• Keine Ergebnisse gefunden

Chapter 4. DISCUSSION

4.6 Final remarks

The present study describes the activation of genes in the deep cervical lymph nodes and spleen, and relates the expression profiles to the disease progression in TME.

The use of techniques such as microarray technologies helped to elucidate the role of genes involved in the immune response during the initiation and progression of TME. Pathway analysis provided detailed information about the pathogenesis of this MS model (Ulrich et al., 2009). The present study reveals that several genes are associated with the peripheral immune response in early TME. Obtained results demonstrate the activation of B-cells in the CNS-draining lymph node, which might represent a requisite for subsequent intrathecal antibody generation within the spinal cord during disease progression. Regarding B-cells, it is interesting to highlight the divergent role of humoral immune responses in immune-mediated disorders, such as MS, including immunomodulatory effects by IL-10-producing regulatory B-cells as well as antibody-dependent cell-mediated cytotoxicity (Anderton, 2008). Future studies are planned to investigate the distribution of different B-cell and plasma cell subsets in the CNS and peripheral lymphoid organs in TMEV-infected mice.

Equivalent to the hypothesis of a closed BBB in progressive MS, reduced transcription of genes at later time points is indicative of a compartmentalization during lesion development in infected animals. However, partial reactivation of immunity related genes during the late chronic phase might represent a consequence of a leaky BBB or polyphasic process, respectively. Future experiments have to focus on the dynamics of neurovascular permeability and the interaction between CNS and the peripheral immune response during disease initiation and progression in this model for human MS.

Summary 67

SUMMARY

María José Navarrete Talloni – Gene expression profiling of peripheral lymphoid organs in a murine model for multiple sclerosis

Theiler’s murine encephalomyelitis virus-induced demyelination represents an important animal model to study the chronic-progressive form of multiple sclerosis.

The aim of the present study was to identify specific genes and pathways in peripheral lymphoid organs such as the deep cervical lymph node and spleen in experimentally infected SJL-mice, using DNA microarray techniques. Associated phenotypical changes in the lymph node have been characterized by immunohistochemistry and pathological alterations in the brain and spinal cord have been classified by histology. In addition, viral dissemination in the central nervous system (CNS) and lymphoid organs was determined by immunohistochemistry and in situ-hybridization. Molecular analyses identified 387 differentially expressed genes in the deep cervical lymph node and only six genes in the spleen of infected animals. In the lymph node, 27.4% of genes presented fold changes +/- 1.5 at 14 days post infection (dpi), followed by a reduced gene transcription at later time points. K-means clustering analyses resulted in five clusters. Accordingly, functional annotation revealed pathways associated with immune regulation, including B-cell immune responses as the most up-regulated cluster at the early disease phase. In addition, transcriptional changes in the deep cervical lymph node were associated with an increase of CD68- and lysozyme-positive cells by immunohistochemistry, suggestive of CNS-derived antigen presentation. Polioencephalitis was most intense at 14 dpi, gradually declining at 42, 98 and 196 dpi. In contrast, demyelinating leukomyelitis in the spinal cord started at 42 dpi and progressively increased until 196 dpi.

In summary, early gene expression is indicative of virus trigged immune responses in the peripheral lymphoid organs. The decreased gene transcription in the deep cervical lymph node during the chronic disease phase and the low number of

68 Summary

differentially expressed genes in the spleen supports the hypothesis of a compartmentalized inflammation within the CNS, as described in progressive multiple sclerosis.

Zusammenfassung 69

ZUSAMMENFASSUNG

María José Navarrete Talloni Genexpressionsanalyse peripherer lymphatischer Organe in einem Mausmodell für Multiple Sklerose

Die durch das Theilersche murine Enzephalomyelitis Virus (TMEV) hervorgerufene Demyelinisierung dient als wichtiges Tiermodell zur Erforschung der chronisch-progressiven Verlaufsform der Multiplen Sklerose des Menschen. Ziel der vorliegenden Untersuchung war die Identifizierung spezifischer Gene und deren Signalwege in den tiefen zervikalen Lymphknoten und der Milz von experimentell infizierten SJL-Mäusen unter Verwendung der DNA Microarray-Analyse.

