• Keine Ergebnisse gefunden

Nicola Kristin Haller

Der Einfluss von Bewegung auf die räumliche Kontrastempfindlichkeit des Wellensittichs (Melopsittacus undulatus)

Das Überleben kleiner Tiere ist häufig von ihren visuellen Fähigkeiten abhängig,

Veränderungen in ihrer Umgebung schnell zu erkennen. Von Vögeln wird grundsätzlich angenommen, dass sie ein exzellentes Sehvermögen haben, das ihnen blitzschnelle Fluchtreaktionen und die Fortbewegung per Flug ermöglicht, ohne dabei eine hohe Kollisionsrate zu haben. Die räumliche Kontrastempfindlichkeit von Vögeln für statische Objekte ist jedoch gering im Vergleich zu anderen Tieren mit ähnlicher Sehschärfe, wie beispielsweise Säugetieren.

Da optische Bewegungsreize für die Flugsteuerung von Vögeln relevant sind, nehme ich an, dass Bewegung ein wichtiger visueller Reiz ist, der Vögel möglicherweise mit einer höheren Kontrastempfindlichkeit ausstattet als bisher unter experimentellen Bedingungen festgestellt werden konnte. Fünf Wellensittiche (Melopsittacus undulatus) wurden in Zweifachwahl-Verhaltensversuchen getestet, in denen sie zwischen einer homogenen grauen Fläche und einem gleich hellen Sinusmuster mit räumlichen Frequenzen zwischen 0.48 und 6.5 cyc/deg und Kontrasten zwischen 0.71% und 99.34% differenzierten. Die Muster wurden entweder statisch präsentiert oder sie drifteten in Geschwindigkeiten zwischen 0 und 12.6 deg/s.

Die Wellensittiche waren dazu in der Lage, signifikant niedrigere Kontraste zu erkennen, wenn die Muster drifteten, was die Annahme unterstützt, dass räumliche

Kontrastempfindlichkeit positiv von Bewegung beeinflusst wird. Die größten Effekte konnten bei niedrigen räumlichen Frequenzen beobachtet werden, und die Kontrastempfindlichkeit wurde umso besser, je schneller die Muster sich bewegten.

Diese Ergebnisse weisen darauf hin, dass die Kontrastempfindlichkeit von Vögeln vermutlich unterschätzt wird, wenn sie allein mit stationären Reizen getestet wird. Die neuen Befunde können zu einem besseren Verständnis des Sehvermögens von Vögeln im Allgemeinen sowie der visuellen Wahrnehmung, angepasst an hohe Bewegungsgeschwindigkeiten während des Fluges, führen. Mögliche Vorzüge sind zu erwarten für den Tierschutz in

Haltungseinrichtungen für Nutzgeflügel, für die tiermedizinische Versorgung von Vögeln sowie für technische Wissenschaften, die sich mit dem Thema Flugsteuerung beschäftigen.

H. REFERENCES

Ahnelt, P. K., & Kolb, H. (2000):

The mammalian photoreceptor mosaic-adaptive design.

Progress in Retinal and Eye Research, 19, 711-777 Alvino, G. M., Archer, G. S & Mench, J. A. (2009):

Behavioural time budgets of broiler chickens reared in varying light intensities.

Applied Animal Behaviour Science, 118, 54-61

Barbur, J. L., Prescott, N. B., Douglas, R., Jarvis, J. R. & Wathes, C. M. (2002):

A comparative study of stimulus-specific pupil responses in the domestic fowl (Gallus gallus domesticus).

Vision Research, 42, 249-255 Barten, P. G. J. (1999):

Contrast sensitivity of the human eye and its effects on image quality.

SPIE Optical Engineering Press, Bellingham, Washington Baylor, D. A., & Hodgkin, A. L. (1973):

Detection and resolution of visual stimuli by turtle photoreceptors.

Journal of Physiology, London, 234, 163-198 Bennett, A. T. D., & Théry, M. (2007):

Avian color vision and coloration: Multidisciplinary evolutionary biology.

American Naturalist, 169, 1-6 Berk, J. (1997):

Light-choice by broilers.

In: Rutter, S. M., Rushen, J., Randle, H. D. & Eddison, J. C. (Eds): Proceedings of the 29th International Congress of the International Society for Applied Ethology.

