• Keine Ergebnisse gefunden

3.3 RKKY modifications to the Kondo vertex

3.3.2 Exchange vertex correction

3.3.2.1 Spin part of exchange diagram The spin part of the exchange diagram yields

Pex = X

ηl0ηl0α

ση0

lηl·σα0µσηlη0

l·σµ0α ση0η ·σαα0

=X

α0α

ση0η·σαα0 X

η0lηl

σα0µ·ση0

lηl σηlη0

l·σµ0α

; (3.71)

moreover,

X

η0lηl

σα0µ·ση0

lηlσηlη0

l·σµ0α=X

ab

X

ηl0ηl

σaα0µσηa0

lηlσηb

lηl0σbµ0α

=X

ab

σαa0µσµb0αTr[σaσb]

| {z }

=2δab

= 2σα0µ·σµ0α . (3.72) Thus,Pex, Eq. (3.71), simplifies to

Pex = 2X

α0α

ση0η·σαα0 σα0µ·σµ0α = 2X

ab

X

αα0

σaη0η(σaσb)αµσµb0α

= 2X

ab

σηa0ηX

α

σµb0α δabδαµ+ iX

c

abcσcαµ

!!

= 2X

ab

σηa0ησµb0µδab+ 2iX

abc

σηa0ηabc

X

α

σµb0ασαµc

| {z }

=(σbσc)µµ0bcδµµ0+iP

dbcdσd

µ0µ

= 2ση0η·σµ0µ+ 2iX

abc

σaη0η abcδbcδµµ0

| {z }

=0

+2i·iX

abcd

σηa0η abcbcdσdµ0µ , (3.73)

which by using the identity (AppendixA), X

bc

abcbcd =X

bc

abcdbc = 2δad , yields

Pex= 2ση0η·σµ0µ−2X

ad

ad σηa0ησdµ0µ

= 2ση0η·σµ0µ−4ση0η·σµ0µ

=−2ση0η·σµ0µ . (3.74)

3.3.2.2 Real and imaginary parts of the exchange diagram

The real and imaginary parts of the exchange diagram can be obtained by decomposing the Green’s functions and the f-susceptibility into their imaginary and real parts and collecting factors of the real and imaginary parts of the impurity susceptibility. A detailed but

straight-forward calculation using the explicit form the Green’s functions andf-susceptibility, yields the result

Γex =J J02(B)2W π

1 π(mkF

2π )2εF TK

sin(2%)ν+ 2i sin2(%)|ν|

%2 Θ(TK− |Ω|) , (3.75) whereν = ΩF. One observes that in the relevant energy interval, Ω∼ O(TK)D0, where the RGβ-function is non-vanishing (see section 3.4), the direct and exchange vertex corrections satisfy|Γex/Γdir| ∼ TDK

0 1, and thus, the exchange vertex correction can be safely neglected.9

Explicit Calculations The explicit form of the exchange vertex correction is obtained by performing the Matsubara summation,10

Γex = +2J J02

Z dεhnF(ε+ω)Ac(xxl, ε+ω)GRc(xlx, ε+ω+ Ω)χAf(ε) +nF(ε+ω+ Ω)GRc(xxl, ε+ω)Ac(xlx, ε+ω+ Ω)χAf(ε)

+nB(ε+ω+ Ω)GRc(xxl, ε+ω)GRc(xlx, ε+ω+ Ω)1

πχA00f (ε)i . (3.77) To reduce the notational clutter, we drop the position coordinates in the following so that

Γex= 2J J02

Z dεnnF(ε+ω)Ac(ε+ω)GRc(ε+ω+ Ω)χAf(ε)

+nF(ε+ω+ Ω)GAc(ε+ω)Ac(ε+ω+ Ω)χAf(ε) (3.78) +nB(ε)GRc(ε+ω)GRc(ε+ω+ Ω)1

πχR00f (ε)o . (3.79) By decomposing χf into its real and imaginary parts, we can further expand the relation for Γex:

χA0f (ε)≡χA0f (ε) + iχA00f (ε)

=χR0f (ε)−iχR00f (ε) , (3.80)

9 This can be compared to the Migdal’s theorem in the context of electron-phonon interaction, which states that phonon correction (renormalization) to the electron-phonon vertex is suppressed at least by a factor

pme

Mi 10−2, where me andMi represent the mass of an electron and an ion (for a detailed discussion, consult, e.g., Ref. [122,123]). Here the impurity vertex correction to the electronic vertex is suppressed by a factor TDK

0 10−3.