Phänotyische Veränderungen in den lymphatischen Organen wurden zusätzlich mittels Immunhistologie charakterisiert und die Läsionen im Gehirn und Rückenmark der Mäuse histologisch untersucht. Außerdem wurde die Virusverteilung im Zentralen Nervensystem (ZNS) und in den peripheren lymphatischen Organen der Tiere mittels Immunhistologie und in situ-Hybridisierung erfasst. Mittels der molekularen Analysen wurden 387 exprimierte Gene in den tiefen zervikalen Lymphknoten und sechs Gene in den Milzen von TMEV-infizierten Mäusen identifiziert. Am 14. Tag nach der Infektion (dpi) wiesen 27,4% der Gene im Lymphknoten einen „fold change“ von ± 1,5 auf, gefolgt von einer reduzierten Genexpression an den darauffolgenden Untersuchungstagen (42., 98. und 196. dpi). Die exprimierten Gene wurden mittels der „k-mean-cluster“-Analyse in fünf Gruppen eingeteilt. Die Analysen der funktionellen Gruppen verdeutlichten das Auftreten von immunregulatorischen Mechanismen und einer humoralen Immunantwort in der frühen Krankheitsphase der Tiere. Als Hinweis auf eine Migration von antigenpräsentierenden Zellen konnte eine zeitgleiche Zunahme von CD68- und Lysozym-positiven Zellen im tiefen zervikalen Lymphknoten mittels Immunhistologie nachgewiesen werden. Die Polioenzephalitis war am stärksten am 14. dpi nach der Infektion. Im Gegensatz hierzu begann die

70 Zusammenfassung

demyelinisierende Leukomyelitis im Rückenmark am 42. dpi und nahm bis zum 196.

dpi progressiv zu.

Zusammenfassend lässt sich feststellen, dass die frühe Genexpression charakteristisch für eine Virus-bedingte Immunantwort in den regionären Lymphknoten des ZNS ist. Vergleichbar mit den Prozessen bei der Multiplen Sklerose, spricht die verminderte Transkription im Lymphknoten während der chronischen Krankheitsphase und die geringe Genexpression in der Milz für die Hypothese einer Kompartimentalizierung der Entzündung innerhalb des ZNS von TMEV-infizierten Mäusen.

References 71

REFERENCES

Abbott, N.J., 2004. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 45, 545-552.

Achiron, A., Gurevich, M., Friedman, N., Kaminski, N., Mandel, M., 2004a. Blood transcriptional signatures of multiple sclerosis: unique gene expression of disease activity. Ann Neurol. 55, 410-417.

Achiron, A., Gurevich, M., Magalashvili, D., Kishner, I., Dolev, M., Mandel, M., 2004b.

Understanding autoimmune mechanisms in multiple sclerosis using gene expression microarrays: treatment effect and cytokine-related pathways. Clin Dev Immunol. 11, 299-305.

Adams, M.D., Kelley, J.M., Gocayne, J.D., Dubnick, M., Polymeropoulos, M.H., Xiao, H., Merril, C.R., Wu, A., Olde, B., Moreno, R.F., et al., 1991. Complementary DNA sequencing: expressed sequence tags and human genome project. Science. 252, 1651-1656.

Alldinger, S., Baumgärtner, W., Orvell, C., 1993. Restricted expression of viral surface-proteins in canine-distemper encephalitis. Acta Neuropathol. 85, 635-645.

Aloisi, F., Pujol-Borrell, R., 2006. Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol. 6, 205-217.

Anderton, S.M., Fillatreau, S., 2008. Activated B cells in autoimmune diseases: the case for a regulatory role. Nat Clin Pract Rheumatol. 4, 657-666.

Appel, M.J.G., 1969. Pathogenesis of canine distemper. Am J Vet Res. 30, 1167-1175.

