• Keine Ergebnisse gefunden

Establishment,  validation  and  technical  monitoring  of  PAL-­‐qLC-­‐MS/MS  technique

VI.   Results

1.1   Establishment,  validation  and  technical  monitoring  of  PAL-­‐qLC-­‐MS/MS  technique

aniline-­‐catalyzed   oxime   ligation)   technique   for   cell   surface   protein   labeling   and   enrichment156  for  the  use  with  primary  human  T  cells  and  to  prepare  the  samples  suitable   for  mass  spectrometry  analysis.  The  PAL  technique  is  based  on  the  fact  that  most  cell  surface   proteins   are   glycosylated.184   Periodate   is   used   to   oxidize   the   alcohol   groups   of   the   sugar   residues   to   form   aldehydes.   Aniline   is   then   catalyzing   the   reaction   in   which   the   aldehyde   forms  a  stable  oxime-­‐linkage  to  the  Biotin-­‐derivate  Aminooxy-­‐Biotin  (Fig.  3).  After  this  reac-­‐

tion,  the  glycosylated  cell  surface  proteins  are  stably  labeled  with  Aminooxy-­‐Biotin,  the  cells   are   lysed   and   frozen.   To   then   identify   the   Biotin-­‐tagged   cell   surface   proteins,   the   PAL-­‐

technique  was  complemented  with  quantitative  liquid  chromatography-­‐tandem  mass  spec-­‐

trometry   (qLC-­‐MS/MS).   Therefore,   the   tagged   cell   surface   proteins   were   purified   and   en-­‐

riched  via  streptavidin  beads  and  the  proteins  were  digested  first  with  Trypsin,  followed  by  a   PNGase  F  digest.  The  two  enzymatically  digested  peptide  fractions  were  separately  kept  and   measured  via  qLC-­‐MS/MS  (Fig.  5).  

       

 

Figure  5:  Scheme  of  the  PAL-­‐qLC-­‐MS/MS  technique.  This  overview  presents  the  steps  of  the  PAL-­‐qLC-­‐MS/MS   technique.  The  cells  are  oxidized  and  biotinylated  via  PAL  technique  (1.)  and  then  lysed  (2.).  The  biotinylated   cell  surface  proteins  are  enriched  via  Streptavidin  beads  (3.)  and  purified  via  centrifugation  (4.).  The  proteins   are  first  enzymatically  digested  with  Trypsin  (5.)  and  the  digested  peptides  are  separated  as  Trypsin  fraction.  

The  Streptavidin  beads  coupled  to  the  remaining  peptides  are  incubated  with  PNGase  F  as  a  second  enzyme  for   digestion  (6.)  and  the  resulting  peptides  separated  as  PNGase  F  fraction.  Both  fractions  are  analyzed  separately   via  quantitative  liquid  chromatography-­‐tandem  mass  spectrometry  (qLC-­‐MS/MS)  (7.).  

 

1.1.1  Influence  of  oxidation  and  biotinylation  process  

Oxidation  agents  like  NaIO4  are  known  to  be  critical  for  the  survival  of  cells,  therefore  the   influence  of  different  concentrations  of  NaIO4  was  tested  in  terms  of  cell  survival,  detection   of  protein  expression  and  biotinylation  efficiency  as  an  adequate  labeling  technique  (Fig.  6).  

 

Figure   6:   Establishment   and   validation   of   PAL-­‐qLC-­‐MS/MS.   Different   NaIO4   concentrations   in   the   one-­‐pot   reaction  of  the  PAL-­‐qLC-­‐MS/MS  as  well  as  the  Biotin  labeling  efficiency  were  tested  on  living  human  CD4+  T   cells,  which  were  activated  for  17h  with  anti-­‐CD3/anti-­‐CD28,  and  analyzed  via  flow  cytometry.  A)  Staining  of   activated   CD4+   T   cells   with   PI   to   check   cell   viability   upon   oxidation   treatment   (1   mM   or   20   mM   NaIO4).  

