• Keine Ergebnisse gefunden

Existence of many functions in D ( Hess )

3.3 Hessian

3.3.2 Existence of many functions in D ( Hess )

for every๐‘‡ โˆˆL2(๐‘‡โŠ—2M). Now Lemma 3.2.72, Lemma 3.2.54 as well as the continuity of ฮฆallow us to replace the termsโ„Ž๐‘– ๐‘—โ„Ž0

๐‘– ๐‘—by arbitrary elements๐‘˜๐‘– ๐‘— โˆˆTest(M), still retaining the identity (3.3.4) with๐‘˜๐‘– ๐‘—in place ofโ„Ž๐‘– ๐‘—โ„Ž0

๐‘– ๐‘—,๐‘–โˆˆ {1, . . . , ๐‘›}and ๐‘— โˆˆ {1, . . . , ๐‘š}. In particular, by Definition 3.3.2, we deduce that ๐‘“ โˆˆ D(Hess) and ๐ด0 =Hess ๐‘“. By Proposition 3.2.19 again and (3.3.5), we obtain

kHess๐‘“kL2( (๐‘‡โˆ—)โŠ—2M)=kฮฆkL2(๐‘‡โŠ—2M)0 โ‰ค

โˆš ๐ถ , which is precisely what was left prove.

Remark 3.3.4. IfE2 is extended toL2(M) byE2(๐‘“) := โˆž for ๐‘“ โˆˆ L2(M) \F, it is unclear if the resulting functional isL2-lower semicontinuous. To bypass this issue in applications, one might instead use that by Theorem 3.3.3, the functional E2๐œ€:L2(M) โ†’ [0,โˆž]given by

E2๐œ€(๐‘“):=

๏ฃฑ๏ฃด

๏ฃด

๏ฃฒ

๏ฃด๏ฃด

๏ฃณ ๐œ€

ห†

M

|โˆ‡๐‘“|2d๐”ช+ ห†

M

Hess๐‘“

2

HSd๐”ช if ๐‘“ โˆˆD(Hess),

โˆž otherwise

isL2-lower semicontinuous for every๐œ€ > 0.

IfMis, say, a compact Riemannian manifold without boundary, one can easily prove using the Bochner identity that the (nonpositive) generator associated withE2๐œ€ [FOT11, Thm. 1.3.1] is the Paneitz-type operator

โˆ’ฮ”2+๐œ€ฮ”๐‘“ +div(Ricโ™ญโˆ‡ยท).

Remark 3.3.5. In general, the Hessian is not the trace of the Laplacian in the sense of (3.2.12). This already happens on weighted Riemannian manifolds without boundary:

of course, the associated Laplacian ฮ” is defined by partial integration w.r.t. the reference measure [Gri09, Sec. 3.6], while the definition of Hessian only depends on the metric tensor. See also the second part of Example 3.2.48. Examples of abstract spaces for which thisisthe case โ€” and which currently enjoy high research interest [BNS20, DPG18, HZ20] โ€” arenoncollapsedRCD(๐พ , ๐‘)spaces,๐พโˆˆRand ๐‘โˆˆ [1,โˆž)[DPG18, Thm. 1.12]. See also Remark 3.3.16 below.

Remark 3.3.6. In line with Remark 3.3.5, although a priori๐”ชplays a role in Definition 3.3.2, we expect the Hessian to only depend on conformal transformations ofhยท,ยทi, but not on drift transformations of๐”ช. For instance, this is known on RCDโˆ—(๐พ , ๐‘)spaces, ๐พ โˆˆRand๐‘โˆˆ [1,โˆž), see e.g. [Han19, Prop. 3.11] or [HS21, Lem. 2.16], and it does not seem hard to adapt the arguments from [Han19] to more general settings.

Remark 3.3.7. As an alternative to Definition 3.3.2, one can defineD(Hess)as the finiteness domain of the r.h.s. of the duality formula in (iv) in Theorem 3.3.11. The Hessian of ๐‘“ โˆˆD(Hess)is then well-defined by the same duality arguments as in the

proof of Theorem 3.3.11.

[ER+20, Sav14, Stu18a]. The key technical part (not only for Theorem 3.3.11, but in fact for Theorem 3.6.9 below as well) is contained in Lemma 3.3.9, where โ€” loosely speaking and up to introducing the relevant objects later โ€” we show that

|โˆ‡๐‘‹ :๐‘‡|2 โ‰ค h

ฮ”2 ๐œ…|๐‘‹|2 2

+

๐‘‹ ,( ยฎฮ”๐‘‹โ™ญ)โ™ฏ

โˆ’

(โˆ‡๐‘‹)asym

2 HS

i ๐‘‡

2

HS ๐”ช-a.e.

for ๐‘‹ , ๐‘‡ โˆˆ Test(๐‘‡M). Of course, neither we introduced the covariant derivative โˆ‡, Definition 3.4.2 or the Hodge Laplacian ฮ”ยฎ, Definition 3.5.21, yet, nor in general we have|๐‘‹|2 โˆˆ D(ฮ”2 ๐œ…)for๐‘‹ โˆˆTest(๐‘‡M). Reminiscent of Proposition 3.2.75 and [ER+20, Cor. 6.3], we instead rephrase the above inequality in terms of measures, and the involved objectsโˆ‡๐‘‹ andฮ”ยฎ๐‘‹โ™ญtherein as the โ€œr.h.s.โ€™s of the identities one would expect forโˆ‡๐‘‹ andฮ”ยฎ๐‘‹โ™ญfor ๐‘‹ โˆˆTest(M)โ€, rigorously proven in Theorem 3.4.3 and Lemma 3.6.1 below. In particular, by optimization over๐‘‡ โˆˆTest(๐‘‡M),

(โˆ‡๐‘‹)sym

2

HS โ‰คฮ”2 ๐œ…|๐‘‹|2 2

+

๐‘‹ ,( ยฎฮ”๐‘‹โ™ญ)โ™ฏ

โˆ’

(โˆ‡๐‘‹)asym

2

HS ๐”ช-a.e.,

which is the Bochner inequality for vector fields according to (3.2.9). For๐‘‹ :=โˆ‡๐‘“, ๐‘“ โˆˆTest(M), this essentially provides Theorem 3.3.11. Details about this inequality for general๐‘‹ โˆˆReg(๐‘‡M), leading to Theorem 3.6.9, are due to Lemma 3.6.2.