Aranami, T., Yamamura, T., 2008. Th17 Cells and autoimmune encephalomyelitis (EAE/MS). Allergol Int. 57, 115-120.

72 References

Arthur A.T., Armati P.J., Bye C., Heard R.N., Stewart G.J., Pollard J.D., Booth D.R., 2008. Genes implicated in multiple sclerosis pathogenesis from consilience of genotyping and expression profiles in relapse and remission. BMC Med Genet. 9, 17.

Ashburner M., Ball C.A., Blake J.A., Botstein D., Butler H., Cherry J.M., Davis A.P., Dolinski K., Dwight S.S., Eppig J.T., Harris M.A., Hill DP., Issel-Tarver L., Kasarskis A., Lewis S., Matese J.C., Richardson J.E., Ringwald M, Rubin G.M., Sherlock G.

Gene Ontology C., 2000. Gene Ontology: tool for the unification of biology. Nat Genet. 25, 25-29.

Bakker A.B.H., Hoek R.M., Cerwenka A., Blom B., Lucian L., McNeil T., Murray R., Phillips J.H., Sedgwick J.D., Lanier L.L., 2000. DAP12-deficient mice fail to develop autoimmunity due to impaired antigen priming. Immunity. 13, 345-353.

Banchereau, J., Steinman, R.M., 1998. Dendritic cells and the control of immunity.

Nature. 392, 245-252.

Banchereau J., Briere F., Caux C., Davoust J., Lebecque S., Liu Y.J., Pulendran B., Palucka K., 2000. Immunobiology of dendritic cells. Ann Rev Immunol. 18, 767-811.

Bar-Or, A., Oliveira, E.M.L., Anderson, D.E., Hafler, D.A., 1999. Molecular pathogenesis of multiple sclerosis. J Neuroimmunol. 100, 252-259.

Baranzini, S.E., Jeong, M.C., Butunoi, C., Murray, R.S., Bernard, C.C.A., Oksenberg, J.R., 1999. B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. J Neuroimmunol. 163, 5133-5144.

Baranzini, S.E., 2004. Gene expression profiling in neurological disorders: toward a systems-level understanding of the brain. Neuromolecular Med. 6, 31-51.

Barrett, T., 1999. Morbillivirus infections, with special emphasis on morbilliviruses of carnivores. Vet Microbiol. 69, 3-13.

Baumann, N., Pham-Dinh, D., 2001. Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev. 81, 871-927.

References 73

Baumgärtner, W., Orvell, C., Reinacher, M., 1989. Naturally occurring canine distemper virus encephalitis: distribution and expression of viral polypeptides in nervous tissues. Acta Neuropathol. 78, 504-512.

Baumgärtner, W., Alldinger, S., 2005. The pathogenesis of canine distemper virus induced demyelination – A biphasic process. In: Experimental models of multiple sclerosis. E. Lavi, C.S. Constantinescu (eds). Springer, New York, pp. 871–887.

Becker, K.G., Mattson, D.H., Powers, J.M., Gado, A.M., Biddison, W.E., 1997.

Analysis of a sequenced cDNA library from multiple sclerosis lesions. J Neuroimmunol. 77, 27-38.

Beineke, A., Puff, C., Seehusen, F., Baumgartner, W., 2009. Pathogenesis and immunopathology of systemic and nervous canine distemper. Vet Immunol Immunopathol. 127, 1-18.

Beineke, A., Markus, S., Borlak, J., Thum, T., Baumgartner, W., 2008. Increase of pro-inflammatory cytokine expression in non-demyelinating early cerebral lesions in nervous canine distemper. Viral Immunol. 21, 401-410.

Benoist, C., Mathis, D., 1998. Autoimmunity - The pathogen connection. Nature. 394, 227-228.

Bernard, C.C., de Rosbo, N.K., 1991. Immunopathological recognition of autoantigens in multiple sclerosis. Acta Neurol. 13, 171-178.

Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T.B., Oukka, M., Weiner, H.L., Kuchroo, V.K., 2006. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 441, 235-238.

Bjartmar, C., Yin, X., Trapp, B.D., 1999. Axonal pathology in myelin disorders. J Neurocytol. 28, 383-395.

Bjerkas, I., 1977. Hereditary "cavitating" leucodystrophy in Dalmation dogs. Light and electron microscopic studies. Acta Neuropathol. 40, 163-169.

74 References

Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias.

Bioinformatics 19:185-193.

Bomprezzi, R., Ringner, M., Kim, S., Bittner, M.L., Khan, J., Chen, Y., Elkahloun, A., Yu, A., Bielekova, B., Meltzer, P.S., Martin, R., McFarland, H.F., Trent, J.M., 2003.

Gene expression profile in multiple sclerosis patients and healthy controls: identifying pathways relevant to disease. Hum Mol Genet. 12, 2191-2199.

Bradbury, M.W., Cserr, H.F., Westrop, R.J., 1981. Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol. 240, 329-336

Brahic, M., Bureau, J.F., 1998. Genetics of susceptibility to Theiler's virus infection.

Bioessays. 20, 627-633.

Brahic, M., Bureau, J.F., Michiels, T., 2005. The genetics of the persistent infection and demyelinating disease caused by Theiler's virus. Ann Rev Microbiol. 59, 279-298.

Braund, K.G., Toivio-Kinnucan, M., Vallat, J.M., Mehta, J.R., Levesque, D.C., 1994.

Distal sensorimotor polyneuropathy in mature Rottweiler dogs. Vet Pathol. 31, 316-326.

Braund, K.G., Vallat, J.M., Steiss, J.E., Panangala, V.S., Zimmer, P.L., 1996. Chronic inflammatory demyelinating polyneuropathy in dogs and cats. J Peripher Nerv Syst.

1, 149-155.

Braund, K.G., Shores, A., Lowrie, C.T., Steinberg, H.S., Moore, M.P., Bagley, R.S., Steiss, J.E., 1997. Idiopathic polyneuropathy in Alaskan malamutes. J Vet Intern Med. 11, 243-249.

Brück, W., Sommermeier, N., Bergmann, M., Zettl, U., Goebel, H.H., Kretzschmar, H.A., Lassmann, H., 1996. Macrophages in multiple sclerosis. Immunobiol. 195, 588-600.

References 75

Brück, W., Lucchinetti, C., Lassmann, H., 2002. The pathology of primary progressive multiple sclerosis. Mult Scler. 8, 93-97.

Burgoon, M.P., Cohrs, R.J., Bennett, J.L., Anderson, S.W., Ritchie, A.M., Cepok, S., Hemmer, B., Gilden, D., Owens, G.P., 2009. Varicella zoster virus is not a disease-relevant antigen in multiple sclerosis. Ann Neurol. 65, 474-479.

Burns, J., Rosenzweig, A., Zweiman, B., Lisak, R.P., 1983. Isolation of myelin basic protein-reactive T-cell lines from normal human blood. Cell Immunol. 81, 435-440.

Butte, A., 2002. The use and analysis of microarray data. Nat Rev Drug Discov. 1, 951-960.

Callanan, J.J., Mooney, C.T., Mulcahy, G., Fatzer, R., Vandevelde, M., Ehrensperger, F., McElroy, M., Toolan, D., Raleigh, P., 2002. A novel nonsuppurative meningoencephalitis in young greyhounds in Ireland. Vet Pathol. 39, 56-65.

Cassan, C., Liblau, R.S., 2007. Immune tolerance and control of CNS autoimmunity:

from animal models to MS patients. J Neurochem. 100, 883-892.

Centola, M., Frank, M.B., Bolstad, A.I., Alex, P., Szanto, A., Zeher, M., Hjelmervik, T.O., Jonsson, R., Nakken, B., Szegedi, G., Szodoray, P., 2006. Genome-scale assessment of molecular pathology in systemic autoimmune diseases using microarray technology: a potential breakthrough diagnostic and individualized therapy-design tool. Scand J Immunol. 64, 236-242.

