• Keine Ergebnisse gefunden

Evaluation  of  5’-­‐trans-­‐splicing  in  adult  Mybpc3-­‐targeted  KI  mouse

3   RESULTS

3.5   Evaluation  of  5’-­‐trans-­‐splicing  in  vivo

3.5.2   Evaluation  of  5’-­‐trans-­‐splicing  in  adult  Mybpc3-­‐targeted  KI  mouse

The  feasibility  of  PTM-­‐driven  5´-­‐trans-­‐splicing  was  eventually  investigated  in  KI  mice  in  vivo.  

To  this  aim,  PTMΔpA  under  the  control  of  the  cardiomyocyte-­‐specific  TNNT2  promoter  was   packaged  in  AAV9.  Besides,  AAV9  encoding  TNNT2-­‐driven  Renilla  luciferase  (RLuc)  transgene   was   used   for   visualizing   the   distribution   of   protein   expression   in   the   living   animal.   AAV9-­‐

TNNT2-­‐PTM∆pA   (1.04  x  1011  vg)   and   AAV9-­‐TNNT2-­‐RLuc   (1.37  x  1011  vg)   were   administered   systemically  in  the  tail  vein  of  7-­‐week-­‐old  animals.  The  control  mouse  received  NaCl.    

3.5.2.1 Characterization  of  cardiac  function  

To   investigate   the   cardiac   phenotype   of   KI   mice   that   had   received   AAV9-­‐TNNT2-­‐PTM∆pA,   AAV9-­‐TNNT2-­‐RLuc   or   NaCl   compared   to   WT   controls,   longitudinal   echocardiographic   analyses  were  performed  during  one  month  after  injection.  Compared  to  WT  mice,  KI  mice   treated   with   AAV9   and   NaCl   exhibited   higher   left   ventricular   mass   (LVM),   increased   left-­‐

 

ventricular-­‐mass-­‐to-­‐body-­‐weight   ratio   (LVM/BW)   and   lower   fractional   shortening   (FAS)   (Figure  50).  No  major  difference  in  body  weight  (BW)  was  found  between  the  groups  at  the   age   of   7   to   10   weeks.   The   cardiac  function   was   not   improved   after   AAV9-­‐TNNT2-­‐PTM∆pA   administration  at  the  different  time  points  and  even  displayed  a  deteriorated  phenotype  at   the  age  of  10  weeks  with  higher  LVM  and  LVM/BW  and  lower  FAS  than  the  NaCl  KI  control.  

In   summary,   longitudinal   echocardiographic   analysis   did   not   display   major   differences   in   cardiac  function  between  mice  that  received  either  AAV9-­‐TNNT2-­‐PTM∆pA  or  NaCl.  

BW

7 8 9 10

0 10 20 30

Age  (weeks)

5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1

g

LVM

7 8 9 10

0 50 100 150 200 250

KI  +  NaCl KI  +  PTMΔpA WT KI  +  Rluc

5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1 Age  (weeks)

mg

LVM/BW

7 8 9 10

0 2 4 6 8 10

Age  (weeks)

5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1

mg/g

FAS

7 8 9 10

0 10 20 30 40 50

Age  (weeks)

WT KI  +  NaCl KI  +  PTMΔpA KI  +  Rluc

5 1 1 1 5 1 1 1 5 1 1 1 5 1 1 1

%

Figure   50:  Determination   of   the   cardiac   phenotype   in   KI   mice   after   treatment   with   AAV9-­‐TNNT2-­‐PTM∆pA.                

7-­‐week-­‐old  KI  mice  received  AAV9-­‐TNNT2-­‐PTM∆pA,  AAV9-­‐TNNT2-­‐RLuc  or  NaCl  by  systemic  administration  into   the  tail  vein  and  were  analyzed  by  transthoracic  echocardiography  at  7  to  10  weeks  of  age.  Untreated  WT  mice   were   used   as   controls.   Body   weight   (BW),   left   ventricular   mass   (LVM),   LVM   to   BW   ratio   (LVM/BW)   and   fractional  area  shortening  (FAS)  are  shown.  Number  of  animals  is  indicated  in  the  bars.  

