuskel befindet – wurden sehr viele dicke Kollagenfaserbündel angetroffen. Diese Bündel übernehmen vermutlich die Funktion des phoniatrischen

„Bodys“, ähnlich dem Stimmmuskel. Die Entwicklung der Bündel im Zuge der Reifung (statt der Alterung) unterstützt diese Annahme.

Aus den Befunden wird abgeleitet: Die histologische Zusammensetzung und die stratigraphische Organisation der kranialen Falte (CraF) unterstützen die im Schrifttum formulierte These, wonach die kraniale Falte (CraF) in der Glottis des Schweins als Hauptoszillator fungieren kann. Hinsichtlich des Reinke-Raum sollte jedoch die kaudale Falte im Zentrum der Aufmerksamkeit stehen, da der Superficial Layer hier doppelt so dick ist wie in der CraF.

8 References

ALIPOUR, F., and S. JAISWAL (2008):

Phonatory characteristics of excised pig, sheep, and cow larynges.

J. Acoust. Soc. Am. 123, 4572 - 4581 ALIPOUR, F., and S. JAISWAL (2009):

Glottal airflow resistance in excised pig, sheep, and cow larynges.

J. Voice 23, 40 - 50

ALIPOUR, F., S. JAISWAL and S. VIGMOSTAD (2011):

Vocal fold elasticity in the pig, sheep, and cow larynges.

J. Voice 25, 130 - 136

ALIPOUR, F., E. M. FINNEGAN and S. JAISWAL (2013):

Phonatory characteristics of the excised human larynx in comparison to other species.

J. Voice 27, 441 - 447 ALTMAN, D. G. (1999):

Practical statistics for medical research.

Chapman & Hall/CRC, Boca Raton, London, New York, Washington D.C.

BAILEY, A. J. (2001):

Molecular mechanisms of ageing in connective tissues.

Mech. Ageing Dev. 122, 735 - 755

BIEVER, D. M., and D. M. BLESS (1989):

Vibratory characteristics of the vocal folds in geriatric and young adult women.

J. Voice 3, 120 - 131

BLAKESLEE, D. B., R. E. BANKS, V. EUSTERMAN and D. BROOKS (1995):

Analysis of vocal fold function in the miniswine model.

J. Invest. Surg. 8, 409 - 424 BÖCK, P. (1989):

Romeis: Mikroskopische Technik.

17th ed., Urban & Schwarzenberg, München, Wien, Baltimore

BÜHLER, R., L. U. SENNES, D. H. TSUJI, T. MAUAD, L. FERRAZ DA SILVA and P. N. SALDIVA (2011):

Collagen type I, collagen type III, and versican in vocal fold lamina propria.

Arch. Otolaryngol. Head Neck Surg. 137, 604 - 608 BUROW, W. (1902):

Beiträge zur Anatomie und Histologie des Kehlkopfes einiger Haussäugethiere.

Zürich, Univ., philosoph. Fakultät., Diss.

BUTLER, J. E., T. H. HAMMOND and S. D. GRAY (2001):

Gender-related differences of hyaluronic acid distribution in the human vocal fold.

Laryngoscope 111, 907 - 911

CHAN, R. W., M. FU, L. YOUNG and N. TIRUNAGARI (2007):

Relative contributions of collagen and elastin to elasticity of the vocal fold under tension.

Ann. Biomed. Eng. 35, 1471 - 1483 CLEMENTE, C. D. (1997):

Anatomy. A regional atlas of the human body.

4th ed., Williams & Wilkins, Baltimore

DÖLLINGER, M., F. ROSANOWSKI, U. EYSHOLDT and J. LOHSCHELLER (2008):

Grundlagenuntersuchungen für Stimmlippendynamik.