We start with a technical preparation. Given๐œ‡, ๐œˆโˆˆ๐”f+(M), we define the Borel measureโˆš

๐œ‡ ๐œˆโˆˆ๐”f+(M)as follows. Let๐œ„โˆˆ๐”+f(M)with๐œ‡๐œ„and๐œˆ๐œ„be arbitrary, denote the respective densities w.r.t.๐œ„by ๐‘“ , ๐‘”โˆˆL1(M, ๐œ„), and set

โˆš

๐œ‡ ๐œˆ:=p ๐‘“ ๐‘” ๐œ„.

For instance, one can choose๐œ„:=|๐œ‡| + |๐œˆ|[Hal50, Thm. 30.A] โ€” in fact, the previous definition is independent of the choice of๐œ„, whenceโˆš

๐œ‡ ๐œˆis well-defined.

The following important measure theoretic lemma is due to [Gig18, Lem. 3.3.6].

Lemma 3.3.8. Let๐œ‡1, ๐œ‡2, ๐œ‡3โˆˆ๐”ยฑf(M)satisfy the inequality ๐œ†2๐œ‡1+2๐œ† ๐œ‡2+๐œ‡3โ‰ฅ0 for every๐œ†โˆˆR. Then the following properties hold.

(i) The elements๐œ‡1and๐œ‡3are nonnegative, and

|๐œ‡2| โ‰คโˆš ๐œ‡1๐œ‡3. (ii) We have๐œ‡2 ๐œ‡1,๐œ‡2๐œ‡3and

k๐œ‡2kTVโ‰คp

k๐œ‡1kTVk๐œ‡3kTV.

(iii) The๐”ช-singular parts(๐œ‡1)โŠฅand(๐œ‡3)โŠฅof๐œ‡1and๐œ‡3are nonnegative. Moreover, expressing the densities of the๐”ช-absolutely continuous parts of ๐œ‡๐‘– by ๐œŒ๐‘– := d(๐œ‡๐‘–)/d๐”ชโˆˆL1(M),๐‘–โˆˆ {1, 2, 3}, we have

|๐œŒ2|2โ‰ค๐œŒ1๐œŒ3 ๐”ช-a.e.

In the subsequent lemma, all terms where๐‘0is infinite are interpreted as being zero. Similar proofs can be found in [Bra20, Gig18, Han18a].

Lemma 3.3.9. Let ๐‘0 โˆˆ [๐‘ ,โˆž], ๐‘›, ๐‘š โˆˆ N, ๐‘“ , ๐‘” โˆˆ Test(M)๐‘› and โ„Ž โˆˆ Test(M)๐‘š. Define๐œ‡1[๐‘“ , ๐‘”] โˆˆ๐”fยฑ(M)as

๐œ‡1[๐‘“ , ๐‘”]:=

๐‘›

X

๐‘– ,๐‘–0=1

e๐‘”๐‘–

e๐‘”๐‘–0๐šช2 ๐œ…2 (๐‘“๐‘–, ๐‘“๐‘–0) +2

๐‘›

X

๐‘– ,๐‘–0=1

๐‘”๐‘–H[๐‘“๐‘–] (๐‘“๐‘–0, ๐‘”๐‘–0)๐”ช + 1

2

๐‘›

X

๐‘– ,๐‘–0=1

hโˆ‡๐‘“๐‘–,โˆ‡๐‘“๐‘–0i hโˆ‡๐‘”๐‘–,โˆ‡๐‘”๐‘–0i + hโˆ‡๐‘“๐‘–,โˆ‡๐‘”๐‘–0i hโˆ‡๐‘”๐‘–,โˆ‡๐‘“๐‘–0i ๐”ช

โˆ’ 1 ๐‘0

hX๐‘›

๐‘–=1

๐‘”๐‘–ฮ”๐‘“๐‘–+ hโˆ‡๐‘“๐‘–,โˆ‡๐‘”๐‘–ii2 ๐”ช

As in Lemma 3.3.8, we denote the density of the ๐”ช-absolutely continuous part of ๐œ‡1[๐‘“ , ๐‘”]by๐œŒ1[๐‘“ , ๐‘”]:=d๐œ‡1[๐‘“ , ๐‘”]/d๐”ชโˆˆL1(M). Then the๐”ช-singular part๐œ‡1[๐‘“ , ๐‘”]โŠฅ

of๐œ‡1[๐‘“ , ๐‘”]as well as๐œŒ1[๐‘“ , ๐‘”]are nonnegative, and hX๐‘›

๐‘–=1 ๐‘š

X

๐‘—=1

hโˆ‡๐‘“๐‘–,โˆ‡โ„Ž๐‘—i hโˆ‡๐‘”๐‘–,โˆ‡โ„Ž๐‘—i +๐‘”๐‘–H[๐‘“๐‘–] (โ„Ž๐‘—, โ„Ž๐‘—)

โˆ’ 1 ๐‘0

๐‘›

X

๐‘–=1 ๐‘š

X

๐‘—=1

๐‘”๐‘–ฮ”๐‘“๐‘–+ hโˆ‡๐‘“๐‘–,โˆ‡๐‘”๐‘–i

|โˆ‡โ„Ž๐‘—|2i2

โ‰ค๐œŒ1[๐‘“ , ๐‘”]hX๐‘š

๐‘— , ๐‘—0=1

hโˆ‡โ„Ž๐‘—,โˆ‡โ„Ž๐‘—0i2โˆ’ 1 ๐‘0

hX๐‘š

๐‘—=1

|โˆ‡โ„Ž๐‘—|2i2i

๐”ช-a.e.

