• Keine Ergebnisse gefunden

6.7 B IOCHEMICAL WORK (ELLA)

6.7.4 ELLA WITH COVALENTLY MODIFIED MICROTITER PLATES

Microtiter plates 66 were blocked with 1 % bovine serum albumin (BSA) in PBS buffer for 90 min at 37 °C (150µl per well). The plates were then washed five times with PBST buffer. Solutions of WGA-HRP (final concentration of 1 µg/mL) and any tested inhibitor in serial dilutions in PBS buffer were pre-incubated for 60 min at 37°C in a 96 well polypropylene microtiter plate. Then the WGA-HRP/inhibitor solutions were transferred to the blocked microtiter plates (100 µl per well) and incubated at 37 °C for 90 min. After having washed the plates five times with PBST buffer, a solution of 2,2’azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) (25 mg per 100 mL) in citrate phosphate buffer (200 mM, pH 4.0) containing 0.015 % of H2O2 was added (50 µl per well). Plates were incubated for 30 min at room temperature in the dark. The color reaction was stopped by addition of 1 M H2SO4 (50 µl per well). After 5 min in darkness, the absorption was measured at 405 nm using a plate reader (BMG Labtech, FLUOstar OPTIMA). Percent inhibition was calculated with the following equation:

% inhibition = ([A(no inhibitor) – A(with inhibitor)]/A(no inhibitor)) x 100

In some cases, the absorption for the negative control (wells without any inhibitor) was lower than the one obtained for wells with low concentration of inhibitor, leading to negative IC50 values. In these cases the reference absorption value A(no inhibitor) was set to the absorption value with the lowest concentration of inhibitor. IC50 values were reported as the concentration of soluble ligand required for inhibition of 50 % of the binding of WGA-HRP to coated microtiter plates. All tests were performed in duplicate.

References

[1] D. Walt, Transforming Glycoscience: A Roadmap for the Future, National Academies Press, Washington DC, 2012.

[2] P. M. Rudd, T. Elliott, P. Cresswell, I. A. Wilson, R. A. Dwek, Science 2001, 291, 2370-2376.

[3] R. Apweiler, H. Hermjakob, N. Sharon, Biochim. Biophys. Acta, Gen. Subj. 1999, 1473, 4-8.

[4] H.-J. Gabius, H.-C. Siebert, S. André, J. Jiménez-Barbero, H. Rüdiger, ChemBioChem 2004, 5, 740-764.

[5] N. Sharon, H. Lis, Lectins, Kluwer Academic Publishers, Dordrecht, 2003.

[6] Z. Wang, Z. S. Chinoy, S. G. Ambre, W. Peng, R. McBride, R. P. de Vries, J. Glushka, J. C. Paulson, G.-J.

Boons, Science 2013, 341, 379-383.

[7] M. Nieuwdorp, M. C. Meuwese, H. Vink, J. B. Hoekstra, J. J. Kastelein, E. S. Stroes, Curr. Opin. Lipidol.

2005, 16, 507-511.

[8] H. Lis, N. Sharon, Chem. Rev. 1998, 98, 637-674.

[9] D. Schwefel, C. Maierhofer, J. G. Beck, S. Seeberger, K. Diederichs, H. M. Möller, W. Welte, V.

Wittmann, J. Am. Chem. Soc. 2010, 132, 8704-8719.

[10] P. Braun, B. Nägele, V. Wittmann, M. Drescher, Angew. Chem., Int. Ed. 2011, 50, 8428-8431.

[11] D. S, M. Kaul, C. Barbieri, in DNA Binders and Related Subjects, Vol. 253 (Eds.: M. Waring, J. Chaires), Springer Berlin Heidelberg, 2005, pp. 179-204.

[12] C. E. Lünse, Phd thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn 2012.

[13] M. D. Dambach, W. C. Winkler, Curr. Opin. Microbiol. 2009, 12, 161-169.

[14] W. C. Winkler, A. Nahvi, A. Roth, J. A. Collins, R. R. Breaker, Nature 2004, 428, 281-286.

[15] C. E. Lünse, M. Schmidt, V. Wittmann, G. Mayer, ACS Chem. Biol. 2011, 6, 675-678.

[16] T. K. Lindhorst, Essentials of Carbohydrate Chemistry and Biochemistry, WILEY-VCH, Weinheim, 2003.

[17] D. Voat, J. G. Voat, C. W. Pratt, Fundamentals of Biochemistry, John Wiley & Sons, New York, 1999.

[18] I. E. Liener, N. Sharon, I. J. Goldstein, Editors, The Lectins. Properties, Functions, and Applications in Biology and Medicine, Academic Press, New York, 1986.

[19] H. Stillmark, Inaugural Dissertation thesis, University of Dorpat 1888.

[20] H. Lis, N. Sharon, J. Chromatogr. A 1981, 215, 361-372.