Cepok, S., Rosche, B., Grummel, V., Vogel, F., Zhou, D., Sayn, J., Sommer, N., Hartung, H.P., Hemmer, B., 2005a. Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain. 128, 1667-1676.

Cepok, S., Zhou, D., Srivastava, R., Nessler, S., Stei, S., Bussow, K., Sommer, N., Hemmer, B., 2005b. Identification of Epstein-Barr virus proteins as putative targets of the immune response in multiple sclerosis. J Clin Invest. 115, 1352-1360.

76 References

Chabas, D., Baranzini, S.E., Mitchell, D., Bernard, C.C., Rittling, S.R., Denhardt, D.T., Sobel, R.A., Lock, C., Karpuj, M., Pedotti, R., Heller, R., Oksenberg, J.R., Steinman, L., 2001. The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science. 294, 1731-1735.

Charcot, J.M., 1869. Histologie de la sclérose en plaques. In: Leçon faite à l'hospice de la Salpêtrière par M. Charcot et recueillie par M. Bourneville. L. Poupart-Davyl (ed), Paris, pp. 23.

Charcot, J.M., Marie, P., 1886. Sur une forme particulière d'atrophie musculaire progressive, souvent familiale débutant par les pieds et les jambes et atteignant plus tard les mains. Revue médicale, Paris, pp. 97-138.

Comabella, M., Martin, R., 2007. Genomics in multiple sclerosis. Current state and future directions. J Neuroimmunol. 187, 1-8.

Compston, A., Coles, A., 2008. Multiple sclerosis. Lancet. 372, 1502-1517.

Consortium IMSG, 2008. Refining genetic associations in multiple sclerosis. Lancet Neurol. 7, 567-569.

Cools, N., Ponsaerts, P., Van Tendeloo, V.F., Berneman, Z.N., 2007. Regulatory T cells and human disease. Clin Dev Immunol. 2007, 89195.

Cork, L.C., Hadlow, W.J., Gorham, J.R., Piper, R.C., Crawford, T.B., 1974. Pathology of viral leukoencephalomyelitis of goats. Acta Neuropathol. 29, 281-292.

Cserr, H.F., Knopf, P.M., 1992. Cervical lymphatics, the blood-brain-barrier and the immunoreactivity of the brain - A new view. Immunol Today. 13, 507-512.

Cudrici C., Ito T., Zafranskaia E., Niculescu F., Mullen K.M., Vlaicu S., Judge SI..V., Calabresi P.A., Rus H., 2007. Dendritic cells are abundant in non-lesional gray matter in multiple sclerosis. Exp Mol Path. 83, 198-206.

References 77

Cummings, J.F., Haas, D.C., 1966. Coonhound paralysis. An acute idiopathic polyradiculoneuritis in dogs resembling the Landry-Guillain-Barre syndrome. J Neurol Sci. 4, 51-81.

Cummings, J.F., de Lahunta, A., Timoney, J.F., 1979. Neuritis of the cauda equina, a chronic idiopathic polyradiculoneuritis in the horse. Acta Neuropathol. 46, 17-24.

Cyster, J.G., 1999. Chemokines - Chemokines and cell migration in secondary lymphoid organs. Science. 286, 2098-2102.

Dal Canto, M.C., Melvold, R.W., Kim, B.S., Miller, S.D., 1995. Two models of multiple sclerosis: experimental allergic encephalomyelitis (EAE) and Theiler's murine encephalomyelitis virus (TMEV) infection. A pathological and immunological comparison. Microsc Res Tech. 32, 215-229.

Dal Canto, M.C., Calenoff, M.A., Miller, S.D., Vanderlugt, C.L., 2000. Lymphocytes from mice chronically infected with Theiler's murine encephalomyelitis virus produce demyelination of organotypic cultures after stimulation with the major encephalitogenic epitope of myelin proteolipid protein. Epitope spreading in TMEV infection has functional activity. J Neuroimmunol. 104, 79-84.