Universities Federation for Animal Welfare, Wheathampsted, UK, 25-26 Bezzel, E., & Prinzinger, R. (1990):

Sinnesorgane - Auge.

In: Bezzel, E., & Prinzinger, R. (Eds): Ornithologie.

Eugen Ulmer, Stuttgart 148-54

Bhagavatula, P. S., Claudianos, C., Ibbotson, M. R. & Srinivasan, M. V. (2011):

Optic Flow Cues Guide Flight in Birds.

Current Biology, 21, 1794-1799. doi:10.1016/j.cub.2011.09.009

Bingman, V. P., Bagnoli, P., Ioalé, P. & Casini, G. (1989):

Behavioral and anatomical studies of the avian hippocampus.

In: Chan-Palay, V., & Köhler, C. (Eds): The Hippocampus New Vistas.

Alan R. Liss, New York, 379-394

Bischof, H. J. (1988):

The visual field and visually guided behavior in zebra finches (Taeniopygia guttata).

Journal of Comparative Physiology A, 163, 329-337

Bischof, W. F., Reid, S. L., Wylie, D. R. W. & Spetch, M. L. (1999):

Perception of coherent motion in random dot displays by pigeons and humans.

Perception and Psychophysics. 61, 1089-1101 Bischof, H. J., & Watanabe, S. (1997):

On the structure and function of the tectofugal visual path-way in laterally eyed birds.

European Journal of Morphology, 35, 246-254. doi:10.1076/ejom.35.4.246.1308

Blatchford, R. A., Klasing, K. C., Shivaprasad, H. L., Wakenell, P. S., Archerand, G. S. &

Mench, J. A. (2009):

The effect of light intensity on the behavior, eye and leg health, and immune function of broiler chickens.

Poultry Science, 88, 20-28 Blough, P. M. (1971):

The visual acuity of the pigeon for distant targets.

Journal of the experimental Analysis of Behavior, 15, 5768 Bornshein, H., & Tansley, K. (1961):

Elektroretinogramm und Netzhautstrukturder Sumpfohreule (Asio flammeus).

Experientia, 17, 185-187 Braekevelt, C. R. (1988):

Fine structure of the pecten of the pigeon (Columba livia).

Ophthalmologica, 196, 3, 151-159 Breitmeyer, G. (1973):

A relationship between the detection of size, rate, orientation and direction in the human visual system.

Vision Research, 13, 41-58

Brundett, G. W. (1974):

Human sensitivity to flicker.

Lighting Research and Technology, 6, 127-143 Burr, D. C., & Ross, J. (1982):

Contrast sensitivity at high velocities.

Vision Research, 22, 479-484 Burton, B. G. (2000):

Problems and solutions in early visual processing.

In: Baddeley, R. J., Hancock, P. J. & Földiák P. (Eds): Information Theory and the Brain.

Cambridge University Press, Cambridge, 25-40 Campbell, F. W., & Green, D. G. (1965):

Optical and retinal factors affecting visual resolution.

Journal of Physiology, London, 181, 576-593 Campbell, F. W., & Gubitsch, R.W. (1966):

Optical quality of the human eye.

Journal of Physiology, London, 186, 558-578 Campbell, F. W., & Maffei, L. (1981):

The influence of spatial frequency and contrast on the perception of moving patterns.

Vision Research, 21, 713-711

Campenhausen, M. v., & Kirschfeld, K. (1998):

Spectral sensitivity of the accessory optic system of the pigeon.

Journal of Comparative and Physiological Psychology, 183, 1-6. doi:10.1007/s003590050229 Casini, G., Fontanesi, G., Bingman, V. P., Jones, T. J., Gagliardo, A., Ioale, P. & Bagnoli, P.

(1997):

The neuroethology of cognitive maps: contributions from research on the hippocampus and homing pigeon navigation.

Archives Italiennes de Biologie, 135, 73-92 Cohen, R. W., Carlson, C. R. & Cody, G. (1976):

Image Descriptors for Displays.

ONR Technical Report, RCA Laboratories, Princeton, Contract No. N00014-74-C-0184

Collin, S. P. (2008):

A web-based archive for topographic maps of retinal cell distribution in vertebrates.

