• Keine Ergebnisse gefunden

Estimation of Laser Induced Temperature Increase in 1T -TaS 2

Following photoexcitation and initial relaxation phenomena on fs and ps timescales, the quasi-equilibrium is achieved, where the temperature is higher than the initial temperature, and its recovery is governed by heat diffusion. The increase in the sample temperature can be estimated based on the published values for the specific heat [Suz85] and the absorbed energy density, determined from the published optical properties of 1T-TaS2 [Bea75]. From the value of reflectivity at a wavelength of λ = 387 nm, R ∼20 %, and the optical pene-tration depth of ∼90 nm [Bea75] it follows that the absorbed energy density in our 30 nm thin film is∼ 170 (340) J/cm3 at a excitation fluence of F = 2.4 (4.8) mJ/cm2. With the specific heat,Cp∼1.85 J/cm3K, which is nearly temperature independent above 200 K, the resulting temperature increase is ∆T ≈90(180) K.

Appendix B.

Zusammenfassung

Die vorliegende Diplomarbeit beschäftigt sich mit der strukturellen Dynamik von Charge-Density-Wave (CDW) Systemen. Aufgrund ihrer quasi niedrigen Dimensionalität sind CDWs ideale Modellsysteme um die Wechselwirkungen von unterschiedlichen Freiheits-graden wie Spins, Elektronen, Gitter, etc. – welche bei makroskopischen Quantephänome-nen wie Hochtemperatursupraleitung und Riesenmagnetowiderstand auftreten – zu er-forschen. In dieser Hinsicht sind Femtosekunden (fs) zeitaufgelöste Techniken ideale Werk-zeuge um ultraschnelle Prozesse in besagten Materialen anzuregen und gleichzeitig die ver-schiedenen Relaxationswege und Wechselwirkungen zwischen verver-schiedenen Subsystemen nachzuverfolgen [Ave01, Oga05, Kus08]. Besonders 1T-TaS2 beherbergt eine Vielzahl von sog. korrelierten Phänomenen, angefangen vomMott-Isolator-Zustand [Tos76, Faz79] über Supraleitung unter Druck [Sip08, Liu09] bis hin zur Ausbildung unterschiedlich kommen-surabler CDWs [Wil75, Spi97].

Im Folgenden werden photoinduzierte transiente Änderungen der Reflektion und Trans-mission von 1T-TaS2 bei verschiedenen CDW Phasen präsentiert. Im Experiment wur-den unter anderem eine kohärente CDW Amplituwur-denmode und zwei Relaxationszeitskalen τfast ∼200 fs undτslow ∼4 ps beobachtet, welche typisch für CDW Systeme sind [Dem99].

Weiterhin wird die Frequenzverschiebung der Amplitudenmode und die Änderung der Relaxationszeitskalen beim Übergang von der kommensurablen zur fast-kommensurablen Phase diskutiert.

Eine Grundvoraussetzung für die direkte Untersuchung der strukturellen Dynamik durch fs Elektronenbeugung ist die Verfügbarkeit von Proben mit einer Dicke von einigen zehn Nanometern, gleichzeitig aber mit lateralen Abmessungen im Bereich von mehreren hun-dert Mikrometern. Die Herstellung von 1T-TaS2Proben mit einer Abmessung von 30 nm× 100µm×100µm wird ebenso vorgestellt wie deren Charakterisierung durch temperaturab-hängige Transmissionselektronenmikroskopie (TEM), Rasterelektronenmikroskopie (REM) und energiedispersive Röntgenspektroskopie (EDS).

Die Erzeugung von fs Elektronpulsen kann durch das kompakte Design einer Elektro-nenkanone ermöglicht werden [Siw04, Dwy05]. In dieser Arbeit wird die Entwicklung einer kompakten, rückseitig beleuchteten 30 kV Elektronenkanone beschrieben. Obwohl die voll-ständige Charakterisierung noch nicht abgeschlossen ist, werden die Haupteigenschaften der Konstruktion erläutert.