10 Note that the following relations are used

ReχAf(ε) = ReχRf(ε),

ImχAf(ε) =−ImχRf(ε). (3.76)

so that Γex= 2J J02

Z dεhnF(ε+ω)Ac(ε+ω)GRc(ε+ω+ Ω) +nF(ε+ω+ Ω)GAc(ε+ω)Ac(ε+ω+ Ω)χR0f (ε)

−inF(ε+ω)Ac(ε+ω)GRc(ε+ω+ Ω) +nF(ε+ω+ Ω)GAc(ε+ω)Ac(ε+ω+ Ω)χR00f (ε) +nB(ε)GRc(ε+ω)GRc(ε+ω+ Ω)1

πχR00f (ε)i. (3.81)

Therefore, the expression for Γex can be decomposed into two major terms i) A factor of ReχRf which reads

F0 :=Z dεhnF(ε+ω)Ac(ε+ω)GRc(ε+ω+ Ω)

+nF(ε+ω+ Ω)GAc(ε+ω)Ac(ε+ω+ Ω)iχR0f (ε) . (3.82) By decomposing the Green’s functions into their real and imaginary parts,

GR(ε) =GR0(ε) + iGR00(ε) =GR0(ε)−iπA(ε)

GA(ε) =GA0(ε) + iGA00(ε) =GA0(ε) + iπA(ε) , (3.83) and applying the transformationε7→εω, the factor becomes

F0 =Z dεhnF(ε)Ac(ε)GR0c (ε+ Ω) +nF(ε+ Ω)GR0c (ε)Ac(ε+ Ω)

−iπ(nF(ε)−nF(ε+ Ω))Ac(ε)Ac(ε+ Ω)iχR0f (εω) . (3.84) This is so far exact.

ii) A factor of ImχRf which reads

F00=−iZhnF(ε+ω)Ac(ε+ω)GRc(ε+ω+ Ω) +nF(ε+ω+ Ω)GAc(ε+ω)Ac(ε+ω+ Ω) + inB(ε)GRc(ε+ω)GRc(ε+ω+ Ω)1

π

iχR00f (ε) . (3.85) By decomposing the Green’s functions to their real and imaginary parts as before, and applying the transformationε7→εω, the factor becomes

F00=−iZ dεh(nF(ε+ω) +nB(εω))Ac(ε)GR0c (ε+ Ω) + (nF(ε+ Ω) +nB(εω))GR0c (ε)Ac(ε+ Ω)

+ (−iπ) (nF(ε)−nF(ε+ Ω) +nB(εω))Ac(ε)Ac(ε+ Ω) + i

πnB(ε−ω)GR0c (ε)GR0c (ε+ Ω)iχR00f (ε−ω) . (3.86) This is exact up to here.

The integrations above cannot be performed analytically. In order to make progress, we need to use the asymptotic form of the impurity susceptibility,χf. Furthermore, we will let the energy of the incoming electron to be on the Fermi level,ω= 0.!