Clinical and Experimental Optometry, 91, 85-95

Cooper, W. E., Pérez-Mellado, V. & Hawlena, D. (2006):

Magnitude of food reward affects escape behavior and acceptable risk in Balearic lizards.

Podarcis lilfordi. Behavioral Ecology, 17, 554-559 Crozier, W. J., & Wolf, E. (1941):

The simplest flicker threshold contour for the zebra finch.

Journal of General Physiology, 24, 625-633

Curcio, C. A., Sloan, K. R., Kalina, R. E. & Hendrickson, A. E. (1990):

Human photoreceptor topography.

Journal of Comparative Neurology, 292, 497-523 Davies, M. N. O., & Green, P. R. (1988):

Head-bobbing during walking, running and flying: relative motion perception in the pigeon.

Journal of Experimental Biology, 138, 71-92 Dayan, M. O., & Ozaydin, T. (2013):

A Comparative Morphometrical Study of the Pecten Oculi in Different Avian Species.

The Scientific World Journal, doi:10.1155/2013/968652 Delcomyn, F. (1998):

Foundations of Neurobiology.

W. H. Freeman, New York

Demery, Z. P., Chappell, J. & Martin, G. R. (2011):

Vision, touch and object manipulation in Senegal parrots Poicephalus senegalus.

Proceedings of the Royal Society B: Biological Sciences, 278, 3687-3693.

doi:10.1098/rspb.2011.0374

De Valois, R. L., & De Valois, K. K. (1990):

Spatial Vision.

Oxford University Press, New York

De Valois, R. L., Morgan, H. C. & Snodderly, D. M. (1974):

Psychophysical studies of monkey vision. III. Spatial luminance contrast sensitivity tests of macaque and human observers.

Vision Research, 14, 75-81

Dittrich, W. H., & Lea, S. E. G. (1993):

Motion as a natural category for pigeons: Generalization and a feature-positive effect Journal of the Experimental Analysis of Behavior, 59, 115-129

Dittrich, W. H., Lea, S. E. G., Barrett, J. & Gurr, P. R. (1998):

Categorisation of natural movements by pigeons: Visual concept discrimination and biological motion.

Journal of the Experimental Analysis of Behavior, 70, 281-299 Dodt, E., & Wirth, A. (1953):

Differentiation Between Rods and Cones by Flicker Electroretinography in Pigeon and Guinea Pig.

Acta Physiologica Scandinavica, 30, 1, 80-89. doi:10.1111/j.1748-1716.1954.tb01076.x Duke-Elder, S. (1958):

The eyes of birds.

In: Duke-Elder, S. (Ed.): System of ophthalmology I - the eye in evolution.

Kimpton, London, 397-427

Eckert, H., & Hamdorf, K. (1981):

The contrast frequency-dependence: a criterion for judging the non-participation of neurones in the control of behavioural responses.

Journal of Comparative Physiology A, 145, 241-247

Eckmeier, D., Kern, R. & Egelhaaf, M. (2013):

Encoding of naturalistic optic flow by motion sensitive neurons of nucleus rotundus in the zebra finch (Taeniopygia guttata).

Frontiers in Integrative Neuroscience, 7, 68, 1-17 Elrom, K. (2000):

Handling and transportation of broilers - welfare, stress, fear and meat quality. Part III: Fear, definitions, its relation to stress, causes of fear, responses to fear and measurement of fear.

Israel Journal of veterinary medicine, 55, 3 Esch, H. E., & Burns, J. E. (1995):

Honeybees use optic flow to measure the distance of a food source.

Naturwissenschaften, 82, 38-40. doi:10.1007/BF01167870

Fernández-Juricic, E., Gall, M. D., Dolan, T., Tisdale, V. & Martin, G. R. (2008):

The visual fields of two ground foraging birds, House Finches and House Sparrows, allow for simultaneous foraging and anti-predator vigilance.

Ibis, 150, 779-787 Fite, K. V. (1973):

Anatomical and behavioral correlates of visual acuity in the Great Horned Owl.

Vision Research, 13, 219-230 Franz, V. (1934):

Höhere Sinnesorgane.

In: Bolk, L., Göppert, E., Kallius, E. & Lubosch, W. (Eds): Handbuch der vergleichenden Anatomie der Wirbeltiere II.