Damoiseaux J.G., Dopp E.A., Calame W., Chao D., MacPherson G.G., Dijkstra C.D.,1994. Rat macrophage lysosomal membrane antigen recognized by monoclonal antibody ED1. Immunology. 83, 140-147.

De Vos, A.F., van Meurs, M., Brok, H.P., Boven, L.A., Hintzen, R.Q., van der Valk, P., Ravid, R., Rensing, S., Boon, L., t Hart, B.A., Laman, J.D., 2002. Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J Immunol. 169, 5415-5423.

Deem, S.L., Spelman, L.H., Yates, R.A., Montali, R.J., 2000. Canine distemper in terrestrial carnivores: a review. J Zoo Wildl Med. 31, 441-451.

Denman, A.M., Rager-Zisman, B., 2004. Viruses and autoimmune diseases - adapting Koch's postulates. Autoimmun Rev. 3, 355-361.

78 References

Dennis G., Sherman B., Hosack D., Yang J., Gao W., Lane H., Lempicki R., 2003).

DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. doi:10.1186/gb-2003-4-9-r60.

Divangahi M., Yang T., Kugathasan K., McCormick S., Takenaka S., Gaschler G., Ashkar A., Stampfli M., Gauldie J., Bramson J., Takai T., Brown E., Yokoyama W.M., Aoki N., Xing Z., 2007. Critical negative regulation of immunopathology by signaling intracellular infection. J Immunol. 179, 4015-4026.

Drescher, K.M., Pease, L.R., Rodriguez, M., 1997. Antiviral immune responses modulate the nature of central nervous system (CNS) disease in a murine model of multiple sclerosis. Immunol Rev. 159, 177-193.

Drescher K.M., Zoecklein L.J., Rodriguez M., 2002. ICAM-1 is crucial for protection from TMEV-induced neuronal damage but not demyelination. J Neurovirol. 8, 452-458.

Dumur, C.I., Nasim, S., Best, I.M., Archer, K.J., Ladd, A.C., Mas, V.R., Wilkinson, D.S., Garrett, C.T., Ferreira-Gonzales, A., 2004. Evaluation of quality-control criteria for microarray gene expression analysis. Clin Chem. 50, 1994-2002.

Dutta, R., McDonough, J., Yin, X., Peterson, J., Chang, A., Torres, T., Gudz, T., Macklin, W.B., Lewis, D.A., Fox, R.J., Rudick, R., Mirnics, K., Trapp, B.D., 2006.

Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol. 59, 478-489.

Ebers, G.C., 2008. Environmental factors and multiple sclerosis. Lancet Neurol. 7, 268-277.

Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D., 1998. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 95, 14863-14868.

Elo, L.L., Hiissa, J., Tuimala, J., Kallio, A., Korpelainen, E., Aittokallio, T., 2009.

Optimized detection of differential expression in global profiling experiments: case

References 79

studies in clinical transcriptomic and quantitative proteomic datasets. Brief Bioinform.

10, 547-555.

Ercolini, A.M., Miller, S.D., 2006. Mechanisms of immunopathology in murine models of central nervous system demyelinating disease. J Immunol. 176, 3293-3298.

Fabriek, B.O., Zwernmer, J.N.P., Teunissen, C.E., Dijkstra, C.D., Polman, C.H., Laman, J.D., Castelijns, J.A., 2005. In vivo detection of myelin proteins in cervical lymph nodes of MS patients using ultrasound-guided fine-needle aspiration cytology.

J Neuroimmunol. 161, 190-194.

Fazakerley, J.K., Amor, S., Webb, H.E., 1983. Reconstitution of Semliki forest virus infected mice, induces immune mediated pathological changes in the CNS. Clin Exp Immunol. 52, 115-120.