Dimensionless variables Before the actual calculation, we introduce the dimensionless variables used in this section:

x:= ε εF , ν := Ω

εF ,

%:=kFr ,

τK :=TK/D0 1 , d0 := εF

TKD0

TK 1 . (3.87)

3.3.2.3 Asymptotic form of the impurity susceptibility

The susceptibility for the f-pseudo-fermions was given before, in section 3.2. The real part of the impurity susceptibility reads

ReχRf(ε)≡χR00f = (gµB)2W π

1 TK

1

p1 + (ε/TK)2 ,

where W is the Wilson ratio, g is the Landé g-factor andµB is the Bohr magneton. Let us define

a0 := (B)2W

π , (3.88)

to absorb the constants and reduce the notational clutter. Then, the asymptotic approximation to the real part reads

ReχRf(ε)≈

a0

TK ;|ε| TK

a0 TK

1

|ε/TK| ;|ε| TK

. (3.89)

The corresponding imaginary part (which can be obtained from the real part by the Kramers-Kronig relations) reads

ImχRf(ε)≡χR00f (ε) = 2 π

(B)2W π

! 1 TK

arcsinh(ε/TK) p1 + (ε/TK)2 . We can absorb the constant factors in a00,

a00 := 2 π

(B)2W

π = 2

πa0 . (3.90)

The asymptotic approximation for Imχf is11 ImχRf(ε)≈

a00 TK

ε

TK ;|ε| TK a00

TK

ln|ε/TK|

ε/TK ;|ε| TK

. (3.95)

We need these asymptotic approximations in the explicit calculations in the next part.

11 The asymptotic form of arcsinh function can be obtained as below:

x:= sinh−1(y)y= sinh(x) = exe−x

2 . (3.91)

Ifz0 is defined asz:=exx= lnz, then z=y±p

1 +y2 z≥0 z=y+p 1 +y2

x= lnz= ln(y+p

1 +y2). (3.92)

Ify0,

y→0limy+p

1 +y2 =→1 +y

ln(y+p

1 +y2)ln(1 +y

|{z}

>0

) =y+O(y2)

xsinh−1(y)y . (3.93)

Ify+∞,

lim

y→+∞y+p

1 +y2 =→1 +|y|y>0= 2yy

xsinh−1(y)ln(2y)ln(y). (3.94)

Ify→ −∞,

y→−∞lim y+p

1 +y2 =→1 +|y|(1 + 1

y2)12 y+|y|(1 + 1 2y2)

= y+|y|

| {z }

y<0

=y−y=0

+ 1 2|y|= 1

2|y|

x= sinh−1(y)ln( 1

2|y|) =ln(2|y|)≈ −ln|y|. Therefore,

lim

y→±∞sinh−1(y) =±ln|y|=|y|

y ln|y|. Finally,

arcsinh(y) p1 +y2 =

(y ;y0

|y|

y ln|y|

|y| ;y→ ±∞ .

3.3.2.4 Factors of the real part off-susceptibility

The factor of the real part of the impurity susceptibility reads F0 =Z dεhnF(ε)Ac(ε)GR0c (ε+ Ω)

+nF(ε+ Ω)GR0c (ε)Ac(ε+ Ω)

−iπ(nF(ε)−nF(ε+ Ω)Ac(ε)Ac(ε+ Ω)iχ0f(ε) . (3.96)

First integral The first integral on the RHS of Eq. (3.96) is

Z dε nF(ε)Ac(ε)GR0c (ε+ Ω)χ0f(ε) . (3.97) At low energies, the factor containing statistical distribution in the integrand merely determines the range of integration:

nF(ε)T→0+≈ Θ(−ε) ; (3.98)

therefore,ε∈[−D0,0]→x∈[−1,0]. The first integral will be

−1 π(m

2π)2 a0 TK

εF

r2 I10 , (3.99)

with

I10 :=Z 0

−1dx sin(%√

1 +x) cos(%√

1 +x)−1

2sin(%√ 1 +x)

√1 +x

! 1

p1 + (d0x)2 , (3.100) where we have used the dimensionless variables defined in Eq. (3.87). The integral cannot be performed analytically. We have to use the asymptotic form of the impurity susceptibility, introduced in section3.3.2.3, and consider all the possible cases

i) When Ω>0∧Ω> TKε∈[−D0,0]:

I10 =−1

2sin(2%)τKlnτK+O(τK) . (3.101) ii) When Ω>0∧Ω< TKε[−D0,0]:

I10 =−1

2sin(2%)τKlnτK+O(τK) . (3.102) iii) When Ω<0∧ |Ω|> TK ≡Ω<−TKε∈[−D0,0]:

I10 =−1

2sin(2%)τKlnτK+O(τK) . (3.103)

iv) When Ω<0∧ |Ω|< TK ≡Ω>−TKε∈[0,−Ω]:

I10 =−1

2sin(2%)τKlnτK+O(τK) . (3.104) Second integral The second integral on the RHS of Eq. (3.96) is

Z dε nF(ε+ Ω)GR0c (ε)Ac(ε+ Ω)χ0f(ε). (3.105) At low energies, the factor containing statistical distribution in the integrand merely determines the range of integration:

nF(ε+ Ω)T→0+≈ Θ(−(ε+ Ω)) ; (3.106) therefore, ε∈[−D0,−Ω]→x∈[−1,−ν]. Then the integral will be

−1 π(m

2π)2 a0 TK

εF

r2 I20 , (3.107)

with

I20 :=Z −ν

−1 dx cos(%

1 +x) sin(%

1 +x+ν) 1 p1 + (d0x)2

=Z −ν

−1 dx cos(%

1 +x) sin(%

1 +x) +1

2cos(%√ 1 +x)

√1 +x

! 1

p1 + (d0x)2 , (3.108) where in the second line a Taylor-expansion is performed with respect toν 1. The integ-ral cannot be performed analytically. We have to use the asymptotic form of the impurity susceptibility, introduced in section3.3.2.3, and consider all the possible cases

i) When Ω>0∧Ω> TKε∈[−D0,−Ω]:

I20 =O(τK) . (3.109)

ii) When Ω>0∧Ω< TKε[−D0,−Ω]:

I20 =−1

2sin(2%)ν+O(ν2) +O(τK) . (3.110) iii) When Ω<0∧ |Ω|> TK ≡Ω<−TKε∈[−D0,−Ω]:

I20 =−sin(2%)τKlnτK+ 1

2sin(2%)τKlnν+O(τK) . (3.111) iv) When Ω<0∧ |Ω|< TK ≡Ω>−TKε∈[0,−Ω]:

I20 =−1

2sin(2%)τKlnτK−1

2νsin(2%) +O(τK). (3.112)

Third integral The third integral on the RHS of Eq. (3.96) is

Z dε (nF(ε)−nF(ε+ Ω))Ac(ε)Ac(ε+ Ω)χ0f(ε) . (3.113) At low energies, the factor containing statistical distribution in the integrand merely determines the range of integration:

nF(ε)−nF(ε+ Ω)T→0+ Θ(ε+ Ω)−Θ(ε) ; (3.114) therefore, for Ω>0,

ε∈[−Ω,0]→x∈[−ν,0], and for Ω<0,

ε∈[0,−Ω]→x∈[0,−ν]. Then the proper integral will be

(m 2π)2 a0

TK εF

r2 I30 (3.115)

with

I30 :=Z dx sin(%

1 +x) sin(%

1 +x+ν) 1 p1 + (d0x)2

=Z dxsin(%

1 +x) sin(%

1 +x) +1

2cos(%√ 1 +x)

√1 +x

! 1

p1 + (d0x)2 , (3.116) where in the second line a Taylor-expansion is performed with respect to ν 1. The integ-ral cannot be performed analytically. We have to use the asymptotic form of the impurity susceptibility, introduced in section3.3.2.3, and consider all the possible cases:

i) When Ω>0∧Ω> TKε∈[−Ω,0]:

I30 = sin2(%)τKln|ν/τK|+O(τK) . (3.117) ii) When Ω>0∧Ω< TKε[−Ω,0]:

I30 = sin2(%)ν+O(ν3) . (3.118) iii) When Ω<0∧ |Ω|> TK ≡Ω<−TKε∈[0,−Ω]:

I30 = sin2(%)τKln|ν/τK|+O(τK) . (3.119) iv) When Ω<0∧ |Ω|< TK ≡Ω>−TKε∈[0,−Ω]:

I30 =−sin2(%)ν+O(ν3) . (3.120)

Final result for factors of real part of f-susceptibility Putting the integral pieces together, one obtains

F0=−1 π(m

2π)2 a0 TK

εF r2I10

− 1 π(m

2π)2 a0 TK

εF r2I20

−iπ(1 π)2(m

2π)2 a0 TK

εF

r2I30

=−1 π(m

2π)2 a0 TK

εF

r2 (I10 +I20 + iI30)

| {z }

:=I0

(3.121)

i) When Ω>0∧Ω> TKε∈[−Ω,0]:

I0 =−1

2sin(2%)τKlnτK+ i sin2(%)τKln|ν/τK|. (3.122) ii) When Ω>0∧Ω< TKε[−Ω,0]:

I0 =−1

2sin(2%)τKlnτK−1

2sin(2%)ν+ i sin2(%)ν . (3.123) iii) When Ω<0∧ |Ω|> TK ≡Ω<−TKε∈[0,−Ω]:

I0= 1

2sin(2%)τKln|ν/τK|+ i sin(2%) ln|ν/τK|. (3.124) iv) When Ω<0∧ |Ω|< TK ≡Ω>−TKε∈[0,−Ω]:

I0 =−sin(2%)τKlnτKν

2sin(2%)−iνsin2(%) . (3.125) 3.3.2.5 Factors of the imaginary part of χf

The factor ofχR00f , at low temperatures (T →0+) and low frequencies (ω →0), is F00=−iZ dεh(nF(ε+ Ω)−nF(ε))GR0c (ε)Ac(ε+ Ω)

−iπ(−nF(ε+ Ω))Ac(ε)Ac(ε+ Ω)

− i

πnF(ε)GR0c (ε)GR0c (ε+ Ω)iχR00f (ε) . (3.126) The three integrations will be considered separately.

First Integral The first integral on the RHS is

Z dε (nF(ε+ Ω)−nF(ε))GR0c (ε)Ac(ε+ Ω)χR00f (ε). (3.127) At low temperatures, the factor containing the Fermi-Dirac distributions merely limits the range

of integration:

nF(ε+ Ω)−nF(ε) = Θ(ε)−Θ(ε+ Ω)≡ −(Θ(ε)−Θ(ε+ Ω)) ; (3.128) thus, if Ω≥0,

ε∈[−Ω,0]→x∈[−Ω

εF,0]≡[−ν,0] , (3.129) otherwise, Ω<0, and

ε∈[0,−Ω]→x∈[0,−Ω

εF]≡[0,−ν]. (3.130)

In the proper integration range, we have to consider the integral Z dε GR0c (ε)Ac(ε+ Ω)χR00f (ε)

= −1 π (m

2π)2εF r2

Z dx cos(%

1 +x) sin(%

1 +x+ν)χ00f(d0x), (3.131) where the previously-defined dimensionless variables, Eq. (3.87), are used. Regarding Eq. (??), we should consider the dimensionless integral,

I100:=Z dx cos(%

1 +x) sin(%

1 +x+ν)χ00f(d0x) . (3.132) At low frequencies, ν1, one can Taylor-expand the integrand in ν to obtain

I100ν1= Z dx cos(%

1 +x)(sin(%

1 +x) +1

2cos(%√ 1 +x)

√1 +x χ00f(d0x). (3.133) The integral cannot be performed analytically. We have to use the asymptotic form of the impurity susceptibility, introduced in section3.3.2.3, and consider all the possible cases:

i) When Ω>0∧Ω> TKε∈[−Ω,0]:

I100=−1

2sin(2%)τKln|ν/τK|+O(τK) . (3.134)

ii) When Ω>0∧Ω< TKε[−Ω,0]:

I100= −sin(2%)

4τK ν2+O(ν3). (3.135)

iii) When Ω<0∧ |Ω|> TK ≡Ω<−TKε∈[0,−Ω]:

I100= 1

2sin(2%)τKln|ν/τK|+O(ν3) . (3.136)

iv) When Ω<0∧ |Ω|< TK ≡Ω>−TKε∈[0,−Ω]:

I100=O(τK)−1

2sin(2%)τKln|ν/τK|. (3.137) Second Integral The second integral on the RHS of Eq. (3.126) is

Z dε(−nF(ε+ Ω))AR0c (ε)Ac(ε+ Ω)χR00f (ε) . (3.138) At low temperatures, the factor containing the Fermi-Dirac distributions merely limits the range of integration:

−nF(ε+ Ω) =−Θ(−(ε+ Ω)) ; (3.139) thus, for any Ω,

ε∈[−D0,−Ω]→x∈[−1,−ν]. (3.140) In the proper integration range, we have to consider the integral

Z dε AR0c (ε)Ac(ε+ Ω)χR00f (ε)

= ( m

2)2a00εF r2

Z dx sin(%

1 +x) sin(%

1 +x+ν)χ00f(d0x) , (3.141) where previously defined dimensionless variables are used. Consider the dimensionless integral,

I200:=Z dx sin(%

1 +x) sin(%

1 +x+ν)χ00f(d0x) . (3.142) At low frequencies,ν 1, one can Taylor-expand the integrand in ν to obtain

I200ν1= Z dxsin(%

1 +x) sin(%

1 +x) +1

2cos(%√ 1 +x)

√1 +x

!

χ00f(d0x) . (3.143) The integral cannot be performed analytically. We have to use the asymptotic form of the impurity susceptibility, introduced in section 3.3.2.3, and consider all the possible cases:

i) When Ω>0∧Ω> TKε∈[−D0,−Ω]:

I200=−1

2sin(2%)τKln|ν|+O(τK) . (3.144) ii) When Ω>0∧Ω< TKε[−D0,−Ω]:

I200 =−1

2(1−cos(2%))τKlnτK+O(τK). (3.145) iii) When Ω<0∧ |Ω|> TK ≡Ω<−TKε∈[−D0,−Ω]:

I200=−1

2(1−cos(2%))τKln|ν|+O(τK) . (3.146)

iv) When Ω<0∧ |Ω|< TK ≡Ω>−TKε∈[0,−Ω]:

I200=O(τK)−1

2(1−cos(2%))τKlnτK . (3.147)

Third integral The third integral on the RHS of Eq. (3.126) is

Z dε(−nF(ε))GR0c (ε)GR0c (ε+ Ω)χR00f (ε) . (3.148) At low temperatures, the factor containing the Fermi-Dirac distributions merely limits the range of integration:

nF(ε) = Θ(−ε) ; (3.149)

thus, for any Ω,

ε∈[−D0,0]→x∈[−D0,0]. (3.150) In the proper range, we have to consider the integral

Z dε GR0c (ε)Ac(ε+ Ω)χR00f (ε)

= (m 2π)2εF

r2

Z dx cos(%√

1 +x) cos(%√

1 +x+ν)χ00f(d0x) , (3.151) where we have used the previously defined dimensionless variables, Eq. (3.87). Consider the dimensionless integral,

I300:=Z dx cos(%

1 +x) cos(%

1 +x+ν)χ00f(d0x) . (3.152) At low frequencies, ν1, one can Taylor-expand the integrand in ν to obtain

I300 ν1= Z dx cos(%

1 +x) cos(%

1 +x)−1

2sin(%√ 1 +x)

√1 +x

!