Proof. We define๐œ‡2[๐‘“ , ๐‘”, โ„Ž], ๐œ‡3[โ„Ž] โˆˆ๐”fยฑ(M)by ๐œ‡2[๐‘“ , ๐‘”, โ„Ž]:=

๐‘›

X

๐‘–=1 ๐‘š

X

๐‘—=1

hโˆ‡๐‘“๐‘–,โˆ‡โ„Ž๐‘—i hโˆ‡๐‘”๐‘–,โˆ‡โ„Ž๐‘—i +๐‘”๐‘–H[๐‘“๐‘–] (โ„Ž๐‘—, โ„Ž๐‘—) ๐”ช

โˆ’ 1 ๐‘0

๐‘›

X

๐‘–=1 ๐‘š

X

๐‘—=1

๐‘”๐‘–ฮ”๐‘“๐‘–+ hโˆ‡๐‘“๐‘–,โˆ‡๐‘”๐‘–i

|โˆ‡โ„Ž๐‘—|2๐”ช,

๐œ‡3[โ„Ž]:= hX๐‘š

๐‘— , ๐‘—0=1

hโˆ‡โ„Ž๐‘—,โˆ‡โ„Ž๐‘—0i2โˆ’ 1 ๐‘0

hX๐‘š

๐‘—=1

|โˆ‡โ„Ž๐‘—|2i2i ๐”ช.

Both claims readily follow from Lemma 3.3.8 as soon as๐œ†2๐œ‡1[๐‘“ , ๐‘”] +2๐œ† ๐œ‡2[๐‘“ , ๐‘”, โ„Ž] + ๐œ‡3[โ„Ž] โ‰ฅ0for every๐œ†โˆˆR, which is what we concentrate on in the sequel.

Let๐œ† โˆˆ R and pick๐‘Ž, ๐‘ โˆˆ R๐‘› as well as ๐‘ โˆˆ R๐‘š. Define the function๐œ‘ โˆˆ Cโˆž(R2๐‘›+๐‘š)through

๐œ‘(๐‘ฅ , ๐‘ฆ, ๐‘ง):=

๐‘›

X

๐‘–=1

๐œ† ๐‘ฅ๐‘–๐‘ฆ๐‘–+๐‘Ž๐‘–๐‘ฅ๐‘–โˆ’๐‘๐‘–๐‘ฆ๐‘– +

๐‘š

X

๐‘—=1

(๐‘ง๐‘—โˆ’๐‘๐‘—)2โˆ’๐‘2

๐‘—

.

For every๐‘– โˆˆ {1, . . . , ๐‘›} and every ๐‘— โˆˆ {1, . . . , ๐‘š}, those first and second partial derivatives of๐œ‘which, do not always vanish identically read

๐œ‘๐‘–(๐‘ฅ , ๐‘ฆ, ๐‘ง)=๐œ† ๐‘ฆ๐‘–+๐‘Ž๐‘–, ๐œ‘๐‘›+๐‘–(๐‘ฅ , ๐‘ฆ, ๐‘ง)=๐œ† ๐‘ฅ๐‘–โˆ’๐‘๐‘–, ๐œ‘2๐‘›+๐‘—(๐‘ฅ , ๐‘ฆ, ๐‘ง)=2(๐‘ง๐‘—โˆ’๐‘๐‘—), ๐œ‘๐‘– , ๐‘›+๐‘–(๐‘ฅ , ๐‘ฆ, ๐‘ง)=๐œ†,

๐œ‘๐‘›+๐‘– ,๐‘–(๐‘ฅ , ๐‘ฆ, ๐‘ง)=๐œ†,

๐œ‘2๐‘›+๐‘— ,2๐‘›+๐‘—(๐‘ฅ , ๐‘ฆ, ๐‘ง)=2.

For convenience, we write

A2 ๐œ…(๐œ†, ๐‘Ž, ๐‘, ๐‘):=A2 ๐œ…[๐œ‘โ—ฆ๐‘ž], B(๐œ†, ๐‘Ž, ๐‘, ๐‘):=B[๐œ‘โ—ฆ๐‘ž], C(๐œ†, ๐‘Ž, ๐‘, ๐‘):=C[๐œ‘โ—ฆ๐‘ž], D(๐œ†, ๐‘Ž, ๐‘, ๐‘):=D[๐œ‘โ—ฆ๐‘ž],

where the respective r.h.s.โ€™s are defined as in Lemma 3.2.76 for๐›ผ := 2๐‘›+๐‘š and ๐‘ž :=(๐‘“ , ๐‘”, โ„Ž). Using the same Lemma 3.2.76, we compute

A2 ๐œ…(๐œ†, ๐‘Ž, ๐‘, ๐‘)=

๐‘›

X

๐‘– ,๐‘–0=1

(๐œ†

e๐‘”๐‘–+๐‘Ž๐‘–) (๐œ†

e๐‘”๐‘–0+๐‘Ž๐‘–0)๐šช2 ๐œ…2 (๐‘“๐‘–, ๐‘“๐‘–0) +other terms, B(๐œ†, ๐‘Ž, ๐‘, ๐‘)=4

๐‘›

X

๐‘– ,๐‘–0=1

(๐œ† ๐‘”๐‘–+๐‘Ž๐‘–)๐œ†H[๐‘“๐‘–] (๐‘“๐‘–0, ๐‘”๐‘–0) +4

๐‘›

X

๐‘–=1 ๐‘š

X

๐‘—=1

(๐œ† ๐‘”๐‘–+๐‘Ž๐‘–)H[๐‘“๐‘–] (โ„Ž๐‘—, โ„Ž๐‘—) +other terms, C(๐œ†, ๐‘Ž, ๐‘, ๐‘)=2