[21] J. B. Sumner, J. Biol. Chem. 1919, 37, 137-141.

[22] http://lectin3d.cermav.cnrs.fr.

[23] W. I. Weis, K. Drickamer, Annu. Rev. Biochem. 1996, 65, 441-473.

[24] N. Sharon, H. Lis, J. Agric. Food Chem. 2002, 50, 6586-6591.

[25] H. Lis, N. Sharon, Annu. Rev. Biochem. 1986, 55, 35-67.

[26] C. S. Wright, J. Mol. Biol. 1987, 194, 501-529.

[27] C. S. Wright, J. Mol. Biol. 1980, 141, 267-291.

[28] C. S. Wright, J. Mol. Biol. 1989, 209, 475-487.

[29] K. Harata, H. Nagahora, Y. Jigami, Acta Crystallogr. Sect. D 1995, 51, 1013-1019.

[30] C. S. Wright, F. Gavilanes, D. L. Peterson, Biochemistry 1984, 23, 280-287.

[31] C. S. Wright, G. E. Kellogg, Protein Sci. 1996, 5, 1466-1476.

[32] D. Zanini, R. Roy, Bioconjugate Chem. 1997, 8, 187-192.

[33] C. Maierhofer, K. Rohmer, V. Wittmann, Bioorg. Med. Chem. 2007, 15, 7661-7676.

[34] E. Friere, O. L. Mayorga, M. Straume, Anal. Chem. 1990, 62, 950A-959A.

[35] G. P. Privalov, P. L. Privalov, Methods Enzym. 2000, 323, 31-62.

[36] R. J. Green, R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, S. J. B. Tendler, Biomaterials 2000, 21, 1823-1835.

[37] W. M. Mullett, E. P. C. Lai, J. M. Yeung, Methods 2000, 22, 77-91.

[38] R. L. Rich, D. G. Myszka, Curr. Opin. Biotechnol. 2000, 11, 54-61.

[39] A. Milov, K. Salikhov, M. Shirov, Fiz. Tverd. Tela 1981, 23, 975-982.

[40] M. Pannier, S. Veit, A. Godt, G. Jeschke, H. W. Spiess, J. Magn. Reson. 2000, 142, 331-340.

[41] A. K. Upadhyay, P. P. Borbat, J. Wang, J. H. Freed, D. E. Edmondson, Biochemistry 2008, 47, 1554-1566.

[42] J. Bhatnagar, P. P. Borbat, A. M. Pollard, A. M. Bilwes, J. H. Freed, B. R. Crane, Biochemistry 2010, 49, 3824-3841.

[43] P. P. Borbat, J. H. Freed, Methods Enzymol. 2007, 423, 52-116.

[44] G. Jeschke, Annu. Rev. Phys. Chem. 2012, 63, 419-446.

[45] R. Ward, A. Bowman, E. Sozudogru, H. El-Mkami, T. Owen-Hughes, D. G. Norman, J. Magn. Reson.

2010, 207, 164-167.

[46] C. Maierhofer, Phd thesis, Universität Konstanz 2009.

[47] P. Braun, Phd thesis, Universität Konstanz 2013.

[48] T. Gnewuch, G. Sosnovsky, Chem. Rev. 1986, 86, 203-238.

[49] F. Cinget, T. Ogawa, RIKEN Rev. 1995, 8, 41-42.

[50] J. D. Aplin, L. D. Hall, Carbohydr. Res. 1977, 59, C20-C24.

[51] J. D. Aplin, L. D. Hall, Carbohydr. Res. 1979, 75, 17-29.

[52] G. Sosnovsky, N. U. M. Rao, J. Lukszo, R. C. Brasch, Z. Naturforsch., B: Anorg. Chem., Org. Chem. 1986, 41B, 1293-1305.

[53] N. U. Jain, A. Venot, K. Umemoto, H. Leffler, J. H. Prestegard, Protein Sci. 2001, 10, 2393-2400.

[54] Á. Canales, Á. Mallagaray, M. Á. Berbís, A. Navarro-Vázquez, G. Domínguez, F. J. Cañada, S. André, H.-J.

Gabius, J. Pérez-Castells, J. Jiménez-Barbero, J. Am. Chem. Soc. 2014, 136, 8011-8017.

[55] I. Shin, Y. Cho, H.-J. Jung, S. Lee, Bull. Korean Chem. Soc. 2001, 22, 355-356.

[56] L. Baldini, A. Casnati, F. Sansone, R. Ungaro, Chem. Soc. Rev. 2007, 36, 254-266.

[57] R. J. Pieters, Org. Biomol. Chem. 2009, 7, 2013-2025.

[58] D. Deniaud, K. Julienne, S. G. Gouin, Org. Biomol. Chem. 2011, 9, 966-979.