χ00f(d0x) . (3.153) The integral cannot be performed analytically. We have to use the asymptotic form of the impurity susceptibility, introduced in section3.3.2.3, and consider all the possible cases:

i) When Ω>0∧Ω> TKε∈[−D0,0]:

I300= 1

2(1 + cos(2%))τKlnτK+O(τK). (3.154)

ii) When Ω>0∧Ω< TKε[−D0,0]:

I300= 1

2(1 + cos(2%))τKlnτK+O(τK). (3.155)

iii) When Ω<0∧ |Ω|> TK ≡Ω<−TKε∈[−D0,0]:

I300= 1

2(1 + cos(2%))τKlnτK+O(τK) . (3.156) iv) When Ω<0∧ |Ω|< TK ≡Ω>−TKε∈[0,−Ω]:

I300= 1

2(1 + cos(2%))τKlnτK+O(τK) . (3.157) Final result for the factors of the imaginary part of f-susceptibility Putting all the integral pieces together, one obtains

F00 =−1 π(m

2π)2εF r2

a00

TK(−i)(−I100) + (−i)(−iπ)( m

2)2εF r2

a00 TK

I200 + (−i)(−i

π )(m 2π)2εF

r2 a00 TKI300

= a00 π (m

2π)2εF TK

1

r2 −I200I300−iI100

| {z }

:=I00

. (3.158)

Now we can obtain I00 for different ranges of Ω:

i) When Ω>0∧Ω> TKε∈[−D0,0]:

I00= sin(2%)τKlnν+O(ν2) . (3.159) ii) When Ω>0∧Ω< TKε[−D0,0]:

I00=O(ν2). (3.160)

iii) When Ω<0∧ |Ω|> TK ≡Ω<−TKε∈[−D0,0]:

I00=O(ν2). (3.161)

iv) When Ω<0∧ |Ω|< TK ≡Ω>−TKε∈[0,−Ω]:

I00=O(ν2). (3.162)

3.3.2.6 Explicit expression for the exchange vertex correction

Ultimately, we have obtained an approximate expression for the exchange diagram, Γex, Γex(Ω) = 2J J02factors ofχR0f + factors ofχR00f . (3.163)

By defining a constant to simplify the notation, c0 := 1

π(m 2π)2 1

r2 εF

TK

, (3.164)

we obtain

i) When Ω>0∧Ω> TK:

Γex =O(ν2) . (3.165)

ii) When Ω>0∧Ω< TK:

Γex = 2J J02 1

2c0a0sin(2%)−2i sin2(%)ν+O(ν2) . (3.166) iii) When Ω<0∧ |Ω|> TK:

Γex =O(ν2) . (3.167)

iv) When Ω<0∧ |Ω|< TK:

Γex = 2J J02 1

2c0a0sin(2%) + 2i sin2(%)ν+O(ν2) . (3.168) Therefore, the ultimate result of the previous calculation is the simple expression

Γex=J J02 3π

2 neN(εF)1

%2 1 TK

a0sin(2%)ν+ 2i sin2(%)|ν|·Θ(Tk− |Ω|) , (3.169) wherene= NVe is the average density of the electrons and

neN(εF) = mkF4

6π4 . (3.170)

Therefore, ultimately, we reach the expected expression, Γex =J J02(gµB)2W

π 1 π(mkF

2π )2εF

TK

sin(2%)ν+ 2i sin2(%)|ν|

%2 Θ(TK− |Ω|) . (3.171) One observes that in the relevant energy interval, Ω ∼ O(TK) D0, where the RG β -function is non-vanishing (see section 3.4), the direct and exchange vertex corrections satisfy

ex/Γdir| ∼ TDK

0 1, and thus, the exchange vertex correction can be safely neglected.12

12 This can be compared to the Migdal’s theorem in the context of electron-phonon interaction and supercon-ductivity, which states that phonon correction (renormalization) to the electron-phonon vertex is suppressed at least by a factor pme

Mi 10−2, whereme andMi represent the mass of an electron and an ion (for a detailed discussion, consult, e.g., Ref. [122,123]). Here the impurity vertex correction to the electronic vertex is suppressed by a factor TDK

0 10−3.

3.4 Renormalization group analysis for the RKKY-modified Kondo