Schließlich werden direkte Messungen der Strukturdynamik von 1T-TaS2 durch fs Elek-tronenbeugung vorgestellt. Es zeigt sich, dass die periodische Gittermodulierung der CDW innerhalb von τmelt ≈ 170±40 fs kollabiert. Dies ist schneller ist als die Hälfte der ko-rrespondierenden Amplitudenmode und deutet daher auf einen elektronisch getriebenen Prozess hin. Der Energietransfer zu optischen Phononen findet innerhalb von τe-ph ≈ 350±50 fs statt. Die Relaxation der CDW passiert auf einer Zeitskala von τrec ∼ 4 ps, welche identisch zum rein optisch gemessenen Wert τslow ist. Die Relaxation des

Ord-nungsparamters in CDW Systemen läuft daher auf der Picosekunden Zeitskala ab. Bei Anregeflüssen, die vergleichbar sind mit der Energie um 1T-TaS2 in den kommensurablen CDW Zustand zu heizen, wird beobachtet, dass der Phasenübergang auf der sub ps Zeitskala stattfindet. Dieses Experiment zeigt, dass komplementäre Erkenntnisse zur Erforschung von komplexen Phänomenen – wie das Schmelzen und Relaxieren des Ordnungsparamters in CDW Materialen – durch fs Elektronenbeugung gewonnen werden können.

58

Bibliography

[AN01] Jens Als-Nielsen and Des McMorrow, Elements of Modern X-ray Physics, 1 ed., Wiley, 1 2001.

[Ave01] R. D. Averitt, A. I. Lobad, C. Kwon, S. A. Trugman, V. K. Thorsmolle, and A. J.

Taylor,Ultrafast conductivity dynamics in colossal magnetoresistance manganites, Physical Review Letters8701, - (2001).

[Bar57] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Microscopic Theory of Supercon-ductivity, Phys. Rev.106, 162–164 (1957).

[Bau07] P. Baum, D. S. Yang, and A. H. Zewail,4D visualization of transitional structures in phase transformations by electron diffraction, Science318, 788-792 (2007).

[Bea75] A. R. Beal, H. P. Hughes, and W. Y. Liang, Reflectivity Spectra of Some Group Va Transition-Metal Dichalcogenides, Journal of Physics C-Solid State Physics8, 4236-4248 (1975).

[Bur91] B. Burk, R. E. Thomson, and J. Zettl, A.and Clarke, Charge-Density-Wave Domains in 1t-Tas2 Observed by Satellite Structure in Scanning-Tunneling-Microscopy Images, Physical Review Letters 66(1991).

[Bur92] B. Burk, R. E. Thomson, J. Clarke, and A. Zettl, Surface and Bulk Charge-Density Wave Structure in 1t-Tas(2), Science257, 362-364 (1992).

[Cao03] J. Cao, Z. Hao, H. Park, C. Tao, D. Kau, and L. Blaszczyk,Femtosecond electron diffraction for direct measurement of ultrafast atomic motions, Applied Physics Letters83, 1044-1046 (2003).

[Cle06] F. Clerc, C. Battaglia, M. Bovet, L. Despont, C. Monney, H. Cercellier, M. G. Garnier, P. Aebi, and L. Berger, H.and Forro,Lattice-distortion-enhanced electron-phonon coupling and Fermi surface nesting in 1T-TaS2, Physical Review B74(2006).

[Cle07] F. Clerc, C. Battaglia, H. Cercellier, C. Monney, H. Berger, L. Despont, and P. Garnier, M. G.and Aebi,Fermi surface of layered compounds and bulk charge density wave systems, Journal of Physics-Condensed Matter 19(2007).

[Coc88] D. J. H. Cockayne and D. R. McKenzie,Electron diffraction analysis of polycrys-talline and amorphous thin films, Acta Crystallographica Section A 44, 870–878 (1988).

[Cow95] J.M. Cowley, Diffraction Physics, Third Edition (North-Holland Personal Li-brary), 3 ed., North Holland, 12 1995.