[59] S. L. Mangold, M. J. Cloninger, Org. Biomol. Chem. 2006, 4, 2458-2465.

[60] P. Compain, C. Decroocq, J. Iehl, M. Holler, D. Hazelard, T. Mena Barragán, C. Ortiz Mellet, J.-F.

Nierengarten, Angew. Chem. Int. Ed. 2010, 49, 5753-5756.

[61] V. Wittmann, R. J. Pieters, Chem. Soc. Rev. 2013, 42, 4492-4503.

[62] H. S. G. Beckmann, H. M. Möller, V. Wittmann, Beilstein J. Org. Chem. 2012, 8, 819-826.

[63] A. Whitty, Nat. Chem. Biol. 2008, 4, 435-439.

[64] C. A. Hunter, H. L. Anderson, Angew. Chem. Int. Ed. 2009, 48, 7488-7499.

[65] G. Ercolani, L. Schiaffino, Angew. Chem. Int. Ed. 2011, 50, 1762-1768.

[66] M. F. Perutz, Quart. Rev. Biophys. 1989, 22, 139-236.

[67] C. A. Hunter, M. C. Misuraca, S. M. Turega, J. Am. Chem. Soc. 2011, 133, 20416-20425.

[68] W. Jiang, K. Nowosinski, N. L. Löw, E. V. Dzyuba, F. Klautzsch, A. Schäfer, J. Huuskonen, K. Rissanen, C.

A. Schalley, J. Am. Chem. Soc. 2011, 134, 1860-1868.

[69] C. A. Hunter, N. Ihekwaba, M. C. Misuraca, M. D. Segarra-Maset, S. M. Turega, Chem. Commun. 2009, 3964-3966.

[70] O. Schiemann, T. F. Prisner, Q. Rev. Biophys. 2007, 40, 1-53.

[71] G. Jeschke, Y. Polyhach, Phys. Chem. Chem. Phys. 2007, 9, 1895-1910.

[72] G. E. Fanucci, D. S. Cafiso, Curr. Opin. Struct. Biol. 2006, 16, 644-653.

[73] A. D. Milov, A. G. Maryasov, Y. D. Tsvetkov, J. Raap, Chem. Phys. Lett. 1999, 303, 135-143.

[74] S. Stoller, G. Sicoli, T. Y. Baranova, M. Bennati, U. Diederichsen, Angew. Chem., Int. Ed. 2011, 50, 9743-9746.

[75] S. Obeid, M. Yulikov, G. Jeschke, A. Marx, Angew. Chem. Int. Ed. 2008, 47, 6782-6785.

[76] M. Sajid, G. Jeschke, M. Wiebcke, A. Godt, Chem. - Eur. J. 2009, 15, 12960-12962, S12960/12961-S12960/12940.

[77] N. Barhate, P. Cekan, A. P. Massey, S. T. Sigurdsson, Angew. Chem. Int. Ed. 2007, 46, 2655-2658.

[78] C. B. Karim, T. L. Kirby, Z. Zhang, Y. Nesmelov, D. D. Thomas, Proc. Natl. Acad. Sci. USA 2004, 101, 14437-14442.

[79] J. C. McNulty, D. A. Thompson, M. R. Carrasco, G. L. Millhauser, FEBS Letters 2002, 529, 243-248.

[80] G. Jeschke, M. Sajid, M. Schulte, A. Godt, Phys. Chem. Chem. Phys. 2009, 11, 6580-6591.

[81] G. Jeschke, M. Sajid, M. Schulte, N. Ramezanian, A. Volkov, H. Zimmermann, A. Godt, J. Am. Chem. Soc.

2010, 132, 10107-10117.

[82] T. von Hagens, Y. Polyhach, M. Sajid, A. Godt, G. Jeschke, Phys. Chem. Chem. Phys. 2013, 15, 5854-5866.

[83] S. H. Barondes, V. Castronovo, D. N. W. Cooper, R. D. Cummings, K. Drickamer, T. Felzi, M. A. Gitt, J.

Hirabayashi, C. Hughes, K.-i. Kasai, H. Leffler, F.-T. Liu, R. Lotan, A. M. Mercurio, M. Monsigny, S. Pillai, F. Poirer, A. Raz, P. W. J. Rigby, J. M. Rini, J. L. Wang, Cell 1994, 76, 597-598.

[84] B. Wang, G.-J. Boons, Editors, Carbohydrate Recognition: Biological Problems, Methods, And Applications, John Wiley&Sons, USA, 2011.

[85] L. Chiariotti, P. Salvatore, R. Frunzio, C. B. Bruni, Glycoconjugate J. 2004, 19, 441-449.

[86] N. Bidon, F. Brichory, P. Bourguet, J.-P. Le Pennec, L. Dazord, Int. J. Mol. Med. 2001, 8, 245-250.