HNO 56, 1213 - 1220

DRUNCKER, H. - R., and W. KUMMER (2008):

Atemsystem.

in: DRENCKHAHN, D. (Ed.): Benninghoff, Drenckhahn: Anatomie. Makroskopische Anatomie, Histologie, Embryologie, Zellbiologie. Bd. 1. Zellen- und Gewebelehre, Entwicklungslehre, Skelett- und Muskelsystem, Atemsystem, Verdauungssystem, Harn- und Genitalsystem.

17th ed., Elsevier, Urban & Fischer, München, Jena, pp. 533 - 584 EGAN, K. P., T. A. BRENNAN and R. J. PIGNOLO (2012):

Bone histomorphometry using free and commonly available software.

Histopathology 61, 1168 - 1173

EYSHOLDT, U., F. ROSANOWSKI and U. HOPPE (2003):

Messung und Interpretation von irregulären Stimmlippenschwingungen.

HNO 51, 710 - 176 FARLEX (2012) Histomorphometry.

in: Farlex Partner Medical Dictionary [Internet: URL: http://medical-dictionary.thefreedictionary.com/histomorphometry]

FAYOUX, P., L. DEVISME, O. MERROT, D. CHEVALIER and B. GOSSELIN (2004):

Histologic structure and development of the laryngeal macula flava.

Ann. Otol. Rhinol. Laryngol. 113, 498 - 504

FEDERATIVE COMMITTEE ON ANATOMICAL TERMINOLOGY (2011):

Terminologia Anatomica.

2nd ed., Thieme, Stuttgart FENEIS, H. (1998):

Anatomisches Bildwörterbuch der internationalen Nomenklatur.

8th ed., Thieme, Stuttgart, New York FINCK, C. (2005):

Structure cordale et pathologies vocales (Vocal fold structure and speech pathologies).

Rev. Laryngol. Otol. Rhinol. (Bordeaux) 126, 295 - 300

FONSECA, V. R., O. MALAFAIA, J. M. RIBAS FILHO, P. A. NASSIF, N. G. CZECZKO, C. A. MARCONDES and M. M. NASCIMENTO (2010):

Angiogenesis, fibrinogenesis and presence of synechiae after exeresis of a swine vocal fold mucosal microflap and use of topical mitomycin-C.

Acta Cir. Bras. 25, 80 - 85

GANDERUP, N. C., W. HARVEY, J. T. MORTENSEN and W. HARROUK (2012):

The minipig as nonrodent species in toxicology - where are we now?

Int. J. Toxicol. 31, 507 - 528

GARRETT, C. G., J. R. COLEMAN and L. REINISCH (2000):

Comparative histology and vibration of the vocal folds: implications for experimental studies in microlaryngeal surgery.

Laryngoscope 110, 814 - 824

GRAY, S. D., S. S. PIGNATARI and P. HARDING (1994):

Morphologic ultrastructure of anchoring fibers in normal vocal fold basement membrane zone.

J. Voice 8, 48 - 52

GRAY, S. D., I. R. TITZE, F. ALIPOUR and T. H. HAMMOND (2000):

Biomechanical and histologic observations of vocal fold fibrous proteins.

Ann. Otol. Rhinol. Laryngol. 109, 77 - 85 GRAY, S. D. (2000):

Cellular physiology of the vocal folds.

Otolaryngol. Clin. North Am. 33, 679 - 698 GUNDLACH, M. (2012):

Phänotypische Charakterisierung des Wachstums ausgewählter Röhrenknochen an Vorder- und Hinterextremität bei Miniaturschweinen der Rasse „Mini-LEWE“ mittels quantitativer Computertomographie.

Hannover, Tierärztl. Hochsch., Diss.

HAHN, M. S., J. B. KOBLER, S. M. ZEITELS and R. LANGER (2005):

Midmembranous vocal fold lamina propria proteoglycans across selected species.

Ann. Otol. Rhinol. Laryngol. 114, 451 - 462

HAHN, M. S., J. B. KOBLER, B. C. STARCHER, S. M. ZEITELS and R. LANGER (2006 a):

Quantitative and comparative studies of the vocal fold extracellular matrix. I: Elastic fibers and hyaluronic acid.