 

 

3.5.2.2 In  vivo  bioluminescence  imaging    

Renilla  luciferase  (RLuc)  expression  was  evaluated  by  in  vivo  bioluminescence  imaging.  Non-­‐

invasive   optical   reporter   gene   imaging   can   be   applied   to   study   vector-­‐mediated   gene   delivery   and   expression   in   living   animals   (Bhaumik   and   Gambhir,   2002).   Thereby  Renilla   luciferase   is   commonly   used   as   bioluminescent   reporter.   It   catalyzes   the   oxidation   of   coelenterazine  to  yield  coelenteramide  and  visible  flashlight  of  480  nm.  The  signal  increases   with   increasing   coelenterazine   dose   upon   time   up   to   a   limit   and   extinguishes   within   10   minutes  after  injection  of  the  substrate.  In  vivo  bioluminescence  imaging  of  TNNT2  driven   RLuc   expression   was   performed   4   weeks   after   virus   administration.   Coelenterazine   was   injected   simultaneously   in   the   peritoneal   cavity   of   the   RLuc-­‐   and   NaCl-­‐treated   animals.  

Luminescence  was  clearly  recorded  in  the  heart  of  the  mouse  transduced  with  the  reporter   gene   luciferase   and   was   moderately   higher   than   in   the   NaCl   animal   (Figure   51).   The   unspecific   background   signal   at   the   site   of   injection   was   due   to   autoluminescence   of   the   substrate   itself   and   low   levels   of   light   emitted   from   the   animal   even   though   there   is   no   bioluminescent   light.   In   conclusion,   this   optical   imaging   study   confirmed   that   the   combination   of   AAV9   and   cardiac-­‐specific   promoter   preferentially   restricted   the   luciferase   gene  expression,  and  therefore  of  other  genes  of  interest,  to  the  heart.  

 

 

                                                                                                                                                   

Figure  51:  Optical  imaging  of  Renilla  luciferase  reporter  gene  expression.  Mice  were  anesthetized,  placed  in  the   chamber   of   the   Xenogen  In   Vivo   Imaging   System   and   ventilated   with   a   respirator.  In   vivo   bioluminescence   imaging   was   performed   4   weeks   after   AAV9-­‐TNNT2-­‐RLuc   administration   by  i.p.   injection   of   2.5   mg/kg   body   weight  coelenterazine  in  mice.  Light  emission  was  recorded  specifically  in  the  heart  of  the  mouse  that  received   AAV9-­‐TNNT2-­‐RLuc.  The  region  of  interest  was  manually  selected  and  the  signal  intensity  was  recorded  within   constant  3  minutes  scans.  The  positive  signal  at  the  site  of  i.p.  injection  in  both  NaCl-­‐  and  AAV9-­‐TNNT2-­‐RLuc-­‐

injected   mice   corresponded   to   autofluorescence   of   the   substrate.   Abbreviations:  i.p.,   intraperitoneal;   ROI,   region  of  interest.  

3.5.2.3 Characterization  of  5’-­‐trans-­‐splicing  at  mRNA  level  

The   characterization   of   5’-­‐trans-­‐splicing   at   mRNA   level   was   conducted   in   animals   4   weeks   after  AAV9-­‐TNNT2-­‐PTM∆pA  administration.  Total  RNA  was  extracted  from  heart  and  liver  of   all  mice  and  reverse  transcribed  to  cDNA.  PTM-­‐driven-­‐5’-­‐trans-­‐splicing  was  detected  by  PCR   using  Mybpc3  primers  FLAG/E9R  only  in  the  PTM∆pA-­‐transduced  heart  and  not  in  other  mice   or   organs   (Figure   52;   upper   panel).   The   amplified   repaired   Mybpc3   PCR   product   was   confirmed  by  sequencing  (data  not  shown).  Using  the  primer  set  E1F/E9R  to  analyze  total   Mybpc3   transcripts,   repaired  Mybpc3   sequence   was   amplified   in   addition   to   the   three   endogenous  cis-­‐spliced  Mybpc3  mutants  (Figure  52;  upper  middle  panel).  In  contrast  to  the   ex  vivo  data,  5’-­‐trans-­‐splicing  with  the  PTM∆pA  did  not  visibly  reduce  cis-­‐splicing.    