B)   Staining   of   activated   CD4+   T   cells   with   anti-­‐CD69   antibody   upon   oxidation   treatment   (1   mM   or   20   mM   NaIO4).  C)  Biotinylation  efficiency  of  cell  surface  proteins,  which  were  either  untreated  or  treated  with  NaIO4   was  checked  via  Streptavidin-­‐PE  staining.  The  graph  presents  an  overlay  of  two  experiments  showing  the  Strep-­‐

tavidin  staining  of  untreated  and  treated  cells.  

1mM  and  20  mM  of  NaIO4  were  tested  within  the  oxidation/biotinylation  mix.  Naive  CD4+  T   cells  from  one  human  blood  donor  were  activated  with  anti-­‐CD3/anti-­‐CD28  for  17h.  8x106   cells  each  were  incubated  without  NaIO4,  with  the  1mM  or  the  20  mM  NaIO4  containing  oxi-­‐

dation/biotinylation  one-­‐pot  mix  and  stained  for  flow  cytometry  analysis.  Fig.  6A  shows  that   a  concentration  of  20  mM  NaIO4  decreased  the  viability  of  cells  about  39.8  %  compared  to   1   mM   NaIO4   treatment,   where   20.5   %   of   the   cells   are   PI   positive   (untreated   cells   exhibit   around  4.4  %  of  dead  cells).  The  staining  for  CD69  was  performed  as  a  control,  because  CD69   is   a   well   characterized   T   cell   activation   marker,   and   this   showed   that   a   concentration   of   20  mM  NaIO4  decreases  the  CD69  expression  about  15  %  (Fig  6B).  These  results  pointed  to  a   working   concentration   of   1   mM   NaIO4,   but   high   biotinylation   efficiency   still   needed   to   be   ensured.  A  staining  of  cells  with  Streptavidin-­‐PE,  which  were  treated  with  1  mM  NaIO4  con-­‐

taining   oxidation/biotinylation   mix,   confirmed   a   sufficient   biotinylation   efficiency   of   99   %   (Fig.  6C).  

1.1.2  Validation  of  protein  expression  via  flow  cytometry  in  parallel  to  PAL-­‐qLC-­‐MS/MS  sam-­‐

ple  preparation  

To  ensure  that  the  results  of  the  quantitative  protein  expression  measurements  via  PAL-­‐qLC-­‐

MS/MS  were  comparable  to  the  outcome  of  another  validated  and  widely  used  technique,   the  samples  for  the  generation  of  the  surface  glycoproteome  (D1-­‐D4)  were  stained  for  flow   cytometry  analysis,  in  parallel  to  sample  processing  for  PAL-­‐qLC-­‐MS/MS.  As  targets  for  this   validation  staining  the  known  T  cell  markers  CD11a,  CD62L  and  CD69  were  chosen,  because   they  already  appeared  in  the  mass  spectrometry  results  during  the  establishment  phase  of   the  PAL-­‐qLC-­‐MS/MS  technique.  Fig.  7A  shows  that  the  expression  pattern  of  the  three  pro-­‐

teins  during  the  T  cell  activation  obtained  via  MS  (protein  abundance)  equals  to  the  pattern   measured  via  flow  cytometry  (MFI)  (shown  for  one  representative  donor).  Only  a  slight  dif-­‐

ference  between  the  results  of  the  techniques  can  be  seen  for  CD69.  The  expression  change   between  12h  and  24h  of  stimulation  detected  by  flow  cytometry  showed  a  constant  increase   in  contrast  to  the  MS  result,  which  described  more  a  static  expression  state  of  the  proteins   between  12  and  24h  of  activation.  