Fehder, W.P., Douglas, S.D., 2001. Interactions between the nervous and immune systems. Semin Clin Neuropsychiatry. 6, 229-240.

Flachenecker, P., Stuke, K., 2008. National MS registries. J Neurol. 255 Suppl 6, 102-108.

Fraussen, J., Vrolix, K., Martinez-Martinez, P., Losen, M., De Baets, M.H., Stinissen, P., Somers, V., 2009. B cell characterization and reactivity analysis in multiple sclerosis. Autoimmun Rev. 8, 654-658.

Fu, Y.X., Chaplin, D.D., 1999. Development and maturation of secondary lymphoid tissues. Annu Rev Immunol. 17, 399-433.

Fujinami R.S., 2001. Viruses and autoimmune disease - Two sides of the same coin?. Trends Microbiol. 9, 377-381.

Ganter, P., Prince, C., Esiri, M.M., 1999. Spinal cord axonal loss in multiple sclerosis:

a post-mortem study. Neuropathol Appl Neurobiol. 25, 459-467.

Geijtenbeek T.B., Torensma R., van Vliet S.J., van Duijnhoven G.C., Adema G.J., van Kooyk Y., Figdor C.G., 2000. Identification of DC-SIGN, a novel dendritic

cell-80 References

specific ICAM-3 receptor that supports primary immune responses. Cell. 100, 575-585.

Gerhauser, I., Alldinger, S., Baumgartner, W., 2007a. Ets-1 represents a pivotal transcription factor for viral clearance, inflammation, and demyelination in a mouse model of multiple sclerosis. Journal of Neuroimmunology. 188, 86-94.

Gerhauser, I., Ulrich, R., Alldinger, S., Baumgartner, W., 2007b. Induction of activator protein-1 and nuclear Factor-kappa B as a prerequisite for disease development in susceptible SJL/J mice after Theiler murine encephalomyelitis. Journal of Neuropathology and Experimental Neurology. 66, 809-818.

Geschwind, D.H., 2003. DNA microarrays: translation of the genome from laboratory to clinic. Lancet Neurol. 2, 275-282.

Goertsches, R.H., Hecker, M., Zettl, U.K., 2008. Monitoring of multiple sclerosis immunotherapy: from single candidates to biomarker networks. J Neurol. 255 Suppl 6, 48-57.

Graber, J.J., Allie, S.R., Mullen, K.M., Jones, M.V., Wang, T., Krishnan, C., Kaplin, A.I., Nath, A., Kerr, D.A., Calabresi, P.A., 2008. Interleukin-17 in transverse myelitis and multiple sclerosis. J Neuroimmunol. 196, 124-32.

Greter M., Heppner F.L,. Lemos M.P., Odermatt B.M., Goebels N., Laufer T., Noelle R.J., Becher B., 2005. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med. 11, 328-334.

Gröters S., Alldinger S., Baumgärtner W., 2005. Up-regulation of mRNA for matrix-metalloproteinases-9 and -14 in advanced lesions of demyelinating distemper leukoencephalitis. Acta Neuropathol. 110, 369–382.

Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C., Amigorena, S., 2002. Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol. 20, 621-67.

References 81

Guillain, G., Barré, J.A., Strohl, A., 1916. Sur un syndrome de radiculonévrite avec hyperalbuminose du liquide céphalo-rachidien sans réaction cellulaire. Remarques sur les caractères cliniques et graphiques des réflexes tendineux. Bulletins et mémoires de la Société des Médecins des Hôpitaux de Paris, Paris, pp. 1462-1470.

Gurevich M., Tuller T., Rubinstein U., Or-Bach R., Achiron A., 2009. Prediction of acute multiple sclerosis relapses by transcription levels of peripheral blood cells.

BMC Med Genomics. 2, 46.

Haahr, S., Hollsberg, P., 2006. Multiple sclerosis is linked to Epstein-Barr virus infection. Rev Med Virol. 16, 297-310.