Ann. Otol. Rhinol. Laryngol. 115, 156 - 164

HAHN, M. S., J. B. KOBLER, S. M. ZEITELS and R. LANGER (2006 b):

Quantitative and comparative studies of the vocal fold extracellular matrix. II:

Collagen.

Ann. Otol. Rhinol. Laryngol. 115, 225 - 232

HAMMOND, T. H., S. D. GRAY, J. E. BUTLER, R. ZHOU and E. HAMMOND (1998):

Age- and gender-related elastin distribution changes in human vocal folds.

Otolaryngol. Head Neck Surg. 119, 314 - 322

HAMMOND, T. H., S. D. GRAY and J. E. BUTLER (2000):

Age- and gender-related collagen distribution in human vocal folds.

Ann. Otol. Rhinol. Laryngol. 109, 913 - 920 HIRANO, M. (1974):

Morphological structure of the vocal cord as a vibrator and its variations.

Folia Phoniatr. (Basel) 26, 89 - 94 HIRANO, M. (1977):

Structure and vibratory behavior of the vocal folds.

in: M. SAWASHIMA and F. S. COOPER (Eds.): Dynamic aspects of speech production: Current results, emerging problems and new instrumentation.

University of Tokyo Press, Tokyo, pp. 13 - 30 HIRANO, M. (1981):

Clinical examination of voice.

Springer, Wien, New York

HIRANO, M., S. KURITA and T. NAKASHIMA (1983):

Growth, development, and aging of human vocal cords.

in: D. M. BLESS and J. H. ABBS (Eds.): Vocal fold physiology. Contemporary research and clinical issues.

College Hill Press, San Diego, California, pp. 22 - 43 HIRANO, M., and Y. KAKITA (1985):

Cover-body theory of vocal fold vibration.

in: DANILOFF, R. G. (Ed.): Speech Science.

College Hill Press, San Diego, California, pp. 1 - 47 HIRANO, M., S. KURITA and S. SAKAGUCHI (1989):

Ageing of the vibratory tissue of human vocal folds.

Acta Otolaryngol. 107, 428 - 433

HIRANO, M., K. SATO and T. NAKASHIMA (1999):

Fibroblasts in human vocal fold mucosa.

Acta Otolaryngol. 119, 271 - 276

HIRANO, M., K. SATO and T. NAKASHIMA (2000):

Fibroblasts in geriatric vocal fold mucosa.

Acta Otolaryngol. 120, 336 - 340

INTERNATIONAL COMMITTEE ON VETERINARY GROSS ANATOMICAL NOMENCLATURE (2005):

Nomina Anatomica Veterinaria.

5th ed., Editorial Committee, Hannover, Columbia, Gent, Sapporo ISHII, K., W. G. ZHAI, M. AKITA and H. HIROSE (1996):

Ultrastructure of the lamina propria of the human vocal fold.

Acta Otolaryngol. 116, 778 - 782

ISHII, K., K. YAMASHITA, M. AKITA and H. HIROSE (2000):

Age-related development of the arrangement of connective tissue fibers in the lamina propria of the human vocal fold.

Ann. Otol. Rhinol. Laryngol. 109, 1055 - 1064

JIANG, J. J., J. R. RAVIV and D. G. HANSON (2001):

Comparison of the phonation-related structures among pig, dog, white-tailed deer, and human larynges.

Ann. Otol. Rhinol. Laryngol. 110, 1120 - 1125

JOHANES, I., E. MIHELC, M. SIVASANKAR and A. IVANISEVIC (2011):

Morphological properties of collagen fibers in porcine lamina propria.

J. Voice 25, 254 - 257

JOINT COMMITTEE FOR GUIDES IN METROLOGY (2008):

International vocabulary of metrology – Basic and general concepts and associated terms (VIM).