[Dai95] S. Y. Dai, C. T. Yu, D. H. Li, Z. Y. Shen, and S. Y. Fang,Phase-Transition and Electron Localization in 1t-Tas2, Physical Review B 52, 1578-1583 (1995).

Bibliography

[Dav27] CJ. Davisson and LH Germer, Diffraction of Electrons by a Crystal of Nickel, Phys. Rev. 30, 705Ű740 (1927).

[DB24] Louis De Broglie, Recherches sur la théorie des quanta, Dissertation, 1924.

[Dem99] J. Demsar, K. Biljakovic, and D. Mihailovic,Single particle and collective excita-tions in the one-dimensional charge density wave solid K0.3MoO3 probed in real time by femtosecond spectroscopy, Physical Review Letters 83, 800-803 (1999).

[Dem00] Jure Demsar, Photoexcited Carrier Relaxation in High Temperature Supercon-ductors probed by Ultrafast Optical Spectroscopy, Dissertation, UNIVERSITY OF LJUBLJANA, 2000.

[Dem02] J. Demsar, L. Forro, and D. Berger, H.and Mihailovic,Femtosecond snapshots of gap-forming charge-density-wave correlations in quasi-two-dimensional dichalco-genides 1T-TaS2 and 2H-TaSe2, Physical Review B 66 (2002).

[Die99] L. Diebolt, W. Glaunsinger, and M. McKelvy, Intercalation and deintercalation processes for ammoniated 1T-TaS2, Journal of Solid State Chemistry 145, 336-344 (1999).

[Dre02] Martin Dressel and George Grüner,Electrodynamics of Solids, 1st ed., Cambridge University Press, 1 2002.

[Dru00a] P. Drude, Zur Elektronentheorie der Metalle, Annalen Der Physik 306, 566-613 (1900).

[Dru00b] P. Drude, Zur Ionentheorie der Metalle, Physikalische Zeitschrift 1, 161-165 (1900).

[Dwy05] Jason Dwyer Dwyer,Femtosecond Electron Diffraction Studies of Ultrafast Struc-tural Dynamics, Dissertation, University of Toronto, 2005.

[Dyb02] Marcus Dyba and Stefan W. Hell, Focal Spots of Size λ/23 Open Up Far-Field Florescence Microscopy at 33 nm Axial Resolution, Phys. Rev. Lett. 88, 163901 (2002).

[Ein16] Albert Einstein, Zur Theorie der Strahlung, Mitteilungen der Phyiskalischen Gesellschaft Zürich (1916).

[ES10] Deutsches Elektronen-Synchrotron, Free electron laser FLASH, http:

//zms.desy.de/forschung/forschung_mit_photonen/freie_elektronen_

laser_flash/index_ger.html, 2010, Accessed 24-April-2010.

[Faz79] E. Fazekas, P.and Tosatti,Electrical, Structural and Magnetic-Properties of Pure and Doped 1t-Tas2, Philosophical magazine b-physics of condensed matter statis-tical mechanics electronic opstatis-tical and magnetic properties 39(1979).

[Fri07] D. M. Fritz, D. A. Reis, B. Adams, R. A. Akre, J. Arthur, C. Blome, P. H.

Bucksbaum, A. L. Cavalieri, S. Engemann, S. Fahy, R. W. Falcone, P. H. Fuoss, K. J. Gaffney, M. J. George, J. Hajdu, M. P. Hertlein, P. B. Hillyard, M. H. V.

Hoegen, M. Kammler, J. Kaspar, R. Kienberger, P. Krejcik, S. H. Lee, A. M.

Lindenberg, B. McFarland, D. Meyer, T. Montagne, E. D. Murray, A. J. Nelson,

60

Bibliography

M. Nicoul, R. Pahl, J. Rudati, H. Schlarb, D. P. Siddons, K. Sokolowski-Tinten, T. Tschentscher, and J. B. von der Linde, D.and Hastings,Ultrafast bond softening in bismuth: Mapping a solid’s interatomic potential with X-rays, Science 315 (2007).

[Frö54] H. Fröhlich,Electrons in Lattice Fields, Advances in Physics3 (1954).