 

                                 

Figure   52:  Detection   of   repaired  Mybpc3   mRNA   induced   by   5’-­‐trans-­‐splicing  in   vivo.   Heart   and   liver   were   extracted   4   weeks   after   administration   of   AAV9-­‐TNNT2-­‐PTM∆pA,   AAV9-­‐TNNT2-­‐RLuc   or   NaCl   in   7-­‐week-­‐old   mice  and  total  RNA  was  reverse  transcribed  into  cDNA.  Samples  without  reverse  transcriptase  are  indicated  as   (-­‐).   PCR   analysis   was   performed   using   primer   pairs   FLAG/E9R   and   E1F/E9R   to   amplify   repaired   (921   bp)   and   total  Mybpc3  (Mut-­‐1/repaired,  896  bp;  Mut-­‐2,  778  bp;  Mut-­‐3,  824  bp)  mRNA,  respectively.  Luciferase-­‐specific   primers   were   used   to   amplify   luciferase   mRNA.   As   a   negative   control   H2O   was   added   instead   of   cDNA.  

Amplification  of  Gapdh  mRNA  was  used  for  quality  and  quantity  of  cDNA.  The  expected  amplicons  are  indicated   by  arrowheads.  

The  Renilla   luciferase   mRNA   was   overexpressed   in   the   heart   of   the   mouse   that   received   AAV9-­‐TNNT2-­‐RLuc   and   to   a   very   low   extent   in   its   liver,   validating   efficient   cardiotropic   transduction   with   AAV9   (Figure   52;   lower   middle   panel).   Moreover,   there   was   only   low   genomic  contamination  detectable  in  the  samples,  as  shown  in  the  -­‐RT  samples.  In  order  to   estimate  the  repaired  Mybpc3  mRNA  level  as  percentage  of  total  Mybpc3  mRNA  in  PTM∆pA-­‐

transduced  heart  semi-­‐quantitative  RT-­‐PCR  analysis  was  performed  as  described  earlier  (see   3.4.2.4).  The  final  comparison  was  5’-­‐trans-­‐  (repaired)  versus  cis-­‐plus  5’-­‐trans-­‐splicing  (total)   and  based  on  the  intensity  of  the  amplified  bands  (Figure  53;  i.e.  lane  4  of  repaired  Mybpc3   mRNA  and  lane  11  of  total  Mybpc3  mRNA).  The  level  of  repaired  Mybpc3  mRNA  reached  up   to  0.05%  of  total  Mybpc3  mRNA.  Thus,  the  amount  of  AAV9  encoding  PTM∆pA  was  suitable   to  produce  detectable  levels  of  repaired  Mybpc3  product  in  the  heart.  

 

 

Figure  53:  Determination  of  the  percentage  of  repaired  Mybpc3  mRNA  by  semi-­‐quantitative  RT-­‐PCR.  Total  RNA   was   extracted   from   heart   of   AAV9-­‐TNNT2-­‐PTM∆pA-­‐transduced   mouse   and   reverse   transcribed   into   cDNA.  

cDNA   was   used   to   amplify   total   (E1F/E9R   primers)   or   only   repaired  Mybpc3   mRNA   (FLAG/E9R)   by   PCR   (25   cycles).   PCR   products   were   column-­‐purified   and   serially   diluted   (1:3).   In   a   second   round   of   PCR,   a   common   primer  pair  (E1F/E2R)  was  used  to  amplify  a  242-­‐bp  fragment  in  all  samples.  The  percentage  of  Mybpc3  mRNA   that  was  repaired  was  estimated  by  comparing  bands  of  similar  intensities  (black  rectangles).  