Urban & Schwarzenberg, Berlin, Vienna, 989-1292 Friedman, M. B. (1975):

How birds use their eyes.

In: Wright, P., Caryl, P. G. & Vowles, D. M. (Eds): Neural and Endocrine Aspects of Behaviour in Birds.

Elsevier, Oxford, 181-204 Frost, B. J. (1978):

The optokinetic basis of head-bobbing in the pigeon.

Journal of Experimental Biology, 74, 187-195 Frost, B. J., Wylie, D. R. & Wang, Y. C. (1990):

The processing of object and self-motion in the tectofugal and accessory optic pathways of birds.

Vision Research, 30, 1677-1688 Gaffney, M. F., & Hodos, W. (2003):

The visual acuity and refractive state of the American kestrel (Falco sparverius).

Vision Research, 43, 2053-2059 Galifret, Y. (1968):

Les diverses aires fonctionnelles de la rétine du pigeon.

Zeitschrift für Zellforschund und mikroskopische Anatomie, Vienna, 86, 535-545 Galvin, S. J., O’Shea, R. P., Squire, A. M. & Govan, D. G. (1997):

Sharpness overconstancy in peripheral vision.

Vision Research, 37, 2035-2039

Gellerman, L. W. (1933):

Chance orders of alternating stimuli in visual discrimination experiments.

Journal of Genetic Psychology, 42, 206-208. doi:10.1080/08856559.1933.10534237 Ghim, M. M., & Hodos, W. (2006):

Spatial contrast sensitivity of birds.

Journal of Comparative Physiology A, 192, 523-534 Gibson, J. J. (1954):

The visual perception of objective motion and subjective movement.

Psychological Review, 64, 304-314 Goldsmith, T. H., & Butler, B. K. (2003):

The roles of receptor noise and cone oil droplets in the photopic spectral sensitivity of the budgerigar, Melopsittacus undulatus.

Journal of Comparative Physiology A, 189, 135-142. doi:10.1007/s00359-002-0385-8 Goldsmith, T. H., & Butler, B. K. (2005):

Color vision of the budgerigar (Melopsittacus undulatus): hue matches, tetrachromacy, and intensity discrimination.

Journal of Comparative Physiology A, 191, 933-951. doi:10. 1007/s00359-005-0024-2 Gramini, R., & Ali, M. A. (1970):

L’electroretinogrammeet sa frequencede fusion chez Amia calva (Linne).

Revue Canadienne De Biologie, 29, 353-363 Hall, M. I., & Ross, C. F. (2006):

Eye shape and activity pattern in birds.

Journal of Zoology, 271, 437-444 Hammett, S. T., & Bex, P. J. (1996):

Motion Sharpening: evidence for the addition of high spatial frequencies to the effective neural image.

Vision Research, 36, 2729-2733

Hammett, S. T., Georgeson, M. A. & Gorea, A. (1998):

Motion blur and motion sharpening: temporal smear and local contrast non-linearity.

Vision Research, 38, 2099-2108

Harmening, W. M., Nikolay, P., Orlowski, J. & Wagner, H. (2009):

Spatial contrast sensitivity and grating acuity of barn owls.

Journal of Vision, 9, 13, 1-12. doi:10.1167/9.7.13 Harmening, W. M., & Wagner, H. (2011):

From optics to attention: visual perception in barn owls.

Journal of Comparative Physiology A. 197, 11, 1031-1042. doi:10.1007/s00359-011-0664-3 Hart, N. S. (2001a):

The visual ecology of avian photoreceptors.

Progress in Retinal and Eye Research, 20, 675-703. doi:10.1016/S1350-9462(01)00009-X Hart, N. S., & Hunt, D. M. (2007):

Avian visual pigments: characteristics, spectral tuning, and evolution.

American Naturalist, 169, 7-26 Hawryshyn, C. W. (1992):

Polarization vision in fish.

American Scientist, 80, 2, 164-175 Hirsch, J. (1982):

Falcon visual sensitivity to grating contrast.

Nature, London, 300, 57-58

Hirsch, J., & Curcio, C. A. (1989):

The spatial resolution capacity of the human fovea.