[Gor54] J. P. Gordon, H. J. Zeiger, and C. H. Townes, Molecular Microwave Oscillator and New Hyperfine Structure in the Microwave Spectrum of NH3, Phys. Rev.95, 282–284 (1954).

[Gor55] J. P. Gordon, H. J. Zeiger, and C. H. Townes, The Maser—New Type of Mi-crowave Amplifier, Frequency Standard, and Spectrometer, Phys. Rev.99, 1264–

1274 (1955).

[Gro10] R. Gross and A. Marx, Festkörperphysik,http://www.wmi.badw.de/teaching/

Lecturenotes/index.html, 2010, Lecture Notes, Accessed 24-April-2010.

[Gru94] George. Gruner,Density Waves in Solids., Addison Wesley Longman, 1994.

[Har09] M. Harb, W. Peng, G. Sciaini, C. T. Hebeisen, R. Ernstorfer, M. A. Eriksson, M. G. Lagally, and R. J. D. Kruglik, S. G.and Miller, Excitation of longitudinal and transverse coherent acoustic phonons in nanometer free-standing films of (001) Si, Physical Review B 79(2009).

[Heb09] Christoph Hebeisen,Generation, Characterization and Applications of Femtosec-ond Electron Pulses, Dissertation, University of Toronto, 2009.

[Iba99] Harald Ibach and Hans Lüth, Festkörperphysik. Einführung in die Grundlagen (Springer-Lehrbuch), Springer Verlag, 9 1999.

[Ish91] H. Ishiguro, T.and Sato, Electron-Microscopy of Phase-Transformations in 1t-Tas2, Physical Review B 44 (1991).

[Ish95] H. Ishiguro, T.and Sato, High-Resolution Electron-Microscopy of Discommen-suration in the Nearly Commensurate Phase on Warming of 1t-Tas2, Physical Review B52(1995).

[Joh08] M. D. Johannes and I. I. Mazin, Fermi surface nesting and the origin of charge density waves in metals, Phys. Rev. B 77, 165135 (2008).

[Kag89] S. Kagoshima, H. Nagasawa, and T. Sambongi, One-Dimensional Conductors (Springer Series in Solid-State Sciences), Springer, 1 1989.

[Kit04] Charles Kittel,Introduction to Solid State Physics, 8 ed., Wiley, 11 2004.

[Kus08] P. Kusar, V. V. Kabanov, J. Demsar, T. Mertelj, S. Sugai, and D. Mihailovic, Controlled Vaporization of the Superconducting Condensate in Cuprate Supercon-ductors by Femtosecond Photoexcitation, Physical Review Letters 101 (2008).

[Lee74] P. A. Lee and P. W. Rice, T. M.and Anderson, Conductivity from Charge or Spin-Density Waves, Solid State Communications 14(1974).

Bibliography

[Lig09] M. Ligges, I. Rajkovic, P. Zhou, O. Posth, C. Hassel, G. Dumpich, and D. D.

Linde,Observation of ultrafast lattice heating using time resolved electron diffrac-tion, Applied Physics Letters 94, - (2009).

[Lin54] J. Lindhard,On the Properties of a Gas of Charged Particles, Matematisk-Fysiske Meddelelser Kongelige Danske Videnskabernes Selskab 28(1954).

[Liu09] A. Y. Liu,Electron-phonon coupling in compressed 1T-TaS2: Stability and super-conductivity from first principles, Physical Review B 79(2009).

[Mai60] T. H. Maiman, Stimulated Optical Radiation in Ruby, Nature187 (1960).

[Mon75] D. E. Moncton, J. D. Axe, and F. J. DiSalvo,Study of Superlattice Formation in 2H-NbSe2 and 2H-TaSe2 by Neutron Scattering, Phys. Rev. Lett. 34, 734–737 (1975).

[Mor81] R. Moret and R. Colella, Effects of Charge-Density Waves on Bragg Peak Inten-sities, Solid State Communications 38, 1175-1177 (1981).