[87] J. L. Wang, R. M. Gray, K. C. Haudek, R. J. Patterson, Biochim. Biophys. Acta, Gen. Subj. 2004, 1673, 75-93.

[88] S. Sato, J. Nieminen, Glycoconjugate J. 2004, 19, 583-591.

[90] N. Ahmad, H.-J. Gabius, S. Andre, H. Kaltner, S. Sabesan, R. Roy, B. Liu, F. Macaluso, C. F. Brewer, J.

Biol. Chem. 2004, 279, 10841-10847.

[91] N. W. Cooper Douglas, Biochim Biophys Acta, 1572, 209-231

[92] H. Leffler, S. Carlsson, M. Hedlund, Y. Qian, F. Poirier, Glycoconjugate J. 2004, 19, 433-440.

[93] J. Almkvist, A. Karlsson, Glycoconjugate J. 2002, 19, 575-581.

[94] I. Camby, M. Le Mercier, F. Lefranc, R. Kiss, Glycobiology 2006, 16, 137R-157R.

[95] M. F. López-Lucendo, D. Solís, S. André, J. Hirabayashi, K.-i. Kasai, H. Kaltner, H.-J. Gabius, A. Romero, J.

Mol. Biol. 2004, 343, 957-970.

[96] M. Cho, R. D. Cummings, J. Biol. Chem. 1995, 270, 5198-5206.

[97] A. Leppaenen, S. Stowell, O. Blixt, R. D. Cummings, J. Biol. Chem. 2005, 280, 5549-5562.

[98] R. L. Outenreath, A. L. Jones, J. Neurocytol. 1992, 21, 788-795.

[99] C. M. Guardia, J. J. Caramelo, M. Trujillo, S. P. Méndez-Huergo, R. Radi, D. A. Estrin, G. A. Rabinovich, Glycobiology 2014, 24, 428-441.

[100] F. P. Schwarz, H. Ahmed, M. A. Bianchet, L. M. Amzel, G. R. Vasta, Biochemistry 1998, 37, 5867-5877.

[101] N. Ahmad, H.-J. Gabius, S. Sabesan, S. Oscarson, C. F. Brewer, Glycobiology 2004, 14, 817-825.

[102] D. I. Liao, G. Kapadia, H. Ahmed, G. R. Vasta, O. Herzberg, Proc. Natl. Acad. Sci. USA 1994, 91, 1428-1432.

[103] H. Beierbeck, L. T. J. Delbaere, M. Vandonselaar, R. U. Lemieux, Can. J. Chem. 1994, 72, 463-470.

[104] L. Ballell, M. van Scherpenzeel, K. Buchalova, R. M. J. Liskamp, R. J. Pieters, Org. Biomol. Chem. 2006, 4, 4387-4394.

[105] N. Nagy, Y. Bronckart, I. Camby, H. Legendre, H. Lahm, H. Kaltner, Y. Hadari, P. Van Ham, P. Yeaton, J.

C. Pector, Y. Zick, I. Salmon, A. Danguy, R. Kiss, H. J. Gabius, Gut 2002, 50, 392-401.

[106] R. S. Bresalier, P.-S. Yan, J. C. Byrd, R. Lotan, A. Raz, Cancer 1997, 80, 776-787.

[107] L. Meromsky, R. Lotan, A. Raz, Cancer Res. 1986, 46, 5270-5275.

[108] A. Roth, A. Nahvi, M. Lee, I. Jona, R. R. Breaker, RNA 2006, 12, 607-619.

[109] N. Sudarsan, J. E. Barrick, R. R. Breaker, RNA 2003, 9, 644-647.

[110] A. Serganov, D. J. Patel, Nat. Rev. Genet. 2007, 8, 776-790.

[111] S. Blouin, J. Mulhbacher, J. C. Penedo, D. A. Lafontaine, ChemBioChem 2009, 10, 400-416.

[112] J. Mulhbacher, P. St-Pierre, D. A. Lafontaine, Curr. Opin. Pharmacol. 2010, 10, 551-556.

[113] J. A. Collins, I. Irnov, S. Baker, W. C. Winkler, Gen. Dev. 2007, 21, 3356-3368.

[114] J. E. Barrick, K. A. Corbino, W. C. Winkler, A. Nahvi, M. Mandal, J. Collins, M. Lee, A. Roth, N. Sudarsan, I. Jona, J. K. Wickiser, R. R. Breaker, PNAS 2004, 101, 6421-6426.

[115] P. J. McCown, A. Roth, R. R. Breaker, RNA 2011, 17, 728-736.

[116] D. J. Klein, A. R. Ferré-D'Amaré, Science 2006, 313, 1752-1756.

[117] M. Famulok, J. S. Hartig, G. Mayer, Chem. Rev. 2007, 107, 3715-3743.

[118] D. J. Klein, S. R. Wilkinson, M. D. Been, A. R. Ferré-D'Amaré, J. Mol. Biol. 2007, 373, 178-189.