๐‘›

X

๐‘– ,๐‘–0=1

๐œ†2

hโˆ‡๐‘“๐‘–,โˆ‡๐‘“๐‘–0i hโˆ‡๐‘”๐‘–,โˆ‡๐‘”๐‘–0i + hโˆ‡๐‘“๐‘–,โˆ‡๐‘”๐‘–0i hโˆ‡๐‘”๐‘–,โˆ‡๐‘“๐‘–0i +8

๐‘›

X

๐‘–=1 ๐‘š

X

๐‘—=1

๐œ†hโˆ‡๐‘“๐‘–,โˆ‡โ„Ž๐‘—i hโˆ‡๐‘”๐‘–,โˆ‡โ„Ž๐‘—i +4

๐‘š

X

๐‘— , ๐‘—0=1

hโˆ‡โ„Ž๐‘—,โˆ‡โ„Ž๐‘—0i2+other terms, D(๐œ†, ๐‘Ž, ๐‘, ๐‘)=

๐‘›

X

๐‘– ,๐‘–0=1

(๐œ† ๐‘”๐‘–+๐‘Ž๐‘–) (๐œ† ๐‘”๐‘–0+๐‘Ž๐‘–)ฮ”๐‘“๐‘–ฮ”๐‘“๐‘–0

+4

๐‘›

X

๐‘– ,๐‘–0=1

๐œ†(๐œ† ๐‘”๐‘–+๐‘Ž๐‘–)ฮ”๐‘“๐‘–hโˆ‡๐‘“๐‘–0,โˆ‡๐‘”๐‘–0i +4

๐‘›

X

๐‘– ,๐‘–0=1

๐œ†2hโˆ‡๐‘“๐‘–,โˆ‡๐‘”๐‘–i hโˆ‡๐‘“๐‘–0,โˆ‡๐‘”๐‘–0i +4

๐‘›

X

๐‘–=1 ๐‘š

X

๐‘—=1

(๐œ† ๐‘”๐‘–+๐‘Ž๐‘–)ฮ”๐‘“๐‘–|โˆ‡โ„Ž๐‘—|2 +8

๐‘›

X

๐‘–=1 ๐‘š

X

๐‘—=1

๐œ†hโˆ‡๐‘“๐‘–,โˆ‡๐‘”๐‘–i |โˆ‡โ„Ž๐‘—|2 +4

hX๐‘š

๐‘—=1

|โˆ‡โ„Ž๐‘—|2i2

+other terms.

Here, every โ€œother termโ€ contains at least one factor of the form๐œ†e๐‘“๐‘–โˆ’๐‘๐‘–oreโ„Ž๐‘—โˆ’๐‘๐‘— for some๐‘–โˆˆ {1, . . . , ๐‘›}and ๐‘— โˆˆ {1, . . . , ๐‘š}.

By Lemma 3.2.76 and Proposition 3.2.75 with the nonnegativity of D(๐œ†, ๐‘Ž, ๐‘, ๐‘)as well as the trivial inequality1/๐‘ โ‰ฅ1/๐‘0,

A2 ๐œ…(๐œ†, ๐‘Ž, ๐‘, ๐‘) +h

B(๐œ†, ๐‘Ž, ๐‘, ๐‘) +C(๐œ†, ๐‘Ž, ๐‘, ๐‘) โˆ’ 1

๐‘0D(๐œ†, ๐‘Ž, ๐‘, ๐‘)i ๐”ช โ‰ฅ0.

By the arbitrariness of๐‘Ž, ๐‘ โˆˆR๐‘› and๐‘โˆˆ R๐‘š, for every Borel partition (๐ธ๐‘)๐‘โˆˆNof M, every Borel set๐น โŠ‚Mand all sequences(๐‘Ž๐‘˜)๐‘˜โˆˆNand(๐‘๐‘˜)๐‘˜โˆˆNinR๐‘›as well as (๐‘๐‘˜)๐‘˜โˆˆNinR๐‘š,

1๐นX

๐‘˜โˆˆN

1๐ธ

๐‘˜

h

A2 ๐œ…(๐œ†, ๐‘Ž๐‘˜, ๐‘๐‘˜, ๐‘๐‘˜) +h

B(๐œ†, ๐‘Ž๐‘˜, ๐‘๐‘˜, ๐‘๐‘˜) +C(๐œ†, ๐‘Ž๐‘˜, ๐‘๐‘˜, ๐‘๐‘˜)

โˆ’ 1

๐‘0D(๐œ†, ๐‘Ž๐‘˜, ๐‘๐‘˜, ๐‘๐‘˜)i ๐”ชi

โ‰ฅ0.

(3.3.6)

We now choose the involved quantities appropriately. Let(๐น๐‘˜)๐‘˜โˆˆNbe anE-nest with the property that the restrictions of e๐‘“,e๐‘” andeโ„Ž to๐น๐‘˜ are continuous for every ๐‘˜ โˆˆ N, and set๐น:=S

๐‘˜โˆˆN๐น๐‘˜. Since๐นc is anE-polar set and thus not seen by๐”ช and๐šช2 ๐œ…2 (๐‘“๐‘–, ๐‘“๐‘–0),๐‘–, ๐‘–0โˆˆ {1, . . . , ๐‘›}, its contribution to the subsequent manipulations is ignored. For๐‘™ โˆˆNwe now take a Borel partition(๐ธ๐‘™