Vision Research, 29, 1095-1101. doi:10.1016/0042-6989(89)90058-8 Hodos, W., Ghim, M. M., Potocki, A., Fields, J. N. & Storm, T. (2002):

Contrast sensitivity in pigeons: a comparison of behavioural and pattern ERG methods.

Documenta Ophthalmologica, 104, 107-118. doi:10.1023/ A:1014427615636 Holden, A. L., & Low, J. C. (1989):

Binocular fields with lateral-eyed vision.

Vision Research, 29, 3, 361-367

Holmes, T. A., Knight, R. L., Stegall, L. & Craig, G. R. (1993):

Responses to wintering grassland raptors to human disturbance.

Wildlife Society Bulletin, 21, 461-468

Howland, H. C., Merola, S. & Basarab, J. R. (2004):

The allometry and scaling of the size of vertebrate eyes.

Vision Research, 44, 2043-2065 Hubel, D. H., & Wiesel, T. N. (1965):

Receptive fields and functional architecture of two non-striate visual areas (18 and 19) of the cat.

Journal of Neurophysiology, 28, 229-289 Hughes, A. (1971):

Topographical relationships between the anatomy and physiology of the rabbit visual system.

Documenta Ophthalmologica, 30, 33-159 Hughes, A. (1977):

The topography of vision in mammals of contrasting lifestyle: comparative optics and retinal organization.

In: Crescitelli, F. (Ed.): The Visual System in Vertebrates.

Springer-Verlag, New York, 613-756 Hume, D. (2000):

Photosensitivity.

In: Smith, C. U. M (Ed.): Biology of sensory systems.

John Whiley & Sons Ltd, Chichester Jadzinsky, P. D., & Baccus, S. A. (2013):

Transformation of visual signals by inhibitory interneurons in retinal circuits.

Annual Reviews of Neuroscience, 35, 403-428

Jarvis, J. R., Siobhan, M. A., McMahon, C. E. & Wathes, C. M. (2009):

Measuring and modelling the spatial sensitivity of the chicken (Gallus g. domesticus).

Vision Research, 49, 1448-1454. doi:10.1016/j.visres.2009.02.019

Jarvis, J. R., Taylor, N. R., Prescott, N. B., Meeks, I. & Wathes, C. M. (2002):

Measuring and modelling the photopic flicker sensitivity of the chicken (Gallus g.

domesticus).

Vision Research, 42, 99-106. doi:10.1016/S0042-6989(01)00268-1 Johannson, G. (1978):

Visual event perception.

In: Held, R., Leibowitz, H. W. & Teuber, H.-L. (Eds): Perception.

Springer-Verlag, Berlin, 675-711

Jones, M. P., Pierce, K. E. & Ward, D. (2007a):

Avian vision: a review of form and function with special consideration to birds of prey.

Journal of Exotic Pet Medicine, 16, 69-87 Karten, J. H., Fite, K. V. & Brecha, N. (1977):

Specific projection of displaced retinal ganglion cells upon the accessory optic system in the pigeon (Columbia livia).

Proceedings of the National Academy of Sciences, USA, 74, 1753-1756.

doi:10.1073/pnas.74.4.1753

Kelber, A., Vorobyev, M. & Osorio, D. (2003):

Animal colour vision ± behavioural tests and physiological concepts.

Biological Reviews, Cambridge Philosophical Society, 78, 81-118.

doi:10.1017S1464793102005985 Kelly, D. H. (1977):

Visual contrast sensitivity.

Optica Acta, 24, 107-129 Kelly, D. H. (1979):

Motion and Vision II: stabilized spatio-temporal threshold surface.

Journal of the Optical Society of America, 69, 1340-1349

Kiama, S. G., Bhattacharjee, J., Maina, J. N. & Weyrauch, K. D. (1994):

A scanning electron microscope study of the pecten oculi of the black kite (Milvus migrans):

possible involvement of melanosomes in protecting the pecten against damage by ultraviolet light.

Journal of Anatomy, 185, 3, 637-642 King, A. S., & McLelland, J. (1984):

Special sense organs - eye.

In: King, A. S., & McLelland, J. (Eds): Birds - their structure and function II.

Ballière Tindall, London, 284-301 Koenderink, J. J. (1986):

Optic flow.