[119] D. J. Klein, M. D. Been, A. R. Ferré-D'Amaré, J. Am. Chem. Soc. 2007, 129, 14858-14859.

[120] J. C. Cochrane, S. V. Lipchock, S. A. Strobel, Chem. Biol. 2007, 14, 97-105.

[121] J. C. Cochrane, S. V. Lipchock, K. D. Smith, S. A. Strobel, Biochemistry 2009, 48, 3239-3246.

[122] Y. Xin, D. Hamelberg, RNA 2010, 16, 2455-2463.

[123] K. M. Brooks, K. J. Hampel, Biochemistry 2009, 48, 5669-5678.

[124] T. J. McCarthy, M. A. Plog, S. A. Floy, J. A. Jansen, J. K. Soukup, G. A. Soukup, Chem. Biol. 2005, 12, 1221-1226.

[125] J. J. Posakony, A. R. Ferré-D’Amaré, J. Org. Chem. 2013, 78, 4730-4743.

[126] J. Lim, B. C. Grove, A. Roth, R. R. Breaker, Angew. Chem. Int. Ed. 2006, 45, 6689-6693.

[127] G.-N. Wang, P. S. Lau, Y. Li, X.-S. Ye, Tetrahedron 2012, 68, 9405-9412.

[128] A. R. Ferré-D'Amaré, Q. Rev. Biophys. 2010, 43, 423-447.

[129] X. Fei, T. Holmes, J. Diddle, L. Hintz, D. Delaney, A. Stock, D. Renner, M. McDevitt, D. B. Berkowitz, J. K.

Soukup, ACS Chem. Biol. 2014, 9.

[130] J. P. McCoy, Jr., J. Varani, I. J. Goldstein, Anal. Biochem. 1983, 130, 437-444.

[131] Y. Bourne, Bolgiano, B., Liao, D.I., Strecker, G., Cantau, P., Herzberg, O., Feizi, T., Cambillau, C., Nat.

Struct. Biol. 1994, 863-870.

[132] D. I. Liao, G. Kapadia, H. Ahmed, G. R. Vasta, O. Herzberg, PNAS 1994, 91, 1428-1432.

[133] I. V. Nesmelova, E. Ermakova, V. A. Daragan, M. Pang, M. Menéndez, L. Lagartera, D. Solís, L. G. Baum, K. H. Mayo, J. Mol. Biol. 2010, 397, 1209-1230.

[134] N. Nishi, A. Abe, J. Iwaki, H. Yoshida, A. Itoh, H. Shoji, S. Kamitori, J. Hirabayashi, T. Nakamura, Glycobiology 2008, 18, 1065-1073.

[135] E. Salomonsson, A. Larumbe, J. Tejler, E. Tullberg, H. Rydberg, A. Sundin, A. Khabut, T. r. Frejd, Y. D.

Lobsanov, J. M. Rini, U. J. Nilsson, H. Leffler, Biochemistry 2010, 49, 9518-9532.

[136] P. M. Collins, C. T. Öberg, H. Leffler, U. J. Nilsson, H. Blanchard, Chem. Biol. Drug Des. 2012, 79, 339-346.

[137] P. M. Collins, K. I. P. J. Hidari, H. Blanchard, Acta Crystallogr. Sect. D 2007, 63, 415-419.

[138] K. Saraboji, M. Håkansson, S. Genheden, C. Diehl, J. Qvist, U. Weininger, U. J. Nilsson, H. Leffler, U.

Ryde, M. Akke, D. T. Logan, Biochemistry 2011, 51, 296-306.

[139] S. Di Lella, V. Sundblad, J. P. Cerliani, C. M. Guardia, D. A. Estrin, G. R. Vasta, G. A. Rabinovich, Biochemistry 2011, 50, 7842-7857.

[140] B. Hatano, H. Araya, Y. Yoshimura, H. Sato, T. Ito, T. Ogata, T. Kijima, Heterocycles 2010, 81, 349.

[141] B. Nägele, Masterthesis, Universität Konstanz 2010.

[142] F. Teusel, bachelor thesis, University Konstanz 2011.

[143] C. Maierhofer, K. Rohmer, V. Wittmann, Bioorg. Med. Chem. 2007, 15, 7661-7676.

[144] B. J. Hong, V. Sunkara, J. W. Park, Nucl. Acids Res. 2005, 33, e106-e106.

[145] C. Grabosch, K. Kolbe, T. K. Lindhorst, ChemBioChem 2012, 13, 1874.

[146] R. Herges, A. Dikmans, U. Jana, F. Köhler, Peter G. Jones, I. Dix, T. Fricke, B. König, Eur. J. Org. Chem.

2002, 2002, 3004-3014.