๐‘˜)๐‘˜โˆˆNofMand sequences(๐‘Ž๐‘™

๐‘˜)๐‘˜โˆˆN

and(๐‘๐‘™

๐‘˜)๐‘˜โˆˆNinR๐‘›as well as(๐‘๐‘™

๐‘˜)๐‘˜โˆˆNinR๐‘šwith sup

๐‘˜ ,๐‘™โˆˆN

|๐‘Ž๐‘™

๐‘˜| + |๐‘๐‘™

๐‘˜| + |๐‘๐‘™

๐‘˜|

<โˆž in such a way that

๐‘™โ†’โˆžlim X

๐‘˜โˆˆN

1๐ธ๐‘™ ๐‘˜

๐‘Ž๐‘™

๐‘˜ =๐œ† e๐‘”,

๐‘™โ†’โˆžlim X

๐‘˜โˆˆN

1๐ธ๐‘™ ๐‘˜

๐‘๐‘™

๐‘˜ =๐œ†e๐‘“ ,

๐‘™โ†’โˆžlim X

๐‘˜โˆˆN

1๐ธ๐‘™ ๐‘˜

๐‘๐‘™

๐‘˜ =eโ„Ž

pointwise on๐น. Thus, the l.h.s. of (3.3.6) with(๐ธ๐‘˜)๐‘˜โˆˆN,(๐‘Ž๐‘˜)๐‘˜โˆˆN,(๐‘๐‘˜)๐‘˜โˆˆNand(๐‘๐‘˜)๐‘˜โˆˆN

replaced by(๐ธ๐‘™

๐‘˜)๐‘˜โˆˆN,(๐‘Ž๐‘™

๐‘˜)๐‘˜โˆˆN,(๐‘๐‘™

๐‘˜)๐‘˜โˆˆNand(๐‘๐‘™

๐‘˜)๐‘˜โˆˆN,๐‘™ โˆˆN, respectively, converges w.r.t.k ยท kTVas๐‘™ โ†’ โˆž. In fact, in the limit as๐‘™โ†’ โˆževery โ€œother termโ€ above becomes zero, and the prefactors๐œ†

e๐‘”๐‘–+ (๐‘Ž๐‘™

๐‘˜)๐‘– become2๐œ†

e๐‘”๐‘–,๐‘–โˆˆ {1, . . . , ๐‘›}. We finally obtain 4๐œ†2

๐‘›

X

๐‘– ,๐‘–0=1

e๐‘”๐‘–

e๐‘”๐‘–0๐šช2 ๐œ…2 (๐‘“๐‘–, ๐‘“๐‘–0) +8๐œ†2

๐‘›

X

๐‘– ,๐‘–0=1

๐‘”๐‘–H[๐‘“๐‘–] (๐‘“๐‘–0, ๐‘”๐‘–0)๐”ช+8๐œ†

๐‘›

X

๐‘–=1 ๐‘š

X

๐‘—=1

๐‘”๐‘–H[๐‘“๐‘–] (โ„Ž๐‘—, โ„Ž๐‘—)๐”ช +2๐œ†2

๐‘›

X

๐‘– ,๐‘–0=1

hโˆ‡๐‘“๐‘–,โˆ‡๐‘“๐‘–0i hโˆ‡๐‘”๐‘–,โˆ‡๐‘”๐‘–0i + hโˆ‡๐‘“๐‘–,โˆ‡๐‘”๐‘–0i hโˆ‡๐‘”๐‘–,โˆ‡๐‘“๐‘–0i ๐”ช +8๐œ†

๐‘›

X

๐‘–=1 ๐‘š

X

๐‘—=1

hโˆ‡๐‘“๐‘–,โˆ‡โ„Ž๐‘—i hโˆ‡๐‘”๐‘–,โˆ‡โ„Ž๐‘—i๐”ช +4

๐‘š

X

๐‘— , ๐‘—0=1

hโˆ‡โ„Ž๐‘—,โˆ‡โ„Ž๐‘—0i2๐”ช

โˆ’4๐œ†2 ๐‘0

hX๐‘›

๐‘–=1

๐‘”๐‘–ฮ”๐‘“๐‘–+ hโˆ‡๐‘“๐‘–,โˆ‡๐‘”๐‘–ii2 ๐”ช

โˆ’ 8๐œ† ๐‘0

๐‘›

X

๐‘–=1 ๐‘š

X

๐‘—=1

๐‘”๐‘–ฮ”๐‘“๐‘–+ hโˆ‡๐‘“๐‘–,โˆ‡๐‘”๐‘–i

|โˆ‡โ„Ž๐‘—|2๐”ช

โˆ’ 4 ๐‘0

hX๐‘š

๐‘—=1

|โˆ‡โ„Ž๐‘—|2i2

โ‰ฅ0.

Dividing by4and sorting terms by the order of๐œ†yields the claim.

We note the following consequence of Lemma 3.3.9 that is used in Theorem 3.3.11 below as well, but becomes especially important in Subsection 3.3.3.

Remark 3.3.10. The nonnegativity of ๐œ‡3[โ„Ž] from Lemma 3.3.9 can be translated into the following trace inequality, compare with [Bra20, Rem. 2.19] and the proof of [Han18a, Prop. 3.2]. With the pointwise trace defined as in (3.2.12), we have

๐‘š

X

๐‘—=1

โˆ‡โ„Ž๐‘—โŠ— โˆ‡โ„Ž๐‘—

2 HS โ‰ฅ 1

๐‘trhX๐‘š

๐‘—=1

โˆ‡โ„Ž๐‘—โŠ— โˆ‡โ„Ž๐‘— i2

๐”ช-a.e.

for every๐‘šโˆˆNand everyโ„ŽโˆˆTest(M)๐‘š.