Hamann J., Vogel B., vanSchijndel G.M.W., vanLier R.A.W., 1996. The seven-span transmembrane receptor CD97 has a cellular ligand (CD55, DAF). J Exp Med. 184, 1185-1189.

Hartung, H.P., Kieseier, B.C., Hemmer, B., 2005. Purely systemically active anti-inflammatory treatments are adequate to control multiple sclerosis. J Neurol. 252 Suppl 5, v30-37.

Hatterer, E., Touret, M., Belin, M.F., Honnorat, J., Nataf, S., 2008. Cerebrospinal fluid dendritic cells infiltrate the brain parenchyma and target the cervical lymph nodes under neuroinflammatory conditions. PLoS ONE. doi:10.1371/journal.pone.0003321.

Hauser, S.L., 1995. T-cell receptor genes – Germline polymorphisms and genetic susceptibility to demyelinating diseases. Ann N Y Acad Sci. 756, 233-240.

Hauser, S.L., Oksenberg, J.R., 2006. The neurobiology of multiple sclerosis: genes, inflammation, and neurodegeneration. Neuron. 52, 61-76.

Herndon, R.M., Griffin, D.E., McCormick, U., Weiner, L.P., 1975. Mouse hepatitis virus-induced recurrent demyelination. A preliminary report. Arch Neurol. 32, 32-35.

Hochmeister S., Grundtner R., Bauer J., Engelhardt B., Lyck R., Gordon G., Korosec T., Kutzelnigg A., Berger J.J., Bradl M., Bittner R.E., Lassmann H., 2006. Dysferlin is

82 References

a new marker for leaky brain blood vessels in multiple sclerosis. J Neuropathol Exp Neurol. 65, 855-865.

Hoffman, E.P., Awad, T., Palma, J., Webster, T., Hubbell, E., Warrington, J.A., Spirais, A., Wright, G., Buckley, J., Triche, T., Davis, R., Tibshirani, R., Xiao, W.H., Jones, W., Tompkins, R., West, M., 2004. Guidelines - Expression profiling - best practices for data generation and interpretation in clinical trials. Nat Rev Genet. 5, 229-237.

Holloway, A.J., van Laar, R.K., Tothill, R.W., Bowtell, D.D., 2002. Options available--from start to finish--for obtaining data available--from DNA microarrays II. Nat Genet. 32, Suppl, 481-9.

Holmdahl, R., 1998. Genetics of susceptibility to chronic experimental encephalomyelitis and arthritis. Curr Opin Immunol. 10, 710-717.

Hori, S., Nomura, T., Sakaguchi, S., 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science. 299, 1057-1061.

Hou, W., Kang, H.S., Kim, B.S., 2009. Th17 cells enhance viral persistence and inhibit T cell cytotoxicity in a model of chronic virus infection. J Exp Med. 206, 313-328.

Huan, J., Culbertson, N., Spencer, L., Bartholomew, R., Burrows, G.G., Chou, Y.K., Bourdette, D., Ziegler, S.F., Offner, H., Vandenbark, A.A., 2005. Decreased FOXP3 levels in multiple sclerosis patients. J Neurosc Res. 81, 45-52.

Huang da W., Sherman B.T., Lempicki R.A., 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4, 44-57.

Huseby, E.S., Liggitt, D., Brabb, T., Schnabel, B., Ohlen, C., Goverman, J., 2001. A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J Exp Med. 194, 669-676.

References 83

Ibrahim, S.M., Mix, E., Bottcher, T., Koczan, D., Gold, R., Rolfs, A., Thiesen, H.J., 2001. Gene expression profiling of the nervous system in murine experimental autoimmune encephalomyelitis. Brain. 124, 1927-1938.

Infante-Duarte, C., Horton, H.F., Byrne, M.C., Kamradt, T., 2000. Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol. 165, 6107-6115.

Infante-Duarte, C., Horton, H.F., Byrne, M.C., Kamradt, T., 2000. Microbial lipopeptides induce the production of IL-17 in Th cells. J Immunol. 165, 6107-6115.