[147] E. Gérard, A. Meulle, O. Feron, J. Marchand-Brynaert, Bioorg. Med. Chem. Lett. 2012, 22, 586-590.

[148] T. Seitz, C. Maierhofer, D. Matzner, V. Wittmann, in Carbohydrate Chemistry: Proven Synthetic Methods, Vol. 3 (Eds.: R. Roy, S. Vidal), p-Nitrophenoxycarbonyl 2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-a-D-glucopyranoside, CRC Press, Boca Raton, 2015, p. in press.

[149] G. Zemplén, E. Pacsu, Ber. Dtsch. Chem. Ges. 1929, 62, 1613-1614.

[150] L. J. Haynes, Adv. Carbohydr. Chem. 1965, 20, 357-369.

[151] U. Hacksell, G. D. Daves Jr, Progress Med. Chem. 1985, 22, 1-65.

[152] M. H. D. Postema, C-Glycoside Synthesis, CRC Press, Boca Raton, 1995.

[153] D. E. Levy, C. Tang, The Chemistry of C-Glycosides, Elsevier, New York, 1995.

[154] C. Jaramillo, S. Knapp, Synthesis 1994, 1-20.

[155] J. Yoshimura, Bull. Chem. Soc. Jpn. 1961, 34, 8-12.

[156] J. C. Castro-Palomino, R. R. Schmidt, Liebigs Ann. 1996, 1623-1626.

[157] E. Ayadi, S. Czernecki, J. Xie, Chem. Commun. 1996, 347-348.

[158] J. C. Castro-Palomino, R. R. Schmidt, Liebigs Ann. 1996, 76, 1623.

[159] D. M. T. Chan, K. L. Monaco, R.-P. Wang, M. P. Winters, Tetrahedron Lett. 1998, 39, 2933-2936.

[160] P. Y. S. Lam, C. G. Clark, S. Saubern, J. Adams, M. P. Winters, D. M. T. Chan, A. Combs, Tetrahedron Lett. 1998, 39, 2941-2944.

[161] D. A. Evans, J. L. Katz, T. R. West, Tetrahedron Lett. 1998, 39, 2937-2940.

[162] P. Y. S. Lam, C. G. Clark, S. Saubern, J. Adams, K. M. Averill, D. M. T. Chan, A. Combs, Synlett 2000, 2000, 0674-0676.

[163] M. D. Lewis, K. Cha, Y. J. Kishi, J. Am. Chem. Soc. 1982, 104, 4976-4978.

[164] G. A. Kraus, M. T. Molina, J. Org. Chem. 1988, 53, 752-753.

[165] S. Czernecki, G. Ville, J. Org. Chem. 1989, 54, 610-612.

[166] R. Benhaddou, S. Czernecki, W. Farid, G. Ville, J. Xie, A. Zegar, Carbohydr. Res. 1994, 260, 243-250.

[167] S. Czernecki, E. Ayadi, Can. J. Chem. 1995, 73, 343-350.

[168] E. Ayadi, S. Czernecki, J. Xie, J. Carbohydr. Chem. 1996, 15, 191-199.

[169] H. C. Brown, T. E. Cole, Organometallics 1983, 2, 1316-1319.

[170] C. E. Ramey, J. J. Luzzi, (Ed.: C.-G. AG), 1975.

[171] H. S. G. Beckmann, V. Wittmann, Org. Lett. 2007, 9, 1-4.

[172] M. Terauchi, H. Abe, A. Matsuda, S. Shuto, Org. Lett. 2004, 6, 3751-3754.

[173] J. Yoshimura, N. Muramatsu, T. Sato, Nippon Kagaku Zasshi 1958, 79, 1503-1506.

[174] G. Fodor, L. Ötvös, Chem. Ber. 1956, 89, 701-708.

[175] T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 1995, 60, 7508-7510.

[176] W. Zhu, D. Ma, Org. Lett. 2005, 8, 261-263.

[177] E. Yamamoto, K. Izumi, Y. Horita, H. Ito, J. Am. Chem. Soc. 2012, 134, 19997-20000.

[178] D. Crich, V. Dudkin, J. Am. Chem. Soc. 2001, 123, 6819-6825.

[179] U. Ellervik, G. Magnusson, Carbohydr. Res. 1996, 280, 251-260.

[180] F. Paul, J. Patt, J. F. Hartwig, J. Am. Chem. Soc. 1994, 116, 5969-5970.

[181] A. S. Guram, S. L. Buchwald, J. Am. Chem. Soc. 1994, 116, 7901-7902.

[182] A. Klapars, J. C. Antilla, X. Huang, S. L. Buchwald, J. Am. Chem. Soc., 123, 7727-7729.

[184] S. Kopitzki, K. J. Jensen, J. Thiem, Chem. Eur. J. 2010, 16, 7017-7029.

[185] M. Schaarschmidt, B.Sc. thesis, Universität Konstanz 2012.