Vision Research, 26,161-180

Korbel, R. (1994):

Augenkrankheiten bei Vögeln: Ätiologie und Klinik von Augenkrankheiten, Luftsack-Perfusionsanästhesie, ophthalmologische Photographie und Bildatlas der Augenkrankheiten bei Vögeln.

Veterinary Habilitation, Ludwig Maximilian University, Munich Korbel, R., Huemer, H. & Sölgyeni, W. (2002a):

Elektroretinographische Untersuchungen und zur Ultraviolett-Perzeption und

Flickerfusionsfrequenz beim Haushuhn sowie mögliche haltungs- und tierschutzrechtliche Folgen.

Tierärztliche Praxis (G)

Kram, Y. A., Mantey, S. & Corbo, J.C. (2010):

Avian cone photoreceptors tile the retina as five independent, self-organizing mosaics.

PLoS ONE. doi:10.1371/journal.pone.0008992

Kristensen, H. H., Aerts, J. M, Leroy, T., Wathes, C. M . & Berckmans, D. (2006b):

Modelling the dynamic activity of broiler chickens in response to step-wise changes in light intensity.

Applied Animal Behaviour Science, 101, 125-143

Kristensen, H. H., Perry, G. C., Prescott, N. B, Ladewing, J., Ersboll, A. K. & Wathes, C. M.

(2006a):

Leg health and performance of broiler chickens reared in different light environments.

British Poultry Science, 47, 257-263 Kröger, R. H. H., & Biehlmaier, O. (2009):

Space-saving advantage of an inverted retina.

Vision Research 49, 2318-2321 Land, M. F. (1999a):

Motion and vision: why animals move their eyes.

Journal of Comparative Physiology A, 185, 341-352 Land, M. F., & Nilsson, D.-E. (2002):

Animal eyes.

Oxford University Press, Oxford

Lea, S. E. G., & Dittrich, W. H. (2000):

What do birds see in moving video images?

In: Fagot, J. (Ed.): Picture perception in animals.

Psychology Press, Hove, 143-180 Legagneux, P., & Ducatez, S. (2013):

European birds adjust their flight initiation distance to road speed limits.

Biology Letters, 9, 5. doi:10.1098/rsbl.2013.0417 Leonard, S., & Murray, A. (2004):

Animal Camera, ‘‘Airborne.’’

Episode 3/6, BBC One Television, http://www.bbc.co.uk/programmes/p002sj4g Lewis, P. D., Perry, G. C. & Cockrem, J. F. (1989):

Plasma concentrations of melatonin in layers under interrupted lighting.

British Poultry Science, 30, 968-969 Lind, O., & Kelber, A. (2009):

The intensity threshold of colour vision in two species of parrot.

Journal of Experimental Biology, 212, 3693-3699. doi:10.1242/jeb.035477 Lind, O., & Kelber, A. (2011):

The spatial tuning of achromatic and chromatic vision in budgerigars.

Journal of Vision, 11, 2, 1-9. doi:10.1167/11.7.2 Lind, O., Sunesson, T., Mitkus, M. & Kelber, A. (2012):

Luminance-dependance of spatial vision in budgerigars (Melopsittacus undulatus) and Bourke’s parrots (Neopsephotus bourkii).

Journal of Comparative Physiology A, 198, 69-77. doi:10.1007/s00359-011-0689-7 Lisney, T. J., Rubene, D., Rózsa, J., Løvlie, H., Håstad, O. & Ödeen, A. (2011):

Behavioural assessment of flicker fusion frequency in chicken Gallus gallus domesticus.

Vision Research, 51, 1324-1332 Lythgoe, J. N. (1979):

The ecology of vision.

Clarendon Press, Oxford

Maldonado, P. E., Maturana, H. & Varela, F. J. (1988):

Frontal and lateral visual system in birds. Frontal and lateral gaze.

Brain, Behaviour and Evolution, 32, 57-62

Martin, G. R. (1982):

An owl’s eye: schematic optics and visual performance in Strix aluco L.

Journal of Comparative Physiology A, 145, 341-349 Martin, G. R. (1984):

The visual fields of the tawny owl, Strix aluco L.