 

Figure  7:  Technical  monitoring  of  T  cell  marker  expression  during  sample  preparation  for  PAL-­‐qLC-­‐MS/MS  via   flow  cytometry.  For  the  validation  of  the  PAL-­‐qLC-­‐MS/MS  technique,  a  flow  cytometry  staining  of  the  surface   antigens  CD11a,  CD62L  and  CD69  was  performed  in  parallel  to  sample  preparation  for  PAL-­‐qLC-­‐MS/MS  with  T   cells   of   the   same   donor.   A)   Protein   abundance   (PAL-­‐qLC-­‐MS/MS)   values   and   mean   fluorescence   intensities   (MFI;   flow   cytometry)   are   shown   for   the   respective   cell   surface   proteins   at   the   respective   time   points   (one   representative  donor).  The  expression  pattern  obtained  via  both  techniques  over  the  time  course  is  compara-­‐

ble  to  each  other.  B)  Histograms  of  the  fluorescence  intensity  obtained  by  flow  cytometry  for  the  staining  of   the  respective  proteins  at  the  respective  time  points  are  shown  (one  representative  donor).  (modified  after  157)  

1.1.3  Assessment  of  donor  variability  by  comparing  the  protein  expression  patterns  

To  be  able  to  combine  the  results  of  the  PAL-­‐qLC-­‐MS/MS  technique  of  the  four  single  differ-­‐

ent  blood  donors,  expression  patterns  needed  to  be  checked  for  similarity  during  the  activa-­‐

tion  process.  Therefore,  the  measured  protein  abundances  of  the  different  blood  donors  at   the  different  stimulation  time  points  were  subjected  to  a  principal  component  analysis  and   revealed  highly  concordant  protein  abundances  (Fig.  8A).    

 

Figure  8:  Comparability  of  the  donor  samples  for  PAL-­‐qLC-­‐MS/MS.  A)  Protein  abundances  of  the  samples  of   the  four  donors  (D1-­‐D4)  at  all  time  points  (0,  3,  6,  12,  24,  48h),  obtained  by  PAL-­‐qLC-­‐MS/MS,  were  subjected  to   a  Principal  Component  Analysis  (PCA).  This  analysis  grouped  the  donor  samples  at  the  time  points  (0h,  3-­‐6-­‐12h,   24h,  48h).  Principal  Component  1  (PC1),  explaining  67.31  %  of  the  data  variance,  divides  all  48h  samples  from   the  other  time  points  and  PC2,  explaining  11.09  %  of  the  variance,  separates  the  0h  samples  from  the  samples   of  the  remaining  time  points.157  B)  The  donor  comparability  was  also  assessed  via  flow  cytometry  staining  dur-­‐

ing  the  stimulation  time  course  for  the  surface  antigens  CD69,  CD11a,  CD25  and  CD62L  for  three  donors  (D1-­‐

D3)  at  the  indicated  time  points  (0,  3,  6,  24,  48h),  demonstrating  that  the  obtained  expression  patterns  for  the   selected  surface  antigens  are  comparable  between  the  different  donors.  

For  selected  T  cell  surface  markers  (CD69,  CD11a,  CD25,  CD62L)  the  comparability  of  three  of   the   donors   was   in   addition   assessed   via   flow   cytometry   (Fig.   8B),   which   also   proved   the  

possibility  to  combine  the  datasets  obtained  for  the  different  blood  donors.  Fig.  8B  shows  a   continuous  increase  of  the  CD69  signal  for  the  depicted  donors,  being  able  to  distinguish  a   positive  and  a  negative  population  at  24h.  The  CD11a  expression  was  low  until  the  increase   between  24  and  48h,  as  well  as  the  CD25  expression  until  24h,  also  shown  for  the  three  do-­‐

nors.  CD62L  was  highly  expressed  on  the  naive  T  cells  of  all  examined  donors,  rapidly  down-­‐

regulated  after  the  start  of  the  activation  process,  but  increased  again  around  the  24h  time   point.  The  results  of  the  flow  cytometry  staining  also  showed  high  concordance  between  the   donors  included  in  the  surface  glycoproteome.  

1.2  PAL-­‐qLC-­‐MS/MS-­‐based  cell  surface  glycoproteome  of  human  naive  and  activated  CD4+