[Internet: URL: http://www.bipm.org/en/publications/guides/vim]

KAHANE, J. C. (1983):

A Survey of age-related changes in the connective tissues of the human adult larynx.

in: D. M. BLESS and J. H. ABBS (Eds.): Vocal fold physiology. Contemporary research and clinical issues.

College Hill Press, San Diego, California, pp. 44 - 49 KAMBIC, V., N. GALE and Z. RADSEL (1989):

Die anatomischen Merkmale des Reinke-Raumes und die Ätio-Pathogenese des Reinke-Ödems.

Laryngo-Rhino-Otol. 68, 231 - 235

KOCH, R., I. HENNIG-PAUKA and H. GASSE (2010):

Prinzipielle Unterschiede am Stimmapparat von Mensch und Schwein: Einige wesentliche morphologische Kriterien.

Pneumologie 64, 5 - 6

KÖNIG, H. E., and H. - G. LIEBICH (2009):

Anatomie der Haussäugetiere. Lehrbuch und Farbatlas für Studium und Praxis.

4th ed., Schattauer, Stuttgart

KRAUSERT, C. R., A. E. OLSZEWSKI, L. N. TAYLOR, J. S. McMURRAY, S. H. DAILEY and J. J. JIANG (2011):

Mucosal wave measurement and visualization techniques.

J. Voice 25, 395 - 405

KURITA, S., K. NAGATA and M. HIRANO (1983):

A comparative study of the layer structure of the vocal fold.

in: D. M. BLESS and J. H. ABBS (Eds.): Vocal fold physiology. Contemporary research and clinical issues.

College Hill Press, San Diego, California, pp. 3 - 21

LAHM, A., M. UHL, H. A. LEHR, C. IHLING, P. C. KREUZ and J. HABERSTROH (2004):

Photoshop-based image analysis of canine articular cartilage after subchondral damage.

Arch. Orthop. Trauma Surg. 124, 431 - 436

LANG, A., R. KOCH and H. GASSE (2012 a):

A comparison of the porcine and human glottis with emphasis on the elastic fibres.

in: 29. Arbeitstagung der Anatomischen Gesellschaft, Würzburg, 26. - 28. 09. 2012 (Poster 12).

[Internet: URL: www.anatomische-gesellschaft.de/Tagungen-ag3/abstract-archive.html]

LANG, A., R. KOCH and H. GASSE (2012 b):

Histomorphometric analysis of the fibre contents of the cranial and caudal folds of the porcine glottis.

in: XXIXth Congress of the European Association of Veterinary Anatomists, Stara Zagora, Bulgaria, 25. - 28. 07. 2012 (Poster 37).

Bulg. J. Vet. Med. 15, Suppl. 1, 79.

LANG, A., R. KOCH and H. GASSE (2013 a):

Histomorphometry of non-corpuscular structures – potential and limitations.

in: Proceedings of the 7th Meeting of the Young Generation of Veterinary Anatomists.

Lehmanns Media-Verlag, Berlin, p. 26.

LANG, A., R. KOCH and H. GASSE (2013 b):

The elastic system of the porcine glottis: a model for human phoniatry?

A histomorphometric study of age-related changes in pigs.

in: 30. Arbeitstagung der Anatomischen Gesellschaft, Würzburg, 25. - 27. 09. 2013 (Poster 16).

[Internet: URL: www.anatomische-gesellschaft.de/Tagungen-ag3/abstract-archive.html]

LAURINAVICIUS, A., A. LAURINAVICIENE, D. DASEVICIUS, N. ELIE, B. PLANCOULAINE, C. BOR and P. HERLIN (2012):

Digital image analysis in pathology: benefits and obligation.

Anal. Cell Pathol. (Amsterdam) 35, 75 - 78

LEHR, H. A., C. M. VAN DER LOOS, P. TEELING and A. M. GOWN (1999):

Complete chromogen separation and analysis in double immunohistochemical stains

Complete chromogen separation and analysis in double immunohistochemical stains