[Myr75] A. J. Myron, H. W.and Freeman,Electronic-Structure and Fermi-Surface-Related Instabilities in 1T-TaS2 and 1T-TaSe2, Physical Review B 11(1975).

[Oga05] T. Ogasawara, K. Ohgushi, Y. Tomioka, K. S. Takahashi, H. Okamoto, M. Kawasaki, and Y. Tokura, General features of photoinduced spin dynamics in ferromagnetic and ferrimagnetic compounds, Physical Review Letters 94, -(2005).

[oS10] National Institute of Standards and Technology, X-Ray Form Factor, Attenu-ation, and Scattering Tables, http://physics.nist.gov/PhysRefData/FFast/

Text2000/contents2000.html, 2010, Accessed 01-May-2010.

[Par09] H. Park and J.M. Zuo,Direct measurement of transient electric fields induced by ultrafast pulsed laser irradiation of silicon, App. Phys. Lett. 94, 251103 (2009).

[Pei56] R.E. Peierls, Quantum Theory of Solids, reprint ed., Oxford University Press, 1 1956.

[Per08] L. Perfetti, P. A. Loukakos, M. Lisowski, U. Bovensiepen, M. Wolf, H. Berger, and A. Biermann, S.and Georges, Femtosecond dynamics of electronic states in the Mott insulator 1T-TaS2 by time resolved photoelectron spectroscopy, New Journal of Physics 10(2008).

[Pro95] A. Prodan, V. Marinkovic, F. W. Boswell, J. C. Bennett, and M. Remskar, Charge-Density Waves in Some Nb and Ta Chalcogenides, Journal of Alloys and Compounds 219, 69-72 (1995).

[Rem93] M. Remskar and V. Prodan, A.and Marinkovic,Charge-Density-Wave Modulation in Surface-Layers of Tas2 and Nbs2, Surface Science287 (1993).

[Rit09] E. Rittweger, D. Wildanger, and S. W. Hell, Far-field fluorescence nanoscopy of diamond color centers by ground state depletion, EPL (Europhysics Letters) 86, 14001 (2009).

62

Bibliography

[SAI77] G. A. SAIHALASZ and P. B. PERRY,Charge-Density Waves Effects on Phonon Modes of 1t-Tas2, Solid State Communications 21, 995-997 (1977).

[Sch08] F. Schmitt, P. S. Kirchmann, U. Bovensiepen, R. G. Moore, L. Rettig, M. Krenz, J. H. Chu, N. Ru, L. Perfetti, D. H. Lu, M. Wolf, and Z. X. Fisher, I. R.and Shen, Transient electronic structure and melting of a charge density wave in TbTe3, Science321 (2008).

[Sch10] H. Schäfer, V. V. Kabanov, M. Beyer, K. Biljakovic, and J. Demsar, Disentan-glement of the electronic and lattice parts of the order parameter in a 1D Charge Density Wave system probed by femtosecond spectroscopy, submitted (2010).

[Sci09] G. Sciaini, M. Harb, S. G. Kruglik, T. Payer, C. T. Hebeisen, F. J. M. Z. Her-ingdorf, M. Yamaguchi, M. H. V. Hoegen, R. Ernstorfer, and R. J. D. Miller, Electronic acceleration of atomic motions and disordering in bismuth, NATURE 458, 56-U2 (2009).

[Scr75] C. B. Scruby, P. M. Williams, and G. S. Parry, Role of Charge-Density Waves in Structural Transformations of 1t Tas2, Philosophical Magazine 31, 255-274 (1975).

[Sip08] B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, and E. Forro, L.and Tutis, From Mott state to superconductivity in 1T-TaS2, Nature Materials7 (2008).

[Siw03] B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller,An atomic-level view of melting using femtosecond electron diffraction, Science302, 1382-1385 (2003).

[Siw04] Bradley John Siwick,Femtosecond Electron Diffraction Studies of Strongly-Driven Structural Phase Transitions, Dissertation, University of Toronto, 2004.