3.5.2.4 Characterization  of  5’-­‐trans-­‐splicing  at  protein  level  

Despite   hardly   discernible   levels   of   repaired  Mybpc3   mRNA,   Western   blot   analyses   were   performed  using  an  antibody  directed  against  the  FLAG-­‐tagged  cMyBP-­‐C  protein.  To  detect   repaired  and  endogenous  cMyBP-­‐C  protein  in  parallel,  protein  analysis  was  performed  using   the  anti-­‐cMyBP-­‐C  antibody  targeting  the  MyBP-­‐C  motif.  As  already  observed  in  the  ex  vivo   experiment   the   150-­‐kDa   FLAG-­‐tagged   repaired   cMyBP-­‐C   protein   was   undetectable   by   standard   Western   blot   (Figure   54;   upper   panel).   Even   FLAG-­‐immunoprecipitation   (IP)   followed  by  protein  analysis  did  not  enrich  the  repaired  cMyBP-­‐C  protein  in  the  PTM∆pA-­‐

transduced  cardiac  sample  (data  not  shown).  

                                               

Figure  54:  Western  blot  analysis  after  AAV9-­‐mediated  transduction  of  KI  mice.  Heart  and  liver  were  extracted  4   weeks   after   administration   of   AAV9-­‐TNNT2-­‐PTM∆pA,   AAV9-­‐TNNT2-­‐RLuc   or   NaCl   in   7-­‐week-­‐old   mice   and   protein   lysates   were   analyzed.   The   Western   blot   membrane   was   stained   with   antibody   directed   against   the   FLAG  epitope.  The  expected  protein  molecular  weights  are  indicated  by  arrowheads.  As  a  positive  control  for   the  FLAG  signal  HEK293  cells  transiently  transfected  (48  h)  with  pGG2-­‐CMV-­‐FLAG-­‐WT-­‐Mybpc3  plasmid  (HEK293   Mybpc3)  were  used.  Lamin  A/C  was  used  as  a  loading  control.  Abbreviations:  MW,  molecular  weight;  NT,  non-­‐

transduced.  

 

Total   cMyBP-­‐C   protein   (150   kDa)   was   stained   with   a   specific   antibody   only   in   ventricular   tissue  of  the  three  mice  and  not  in  the  livers  (Figure  55;  upper  panel).  The  RLuc  (36  kDa)  was   hugely   overexpressed   only   in   the   heart   of   the   corresponding   mouse   (Figure   55;   middle   panel).   The   expression   of   the   transgene   driven   by  TNNT2   promoter   was   restricted   to   the   heart.   The   faint   total   cMyBP-­‐C   protein   signal   for   the   AAV9-­‐TNNT2-­‐Rluc-­‐transduced   mouse   was  due  to  the  overexpression  of  RLuc  in  the  corresponding  myocardial  tissue  sample  (see   also  decreased  signal  for  GAPDH;  Figure  55;  lower  panel),  since  the  same  amount  of  total   protein  is  loaded  on  the  gel.    

                                     

Figure  55:  Determination  of  the  total  full-­‐length  cMyBP-­‐C  and  RLuc  protein  levels  in  vivo.  Heart  and  liver  were   extracted   4   weeks   after   administration   of   AAV9-­‐TNNT2-­‐PTM∆pA,   AAV9-­‐TNNT2-­‐RLuc   or   NaCl   in   7-­‐week-­‐old   mice   and   protein   lysates   were   analyzed.   Western   blot   membrane   was   stained   with   an   antibody   directed   against  MyBP-­‐C  motif  and  another  directed  against  RLuc.  The  expected  protein  molecular  weights  are  indicated   by  arrowheads.  As  a  positive  control  for  the  RLuc  signal  HEK293  cells  transiently  transfected  (48  h)  with  Rluc   plasmid  (HEK293  Rluc)  were  used.  GAPDH  was  used  as  a  loading  control.