Vision Research, 24, 12, 1739-1741, 1743-1751. doi:10.1016/0042-6989(84)90005-1 Martin, G. R.(1985):

Eye.

In: King A. S., & McClelland, J. (Eds): Form and function in birds III.

Academic Press, London, 311-373 Martin, G. R. (1993):

Producing the image.

In: Zeigler, H. P., & Bischof, H. (Eds): Vision, Brain and Behavior in Birds.

The MIT Press, Cambridge, Massachusetts, 5-24 Martin, G. R., & Gordon, I. E. (1974b):

Visual acuity in the tawny owl (Strix aluco L).

Vision Research, 14, 1393-1397. doi:10.1016/0042-6989(74)90014-5 Martinoya, C., & Delius, J. D. (1990):

Perception of rotating spiral patterns by pigeons.

Biological Cybernetics, 63, 127-134

Martinoya, C., Rivaud, S. & Bloch, S. (1983):

Comparing frontal and lateral viewing in the pigeon II. Velocity thresholds for movement discrimination.

Behavioral Brain Research, 8, 375-385 McFarland, W. N., & Loew, E. R. (1983):

Wave produced changes in underwater light and their relations to vision.

Environmental Biology of Fishes, 8, 173-184 Meyer, D. B. (1988):

The avian eye and its adaptations.

In: Crescitelli, F. (Ed.): Handbook of Sensory Physiology: The Visual System in Vertebrates.

Springer-Verlag, New York, 549-611

Michelson, A. A. (1927):

Studies in Optics.

University of Chicago Press Miller, W. H. (1979):

Ocular optical filtering.

In: Antrum, H. (Ed.): Handbook of sensory physiology, VII/6A, Comparative physiology and evolution of vision in invertebrates.

Springer, Berlin, Heidelberg, New York, 69-143 Mitkus, M., Lind, O., Chaib, S. & Kelber, A. (2014):

Retinal ganglion cell topography and spatial resolution of two parrot species: budgerigar (Melopsittacus undulatus) and Bourke’s parrot (Neopsephotus bourkii).

Journal of Comparative Physiology A, 200, 371-384. doi:10.1007/s00359-014-0894-2 Muheim, R. (2011):

Behavioural and physiological mechanisms of polarized light sensitivity in birds.

Philosophical Transaction of the Royal Society B, 366, 763-771. doi:10.1098/rstb.2010.0196 Nalbach, H. O., Wolf-Oberhollenzer, F. & Kirschfeld, K. (1990):

The pigeons eye viewed through an ophthalmoscopic microscope: orientation of retinal landmarks and significance of eye movements.

Vision Research, 30, 4, 529-540

Neiworth, J. J., & Rilling, M. E. (1987):

A method for studying imagery in animals.

Journal of Experimental Psychology, 13, 203-214 Newberry, R. C., Hunt, J. R. & Gardiner, E. E. (1988):

Influence of light intensity on behavior and performance of broiler chickens.

Poultry Science, 67, 1020-1025

Nuboer, J. F. W., Coemans, M. A. J. M. & Vos, J. J. (1992):

Artificial lighting in poultry houses: Do hens perceive the modulation of fluorescent lamps as flicker?

British Poultry Science, 33, 123-133

Osorio, D., Miklosi, A. & Gonda, Z. (1999):

Visual ecology and perception of coloration patterns by domestic chicks.

Evolutionary Ecology, 13, 673-689. doi:10.1023/A:1011059715610

Osorio, D., & Vorobyev, M. (2005):

Photoreceptor spectral sensitivities in terrestrial animals: adaptations for luminance and colour vision.

Proceedings of the Royal Society B, 7, 272, 1745-1752. doi:10.1098/rspb.2005.3156 Pakan, J. M., & Wylie, D. R. (2006):

Two optic flow pathways from the pretectal nucleus lentiformis mesencephali to the cerebellum in pigeons (Columba livia).

Journal of Comparative Neurology, 499, 732-744. doi:10.1002/cne.21108 Payne, R. S. (1971):

Acoustic location of prey by barn owls (Tyto alba).

Journal of Experimental Biology, 54, 535-573 Pettigrew, J. D., & Konishi, M. (1976):

Neurons selective for orientation and binocular disparity in the visual wulst of the barn owl (Tyto alba).