[186] S. André, D. Specker, N. V. Bovin, M. Lensch, H. Kaltner, H.-J. Gabius, V. Wittmann, Bioconjugate Chem.

2009, 20, 1716-1728.

[187] C. F. Brewer, Glycoconjugate J. 2002, 19, 459-465.

[188] M. J. Sofia, R. Hunter, T. Y. Chan, A. Vaughan, R. Dulina, H. Wang, D. Gange, J. Org. Chem. 1998, 63, 2802-2803.

[189] R. J. Ferrier, J. Chem. Soc., Perkin Trans. 1 1979, 1455-1458.

[190] S. L. Bender, R. J. Budhu, J. Am. Chem. Soc. 1991, 113, 9883-9885.

[191] H. Takahashi, H. Kittaka, S. Ikegami, J. Org. Chem. 2001, 66, 2705-2716.

[192] D. H. R. Barton, S. Augy-Dorey, J. Camara, P. Dalko, J. M. Delaumény, S. D. Géro, B. Quiclet-Sire, P.

Stütz, Tetrahedron 1990, 46, 215-230.

[193] A. W. Johnson, R. B. LaCount, J. Am. Chem. Soc. 1961, 83, 417-423.

[194] E. J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 1965, 87, 1353-1364.

[195] R. Sreekumar, R. Padmakumar, P. Rugmini, Tetrahedron Lett. 1998, 39, 5151-5154.

[196] G. B. Djigoué, L. C. Kenmogne, J. Roy, D. Poirier, Bioorg. & Med. Chem. Lett. 2013, 23, 6360-6362.

[197] J. A. Ciaccio, A. L. Drahus, R. M. Meis, C. T. Tingle, M. Smrtka, R. Geneste, Synthetic Commun. 2003, 33, 2135-2143.

[202] R. Yamasaki, A. Takajyo, H. Kubo, T. Matsui, K. Ishii, M. Yoshida, J. Carbohyd. Chem. 2001, 20, 171-180.

[203] T. V. RajanBabu, W. A. Nugent, J. Am. Chem. Soc. 1994, 116, 986-997.

[204] O. Grotz, Zulassung thesis, Universität Konstanz 2014.

[205] J.-i. Kadokawa, M. Sato, M. Karasu, H. Tagaya, K. Chiba, Angew. Chem. Int. Ed. 1998, 37, 2373-2376.

[206] E. Saxon, S. J. Luchansky, H. C. Hang, C. Yu, S. C. Lee, C. R. Bertozzi, J. Am. Chem. Soc. 2002, 124, 14893-14902.

[207] S. Kopitzki, K. J. Jensen, J. Thiem, Chemistry – A European Journal 2010, 16, 7017-7029.

[208] B. Hoffman, P. Schofield, A. Rich, PNAS 1969, 62, 1195-1202.

[209] T. T. Hai, D. E. Pereira, D. J. Nelson, J. Catarello, A. Srnak, Bioconjugate Chem. 2000, 11, 705-713.

[210] A. Vasella, C. Witzig, J. L. Chiara, M. Martín-Lomas, Helv. Chim. Acta 1991, 74, 2073-2077.

[211] P. B. Alper, S.-C. Hung, C.-H. Wong, Tetrahedron Lett. 1996, 37, 6029-6032.

[212] M. Schmidt, Diploma Thesis, Universität Konstanz, 2006.

[213] A. S. Rowan, N. I. Nicely, N. Cochrane, W. A. Wlassoff, A. Claiborne, C. J. Hamilton, Org. Biomol. Chem.

2009, 7, 4029-4036.

[214] T. Ishiyama, M. Murata, N. Miyaura, J. Org. Chem. 1995, 60, 7508-7510.

[215] M. Bergmann, L. Zervas, Chem. Ber. 1931, 64, 975-980.

[216] S. S. Allavudeen, B. Kuberan, D. Loganathan, Carbohydr. Res. 2002, 337, 965-968.

[217] T. Seitz, C. Fleck, V. Wittmann, in Carbohydrate Chemistry: Proven Synthetic Methods, Vol. 3 (Eds.: R.

Roy, S. Vidal), Short Synthesis of 2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-b -D-glucopyranosyl-benzene and 1-(2-Acetamido-3,4,6-tri-O-acetyl-2-deoxy-b -D-glucopyranosyl)-4-bromobenzene CRC Press, Boca Raton, 2015, p. in press.

[218] S. André, D. Specker, N. V. Bovin, M. Lensch, H. Kaltner, H.-J. Gabius, V. Wittmann, Bioconjugate Chem.

2009, 20, 1716-1728.

Selected spectra

Figure 52: 1H-NMR spectrum from 57 at 400 MHz in CDCl3.

Figure 53: 13C-NMR spectrum from 57 at 100 MHz in CDCl3.