[Som33] A. Sommerfeld and H. Bethe, Elektronentheorie der Metalle, Handbuch der Physik, vol. 24-2, Springer Verlag, Heidelberg, 1933.

[Spi97] A. Spijkerman, J. L. deBoer, A. Meetsma, and S. Wiegers, G. A.and vanSmaalen, X-ray crystal-structure refinement of the nearly commensurate phase of 1T-TaS2 in (3+2)-dimensional superspace, Physical Review B 56(1997).

[ST03] K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarase-vitch, I. Uschmann, E. Forster, M. Kammler, and D. Horn-von Hoegen, M.and von der Linde,Femtosecond X-ray measurement of coherent lattice vibrations near the Lindemann stability limit, NATURE 422(2003).

[Stä08] David Städter, Breitband zeitaufgelöste Spektroskopie am Hochtemperatur-Supraleiter La2−xSrxCuO4, Master’s thesis, Universität Konstanz, 2008.

[Suz85] A. Suzuki, M. Koizumi, and M. Doyama,Thermal Evidences for Successive Cdw Phase-Transitions in 1t-Tas2, Solid State Communications 53, 201-203 (1985).

[Tho28] G. P. Thomson,Experiments on the Diffraction of Cathode Rays, Proc. Roy. Soc.

Lond.117, 600–609 (1928).

[Tho71] A.H. Thompson, F.R. Gamble, and J.F. Revelli, Transitions Between Semicon-ducting And Metallic Phases in 1-T TaS2, Solid State Communications9(1971).

Bibliography

[Tho72] A.H. Thompson, K.R. Pisharody, and R.F. Koehler, Phys. Rev. Lett. 29(1972).

[Tho94] R. E. Thomson, B. Burk, and J. Zettl, A.and Clarke, Scanning-Tunneling-Microscopy of the Charge-Density-Wave Structure in 1t-Tas2, Physical Review B49 (1994).

[Tin04] Michael Tinkham, Introduction to Superconductivity: Second Edition (Dover Books on Physics) (Vol i), 2 ed., Dover Publications, 6 2004.

[Tod04] Y. Toda, K. Tateishi, and S. Tanda, Anomalous coherent phonon oscillations in the commensurate phase of the quasi-two-dimensional 1T-TaS2 compound, Phys-ical Review B 70, - (2004).

[Tom09] A. Tomeljak, H. Schäfer, D. Städter, M. Beyer, and J. Biljakovic, K.and Demsar, Dynamics of Photoinduced Charge-Density-Wave to Metal Phase Transition in K0.3MoO3, Physical Review Letters102 (2009).

[Tos76] E. Tosatti and P. Fazekas, J . Phys. 37(1976).

[Tsa91] T. Tsang, T. Srinivasan-Rao, and J. Fischer,Surface-plasmon field-enhanced mul-tiphoton photoelectric emission from metal films, Phys. Rev. B 43, 8870–8878 (1991).

[Van92] J. T. M. Vanbakel, G. P. E. M.and Dehosson,Various Regimes of Charge-Density Waves in Layered Compounds, Physical Review B 46(1992).

[War69] B Warren, X-Ray Diffraction, Addison-Wesley Pub. Co., 1 1969.

[Wil74] P. M. Williams and C. B. Parry, G. S.and Scruby, Diffraction Evidence for Kohn Anomaly in 1t Tas2, Philosophical Magazine29(1974).

[Wil75] J. A. Wilson and S. Disalvo, F. J.and Mahajan, Charge-Density Waves and Su-perlattices in Metallic Layered Transition-Metal Dichalcogenides, Advances in Physics 24(1975).

[Wil09] David B. Williams and C. Barry Carter, Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed., Springer, 8 2009.

[Yan09] J. F. Yang, K. Kan, N. Naruse, Y. Yoshida, K. Tanimura, and J. Urakawa, 100-femtosecond MeV electron source for ultrafast electron diffraction, Radiation Physics and Chemistry 78, 1106-1111 (2009).

[Zim79] J. M. Ziman, Principles of the Theory of Solids, 2 ed., Cambridge University Press, 11 1979.

64