Theorem 3.3.11. Every ๐‘“ โˆˆTest(M)belongs toD(Hess)and satisfies

Hess๐‘“(โˆ‡๐‘”1,โˆ‡๐‘”2)=H[๐‘“] (๐‘”1, ๐‘”2) ๐”ช-a.e. (3.3.7) for every๐‘”1, ๐‘”2 โˆˆTest(M). Moreover, denoting by๐›พ2 ๐œ…

2 (๐‘“) โˆˆL1(M)the density of the ๐”ช-absolutely continuous part of๐šช2 ๐œ…2 (๐‘“), we have

Hess๐‘“

2 HS โ‰ค๐›พ2 ๐œ…

2 (๐‘“) ๐”ช-a.e. (3.3.8) Proof. Recall that indeed๐›พ2 ๐œ…

2 (๐‘“) โˆˆL1(M)by Proposition 3.2.79. Let๐‘”, โ„Ž1, . . . , โ„Ž๐‘šโˆˆ Test(M),๐‘šโˆˆN. Applying Lemma 3.3.9 for๐‘0:=โˆžand๐‘›:=1then entails

hX๐‘š

๐‘—=1

hโˆ‡๐‘“ ,โˆ‡โ„Ž๐‘—i hโˆ‡๐‘”,โˆ‡โ„Ž๐‘—i +๐‘”H[๐‘“] (โ„Ž๐‘—, โ„Ž๐‘—)i2

โ‰ค h ๐‘”2๐›พ2 ๐œ…

2 (๐‘“) +2๐‘”H[๐‘“] (๐‘“ , ๐‘”) + 1 2

|โˆ‡๐‘“|2|โˆ‡๐‘”|2+ 1 2

hโˆ‡๐‘“ ,โˆ‡๐‘”i2i

ร—

๐‘š

X

๐‘— , ๐‘—0=1

hโˆ‡โ„Ž๐‘—,โˆ‡โ„Ž๐‘—0i2

= h

๐‘”2๐›พ2 ๐œ…

2 (๐‘“) +๐‘”

โˆ‡|โˆ‡๐‘“|2,โˆ‡๐‘” + 1

2

|โˆ‡๐‘“|2|โˆ‡๐‘”|2+ 1 2

hโˆ‡๐‘“ ,โˆ‡๐‘”i2i

ร—

๐‘š

X

๐‘— , ๐‘—0=1

hโˆ‡โ„Ž๐‘—,โˆ‡โ„Ž๐‘—0i2 ๐”ช-a.e.

In the last identity, we used the definition (3.2.22) of H[๐‘“] (๐‘“ , ๐‘”). Using the first part of Lemma 3.2.73 and possibly passing to subsequences, this๐”ช-a.e. inequality extends to all๐‘” โˆˆ FโˆฉLโˆž(M). Thus, successively setting๐‘” :=๐‘”๐‘›,๐‘› โˆˆ N, where (๐‘”๐‘›)๐‘›โˆˆNis the sequence provided by Lemma 3.2.6, together with the locality ofโˆ‡from Proposition 3.2.37, and by the definition (3.2.7) of the pointwise Hilbertโ€“Schmidt norm ofL2(๐‘‡โŠ—2M), we obtain

๐‘š

X

๐‘—=1

H[๐‘“] (โ„Ž๐‘—, โ„Ž๐‘—) โ‰ค๐›พ2 ๐œ…

2 (๐‘“)1/2

๐‘š

X

๐‘—=1

โˆ‡โ„Ž๐‘— โŠ— โˆ‡โ„Ž๐‘—

HS ๐”ช-a.e. (3.3.9) This implies pointwise๐”ช-a.e. off-diagonal estimates as follows. Given any๐‘š0โˆˆNand โ„Ž๐‘—, โ„Ž0

๐‘— โˆˆTest(M), ๐‘— โˆˆ {1, . . . , ๐‘š0}, since

๐‘š0

X

๐‘—=1

H[๐‘“] (โ„Ž๐‘—, โ„Ž0

๐‘—)= 1 2

๐‘š0

X

๐‘—=1

H[๐‘“] (โ„Ž๐‘—+โ„Ž0

๐‘—, โ„Ž๐‘—+โ„Ž0

๐‘—) โˆ’H[๐‘“] (โ„Ž๐‘—, โ„Ž๐‘—) โˆ’H[๐‘“] (โ„Ž0

๐‘—, โ„Ž0

๐‘—)

holds๐”ช-a.e., applying (3.3.9), using that 1

2

๐‘š0

X

๐‘—=1

โˆ‡(โ„Ž๐‘—+โ„Ž0๐‘—) โŠ— โˆ‡(โ„Ž๐‘—+โ„Ž0๐‘—) โˆ’ โˆ‡โ„Ž๐‘—โŠ— โˆ‡โ„Ž๐‘—โˆ’ โˆ‡โ„Ž0๐‘— โŠ— โˆ‡โ„Ž0๐‘—

= 1 2

๐‘š0

X

๐‘—=1

โˆ‡โ„Ž๐‘— โŠ— โˆ‡โ„Ž0๐‘— + โˆ‡โ„Ž0๐‘—โŠ— โˆ‡โ„Ž๐‘—

= h๐‘š

0

X

๐‘—=1

โˆ‡โ„Ž๐‘—โŠ— โˆ‡โ„Ž0๐‘— i

sym

and finally employing that|๐‘‡sym|HSโ‰ค |๐‘‡|HSfor every๐‘‡ โˆˆL2(๐‘‡โŠ—2M), we get

๐‘š0

X

๐‘—=1

H[๐‘“] (โ„Ž๐‘—, โ„Ž0

๐‘—) โ‰ค๐›พ2 ๐œ…

2 (๐‘“)1/2 1 2

๐‘š0

X

๐‘—=1

โˆ‡โ„Ž๐‘—โŠ— โˆ‡โ„Ž0

๐‘—+ โˆ‡โ„Ž0

๐‘— โŠ— โˆ‡โ„Ž๐‘— HS

โ‰ค๐›พ2 ๐œ…

2 (๐‘“)1/2

๐‘š0

X

๐‘—=1

โˆ‡โ„Ž๐‘— โŠ— โˆ‡โ„Ž0

๐‘—

HS ๐”ช-a.e.