Figure 54: 1H-NMR spectrum from 35 at 400 MHz in D2O.

Figure 55: 1H-NMR spectrum from 37 at 400 MHz in D2O.

Figure 56: 1H-NMR spectrum from 38 at 400 MHz in D2O.

Figure 57: 1H-NMR spectrum from 103 at 400 MHz in CDCl3.

Figure 58: 13C-NMR spectrum from 103 at 100 MHz in CDCl3.

Figure 59: 1H-NMR spectrum from 111 at 400 MHz in CDCl3.

Figure 60: 13C-NMR spectrum from 111 at 100 MHz in CDCl3.

Figure 61: 1H-NMR spectrum from 121 at 400 MHz in CDCl3.

Figure 62: 13C-NMR spectrum from 121 at 100 MHz in CDCl3.

Figure 63: 1H-NMR spectrum from 127 at 400 MHz in DMSO-d6.

Figure 64: 13C-NMR spectrum from 127 at 100 MHz in DMSO-d6.

Figure 65: 1H-NMR spectrum from 130 at 400 MHz in DMSO-d6.

Figure 66: 13C-NMR spectrum from 130 at 100 MHz in DMSO-d6.

Figure 67: 1H-NMR spectrum from 90 at 400 MHz in CDCl3.

Figure 68: 13C-NMR spectrum from 90 at 100 MHz in CDCl3.

Figure 69: 1H-NMR spectrum from 137 at 400 MHz in CDCl3.

Figure 70: 13C-NMR spectrum from 137 at 100 MHz in CDCl3.

Figure 71: 1H-NMR spectrum from 154 at 400 MHz in CDCl3.

Figure 72: 13C-NMR spectrum from 154 at 100 MHz in CDCl3.

Figure 73: 1H-NMR spectrum from 157 at 400 MHz in CDCl3.

Figure 74: 13C-NMR spectrum from 157 at 100 MHz in CDCl3.

Figure 75: 1H-NMR spectrum from 166 at 400 MHz in CDCl3.

Figure 76: 13C-NMR spectrum from 166 at 100 MHz in CDCl3.

Figure 77: 1H-NMR spectrum from 182 at 400 MHz in CDCl3.

Figure 78: 13C-NMR spectrum from 182 at 100 MHz in CDCl3.

Figure 79: 1H-NMR spectrum from 207 at 400 MHz in CDCl3.

Figure 80: 13C-NMR spectrum from 207 at 100 MHz in CDCl3.

Figure 81: 1H-NMR spectrum from 218 at 400 MHz in CDCl3.

Figure 82: 13C-NMR spectrum from 218 at 100 MHz in CDCl3.

Figure 83: 1H-NMR spectrum from 219 at 400 MHz in CDCl3.

Figure 84: 13C-NMR spectrum from 219 at 100 MHz in CDCl3.

Figure 85: 1H-NMR spectrum from 224 at 400 MHz in CDCl3.

Figure 86: 13C-NMR spectrum from 224 at 100 MHz in CDCl3.

Figure 87: 1H-NMR spectrum from 227 at 400 MHz in CDCl3.

Figure 88: 13C-NMR spectrum from 227 at 100 MHz in CDCl3.

Figure 90: 13C-NMR spectrum from 229 at 100 MHz in CDCl3.

Selected HPLC chromatograms

Figure 91: HPLC chromatogram from 40 at 254 nm (Method: 3 min 0 % MeCN, 0-20 % MeCN in 10 min, 20-70 % MeCN in 10 min).

Figure 92: HPLC chromatogram from 43 at 254 nm (Method: 20-95 % MeCN in 20 min).

Figure 93: HPLC chromatogram from 41 at 254 nm (Method: 3-70 % MeCN in 10 min).

Figure 94: HPLC chromatogram from 44 at 254 nm (Method: 3-70 % MeCN in 10 min).

Figure 95: HPLC chromatogram from 42 at 254 nm (Method: 20-95 % MeCN in 10 min).

Figure 96: HPLC chromatogram from 45 at 254 nm (Method: 10-95 % MeCN in 20 min).

Figure 97: HPLC chromatogram from 113 at 254 nm (Method: 40-80 % MeCN in 5 min).

Figure 98: HPLC chromatogram from 46 at 254 nm (Method: 3-70 % MeCN in 10 min).

Figure 99: HPLC chromatogram from 158 at 254 nm (Method: 20-95 % MeCN in 20 min). Shown is the chromatogram of the unpurified spin-labeled galactose. The purified compound decomposed during storage.

Figure 100: HPLC chromatogram from 49 at 254 nm (Method: 20-95 % MeCN in 20 min). Shown is the chromatogram of the unpurified spin-labeled lactose. The purified compound decomposed during storage.

Figure 101: HPLC chromatogram from 179 at 254 nm (Method: 3-70 % MeCN in 10 min).