Science, 193, 675-678

Pettigrew, J. D., Nikara, T. & Bishop, P. O. (1968):

Responses to moving slits by single units in the cat striate cortex.

Experimental Brain Research, 6, 373-390

Pettigrew, J. D., Wallman, J. & Wilksoet, C. F. (1990):

Saccadic oscillations facilitate ocular perfusion from the avian pectin.

Nature, London, 343, 362-363

Prescott, N. B., & Wathes, C. M. (1999a):

Reflective properties of domestic fowl (Gallus g. domesticus), the fabric of their housing and the characteristics of the light environment in environmentally controlled poultry houses.

British Poultry Science, 40, 185-193 Prescott, N. B., & Wathes, C. M. (1999b):

Spectral sensitivity of the domestic fowl (Gallus g. domesticus).

British Poultry Science, 40, 332-339

Prescott, N. B., Wathes, C. M. & Jarvis, J. R. (2003):

Light, vision and the welfare of poultry.

Animal Welfare, 12, 269-28

Prins, N., & Kingdom, F. A. A. (2009):

Matlab routines for analyzing psychophysical data.

http://www.palamedestoolbox.org

Querubin, A., Lee, H. R., Provis, J. M. & Bumsted O’Brien, K. M. (2009):

Photoreceptor and ganglion cell topographies correlate with information convergence and high acuity regions in the adult pigeon (Columba livia) retina.

The Journal of Comparative Neurology, 517, 711-722

Ramachandran, V. S., Madhusudhan Rao, V. & Vidyasagar, T. R. (1974):

Sharpness constancy during movement perception.

Perception, 3, 97-98

Reese, S., Hegner, K. & Korbel, R. (1998a):

Zur Anatomie des Ziliarkörpers und der Kammerwinkelregion von Greifvogelaugen als Grundlage für die Gonioskopie.

In: Kösters, J.: Verhandlungsberichte der XI. Tagung der Fachgruppe Geflügelkrankheiten der DVG, 231-237

Reese, S., Korbel, R. & Liebich, H. G. (2001):

Sehorgan.

In: König, H. E., & Liebich, H. G. (Eds): Anatomie und Propädeutik des Geflügel.

Schattauer Verlag, Stuttgart, New York, 195-214 Reymond, L., & Wolfe, J. (1981):

Behavioural determination of the contrast sensitivity function of the eagle (Aquila Audax).

Vision Research, 21, 263-271 Robinson, D. A. (1964):

The mechanics of human saccadic eye movement.

Journal of Physiology, London, 174, 245-264 Robson, J. G. (1966):

Spatial and temporal contrast -sensitivity functions of the visual system.

Journal of the Optical Society of America, 56, 1141-1142 Rochon-Duvigneaud, A. (1943):

Les yeux et le vision des Vertébrés.

Masson, Paris

Roden, C., & Wechsler, B. (1998):

A comparison of the behaviour of domestic chicks reared with or without a hen in enriched pens.

Applied Animal Behaviour Science, 55, 317-326

Rovamo, J., Raninen, A., Lukkarinen, S. & Donner, K. (1996):

Flicker sensitivity as a function of spectral density of external white temporal noise.

Vision Research, 36, 3767-3774 Saint-Exupéry, A. (1943):

Le Petit Prince

Reynal & Hitchcock, New York

Schaeffel, F., & Howland, H. C. (1987):

Corneal accommodation in chick and pigeon.

Journal of Comparative Physiology A, 160, 375-384 Schnapf, J. L., & Baylor, D. A. (1987):

Die Reaktion von Photorezeptoren auf Licht.

Spektrum der Wissenschaft, 10, 6, 116-123 Schöne, H. (1996):

Optokinetic speed control and estimation of travel distance in walking honeybees.

Journal of Comparative Physiology A, 179, 587-592 Shi, Q., & Stell, W. K. (2013):

Die Fledermaus: Regarding optokinetic contrast sensitivity and light-adaptation, chicks are mice with wings. PLoS ONE. doi:10.1371/journal.pone.0075375

Siegel, R. K. (1970):

Apparent movement detection in the pigeon.

Journal of the Experimental Analysis of Behaviour, 14, 93-97

Journal of the Experimental Analysis of Behaviour, 14, 93-97