We replaceโ„Ž๐‘—by๐‘Ž๐‘—โ„Ž๐‘—,๐‘— โˆˆ {1, . . . , ๐‘š0}, for arbitrary๐‘Ž1, . . . , ๐‘Ž๐‘š0 โˆˆQ. This gives

๐‘š0

X

๐‘—=1

๐‘Ž๐‘—H[๐‘“] (โ„Ž๐‘—, โ„Ž0

๐‘—) โ‰ค๐›พ2 ๐œ…

2 (๐‘“)1/2

๐‘š0

X

๐‘—=1

๐‘Ž๐‘—โˆ‡โ„Ž๐‘— โŠ— โˆ‡โ„Ž0

๐‘—

HS ๐”ช-a.e. (3.3.10) In fact, sinceQis countable, we find an๐”ช-negligible Borel set๐ต โŠ‚M on whose complement (3.3.10) holds pointwise for every๐‘Ž1, . . . , ๐‘Ž๐‘š0 โˆˆQ. Since both sides of (3.3.10) are continuous in๐‘Ž1, . . . , ๐‘Ž๐‘š0, by density ofQinRwe deduce that (3.3.10) holds pointwise on๐ตcfor every๐‘Ž1, . . . , ๐‘Ž๐‘š0โˆˆR. Therefore, given any๐‘”1, . . . , ๐‘”๐‘š0โˆˆTest(M), up to possibly removing a further๐”ช-negligible Borel set๐ถโŠ‚M, for every๐‘ฅโˆˆ (๐ตโˆช๐ถ)c we may replace๐‘Ž๐‘— by๐‘”๐‘—(๐‘ฅ),๐‘— โˆˆ {1, . . . , ๐‘š0}, in (3.3.10). This leads to

๐‘š0

X

๐‘—=1

๐‘”๐‘—H[๐‘“] (โ„Ž๐‘—, โ„Ž0๐‘—)

2

โ‰ค๐›พ2 ๐œ…

2 (๐‘“)1/2

๐‘š0

X

๐‘—=1

๐‘”๐‘—โˆ‡โ„Ž๐‘— โŠ— โˆ‡โ„Ž0๐‘—

HS ๐”ช-a.e. (3.3.11) We now define the operatorฮฆ: Test(๐‘‡โŠ—2M) โ†’L0(M)by

ฮฆ

๐‘š0

X

๐‘—=1

๐‘”๐‘—๐‘”0๐‘—โˆ‡โ„Ž๐‘—โŠ— โˆ‡โ„Ž0๐‘— :=

๐‘š0

X

๐‘—=1

๐‘”๐‘—๐‘”0๐‘—H[๐‘“] (โ„Ž๐‘—, โ„Ž0๐‘—). (3.3.12) From (3.3.11) and the algebra property of Test(M), it follows thatฮฆis well-defined, i.e. the value ofฮฆ(๐‘‡) does not depend on the specific way of representing a given element ๐‘‡ โˆˆ Test(๐‘‡โŠ—2M). Moreover, the map ฮฆ is clearly linear, and for every ๐‘” โˆˆTest(M)and every๐‘‡ โˆˆTest(๐‘‡โŠ—2M),

ฮฆ(๐‘” ๐‘‡)=๐‘”ฮฆ(๐‘‡). (3.3.13)

Since the๐”ช-singular part๐šช2 ๐œ…2 (๐‘“)โŠฅof๐šช2 ๐œ…2 (๐‘“)is nonnegative, by (3.2.23) we get ห†

M

๐›พ2 ๐œ…

2 (๐‘“)d๐”ช โ‰ค๐šช2 ๐œ…2 (๐‘“) [M]= ห†

M

(ฮ”๐‘“)2d๐”ชโˆ’ ๐œ…

|โˆ‡๐‘“|2

. (3.3.14)

After integrating (3.3.11) and employing Cauchyโ€“Schwarzโ€™s inequality, kฮฆ(๐‘‡) kL1(M) โ‰คhห†

M

(ฮ”๐‘“)2d๐”ชโˆ’ ๐œ…

|โˆ‡๐‘“|2i1/2

k๐‘‡kL2(๐‘‡โŠ—2M)

holds for every๐‘‡ โˆˆTest(๐‘‡โŠ—2M). Thus, by density of Test(๐‘‡โŠ—2M)inL2(๐‘‡โŠ—2M)and (3.3.13),ฮฆ uniquely extends to a (non-relabeled) continuous,Lโˆž-linear map from L2(๐‘‡โŠ—2M)intoL1(M), whenceฮฆโˆˆL2( (๐‘‡โˆ—)โŠ—2M)by definition of the latter space.

To check that๐‘“ โˆˆD(Hess)andฮฆ =Hess๐‘“, first note that by the continuity ofฮฆand Lemma 3.2.72, we can replace๐‘”๐‘—๐‘”0

๐‘— by arbitrary๐‘˜๐‘— โˆˆTest(M),๐‘— โˆˆ {1, . . . , ๐‘š0}, still retaining the identity (3.3.12). Therefore, slightly changing the notation in (3.3.12), let ๐‘”1, ๐‘”2, โ„Ž โˆˆTest(M)and use (3.3.13), the definition (3.2.22) of H[๐‘“]and Lemma 3.2.54 to derive that

2 ห†

M

โ„Žฮฆ(โˆ‡๐‘”1,โˆ‡๐‘”2)d๐”ช

= ห†

M

โ„Ž

โˆ‡๐‘”1,โˆ‡hโˆ‡๐‘“ ,โˆ‡๐‘”2id๐”ช+ ห†

M

โ„Ž

โˆ‡๐‘”1,โˆ‡hโˆ‡๐‘“ ,โˆ‡๐‘”2id๐”ช

โˆ’ ห†

M

โ„Ž

โˆ‡๐‘”1,โˆ‡hโˆ‡๐‘“ ,โˆ‡๐‘”2i d๐”ช

=โˆ’ ห†

M

hโˆ‡๐‘“ ,โˆ‡๐‘”2idiv(โ„Žโˆ‡๐‘”1)d๐”ชโˆ’ ห†

M

hโˆ‡๐‘“ ,โˆ‡๐‘”2idiv(โ„Žโˆ‡๐‘”1)d๐”ช

โˆ’ ห†

M

โ„Ž

โˆ‡๐‘”1,โˆ‡hโˆ‡๐‘“ ,โˆ‡๐‘”2id๐”ช, which is the desired assertion ๐‘“ โˆˆD(Hess)andฮฆ =Hess๐‘“.

The same argument gives (3.3.7), while the inequality (3.3.8) is due to (3.3.11), the density of Test(๐‘‡โŠ—2M)inL2(๐‘‡โŠ—2M)as well as the definition (3.2.7) of the pointwise Hilbertโ€“Schmidt norm.

Theorem 3.3.11 implies the following qualitative result. A quantitative version of it, as directly deduced in [Gig18, Cor. 3.3.9] from [Gig18, Thm. 3.3.8], is however not yet available only with the information collected so far. See Remark 3.3.13 below.

Corollary 3.3.12. Every ๐‘“ โˆˆ D(ฮ”)belongs to the closure ofTest(M) inD(Hess), and in particular toD(Hess). More precisely, let๐œŒ0 โˆˆ (0, 1) and๐›ผ0 โˆˆ Rbe as in Lemma 3.2.60 for๐œ‡:=๐œ…โˆ’. Then for every ๐‘“ โˆˆD(ฮ”), we have ๐‘“ โˆˆD(Hess)with

ห†

M

Hess๐‘“

2

HSd๐”ชโ‰ค 1 1โˆ’๐œŒ0

ห†

M

(ฮ”๐‘“)2d๐”ช+ ๐›ผ0 1โˆ’๐œŒ0

ห†

M

|โˆ‡๐‘“|2d๐”ช.

Proof. Since (M,E,๐”ช) satisfies BE1(๐œ…,โˆž)by [ER+20, Thm. 6.9], it also trivially obeys BE1(โˆ’๐œ…โˆ’,โˆž), see also [ER+20, Prop. 6.7]. As in the proof of Proposition 3.2.79,

Eโˆ’๐œ…โˆ’|โˆ‡๐‘“|

โ‰ค ห†

M

(ฮ”๐‘“)2d๐”ช holds for every ๐‘“ โˆˆTest(M). Hence, using (3.2.19) we estimate

๐œ…โˆ’ |โˆ‡๐‘“|2

โ‰ค๐œŒ0E |โˆ‡๐‘“| +๐›ผ0

ห†

M

|โˆ‡๐‘“|2d๐”ช

=๐œŒ0Eโˆ’๐œ…โˆ’ |โˆ‡๐‘“| +๐œŒ0

๐œ…โˆ’ |โˆ‡๐‘“|2

+๐›ผ0 ห†

M

|โˆ‡๐‘“|2d๐”ช

โ‰ค๐œŒ0 ห†

M

(ฮ”๐‘“)2d๐”ช+๐œŒ0 ๐œ…โˆ’

|โˆ‡๐‘“|2 +๐›ผ0

ห†

M

|โˆ‡๐‘“|2d๐”ช.

The claim for ๐‘“ โˆˆTest(M)now follows easily. We already know from Theorem 3.3.11 that ๐‘“ โˆˆD(Hess). Integrating (3.3.8) and using (3.3.14) thus yields

ห†

M

Hess๐‘“

2 HSd๐”ชโ‰ค

ห†

M

(ฮ”๐‘“)2d๐”ชโˆ’ ๐œ…

|โˆ‡๐‘“|2

(3.3.15)

โ‰ค ห†

M

(ฮ”๐‘“)2d๐”ช+ ๐œ…โˆ’

|โˆ‡๐‘“|2

โ‰ค 1

1โˆ’๐œŒ0 ห†

M

(ฮ”๐‘“)2d๐”ช+ ๐›ผ0 1โˆ’๐œŒ0

ห†

M

|โˆ‡๐‘“|2d๐”ช.

Finally, given ๐‘“ โˆˆD(ฮ”), let ๐‘“๐‘› :=max{min{๐‘“ , ๐‘›},โˆ’๐‘›} โˆˆL2(M) โˆฉLโˆž(M),๐‘›โˆˆN. Note thatP๐‘ก๐‘“๐‘› โˆˆTest(M)for every๐‘ก > 0and every๐‘›โˆˆN, and thatP๐‘ก๐‘“๐‘› โ†’P๐‘ก๐‘“ inF as well as, thanks to Lemma 3.2.12,ฮ”P๐‘ก๐‘“๐‘›โ†’ฮ”P๐‘ก๐‘“ inL2(M)as๐‘›โ†’ โˆž. Moreover P๐‘ก๐‘“ โ†’ ๐‘“inFas well asฮ”P๐‘ก๐‘“ =P๐‘กฮ”๐‘“ โ†’ฮ”๐‘“ inL2(M)as๐‘กโ†’0. These observations imply that ๐‘“ belongs to the closure of Test(M)inD(Hess), whence ๐‘“ โˆˆD(Hess)by Theorem 3.3.3, and the claimed inequality, with unchanged constants, is clearly stable under this approximation procedure.

Remark 3.3.13. The subtle reason why we still cannot deduce (3.3.15) for general ๐‘“ โˆˆ D(ฮ”) is that we neither know whether the r.h.s. of (3.3.15) makes sense โ€” which essentially requires|โˆ‡๐‘“| โˆˆ Fโ€” nor, in the notation of the previous proof, whether

๐œ…

|โˆ‡P๐‘ก๐‘“๐‘›|2

โ†’

๐œ…

|โˆ‡๐‘“|2 as๐‘› โ†’ โˆž and๐‘ก โ†’ 0. (Neither we know if E |โˆ‡P๐‘ก๐‘“๐‘›|

โ†’E |โˆ‡๐‘“| as๐‘› โ†’ โˆžand๐‘ก โ†’ 0.) Both points are trivial in the more restrictive RCD(๐พ ,โˆž)case from [Gig18, Cor. 3.3.9],๐พ โˆˆ R. In our setting, solely Lemma 3.2.60 does not seem sufficient to argue similarly. Instead, both points will follow from Lemma 3.4.13 and Lemma 3.6.2, see Corollary 3.4.14 and Corollary 3.6.3.