• Keine Ergebnisse gefunden

Beyond the Electronic Excitation of OH

Im Dokument Precision Spectroscopy on OH (Seite 161-173)

The measured electronic transitions on the OH proved the functionality of our precision spectroscopy laser system and demonstrated the successful detection of the molecules in the vibrational ground state v00 = 0. This thesis contains the groundwork for future measurements of vibrational transitions of the OH molecule. The required mid IR optical parametric oscillator (OPO) has been built in this thesis. Improving its tunability and implementing a phase-locked loop (PLL) to stabilize it to the optical frequency comb (OFC) is the next step. Once this is accomplished, we plan to observe vibrational

one-photon or two-one-photon transition in OH at 2.7µm or 2.9µm, respectively.

Other molecular systems might also be worth considering. Both the OPO and the dye laser have a wide tuning range, which makes them applicable for a variety of different molecules. In general, the simplest molecules are of greatest interest for testing the standard model of physics. Ab initio calculations are more likely to match experimental precision if the system contains as few electrons as possible. Thus, the H2 molecule is the perfect candidate for high-resolution spectroscopy of vibrational transitions.

The challenge of measuring vibrational transitions of the symmetric H2 molecules is the zero dipole moment, since we require a non-zero dipole moment for a one-photon electric dipole transition. One solution might be Raman spectroscopy, which is based on the

11.2. Beyond the Electronic Excitation of OH difference frequency of two electric fields. This principle also applies for one static field with zero frequency and a second field supplied by the IR OPO. In this case, the constant field induces a dipole moment and allows excitation in the IR. An even more straightforward approach might be a measurement of the HD molecule, which is asymmetric and has a small but non-zero dipole moment without further manipulations. The main change that would need to be made spectroscopy on H2 or HD is the implementation of a resonance-enhanced multiphoton ionization (REMPI) setup including a mass spectrometer for detection.

References

[1] F. Zwicky, General Relativity and Gravitation41, 207 (2009).

[2] M. S. Safronova, D. Budker, D. DeMille et al., Reviews of Modern Physics90, 025008 (2018).

[3] S. Perlmutter, Reviews of Modern Physics84, 1127 (2012).

[4] A. G. Riess, Reviews of Modern Physics84, 1165 (2012).

[5] B. P. Schmidt, Reviews of Modern Physics84, 1151 (2012).

[6] R. Adam, P. A. R. Ade, N. Aghanim et al., Astronomy & Astrophysics594, 1 (2016).

[7] M. Dine and A. Kusenko, Reviews of Modern Physics76, 1 (2004).

[8] J. Engel, M. J. Ramsey-Musolf and U. van Kolck, Progress in Particle and Nuclear Physics71, 21 (2013).

[9] J. Lim, J. Almond, M. Trigatzis et al., Physical Review Letters120, 123201 (2018).

[10] D. Colladay and V. A. Kosteleck´y, Physical Review D58, 116002 (1998).

[11] J.-P. Uzan, Reviews of Modern Physics75, 403 (2003).

[12] J.-P. Uzan, Comptes Rendus Physique16, 576 (2015).

[13] T. Nicholson, S. Campbell, R. Hutson et al., Nature Communications6, 6896 (2015).

[14] G. C. Dousmanis, T. M. Sanders and C. H. Townes, Physical Review100, 1735 (1955).

[15] S. Weinreb, A. H. Barrett, M. L. Meeks et al., Nature200, 829 (1963).

[16] M. Rex, I. Wohltmann, T. Ridder et al., Atmospheric Chemistry and Physics14, 4827 (2014).

[17] J. A. Miller, R. J. Kee and C. K. Westbrook, Annual Review of Physical Chemistry41, 345 (1990).

[18] J. J. Ter Meulen and A. Dymanus, The Astrophysical Journal172, L21 (1972).

[19] J. C. Whitehead, Reports on Progress in Physics59, 993 (1996).

[20] M. Kirste, X. Wang, H. C. Schewe et al., Science338, 1060 (2012).

[21] J. R. Bochinski, E. R. Hudson, H. J. Lewandowski et al., Physical Review Letters91, 243001 (2003).

[22] S. Y. T. van de Meerakker, P. H. M. Smeets, N. Vanhaecke et al., Physical Review Letters 94, 023004 (2005).

[23] B. K. Stuhl, M. T. Hummon, M. Yeo et al., Nature492, 396 (2012).

[24] J. M. Beames, F. Liu, M. I. Lester et al., The Journal of Chemical Physics134, 241102 (2011).

[25] J. A. Coxon, Journal of Molecular Spectroscopy58, 1 (1975).

[26] J. A. Coxon, Canadian Journal of Physics58, 933 (1980).

[27] G. Stark, J. W. Brault and M. C. Abrams, J. Opt. Soc. Am. B.11, 3 (1994).

[28] P. A. M. Dirac, Nature139, 323 (1937).

[29] N. Kolachevsky, A. Matveev, J. Alnis et al., Space Science Reviews148, 267 (2009).

[30] R. I. Thompson, Astrophysical Letters17, 3 (1975).

[31] S. G. Karshenboim, Canadian Journal of Physics83, 767 (2005).

[32] S. A. Levshakov, M. Dessauges-Zavadsky, S. D’Odorico et al., Monthly Notices of the Royal Astronomical Society333, 373 (2002).

[33] J. Alnis, A. Matveev, N. Kolachevsky et al., Physical Review A77, 053809 (2008).

[34] T. Udem, J. Reichert, R. Holzwarth et al., Optics Letters24, 881 (1999).

References

[35] W. D. Phillips, Reviews of Modern Physics70, 721 (1998).

[36] M. Schioppo, R. C. Brown, W. F. McGrew et al., Nature Photonics11, 48 (2017).

[37] N. Huntemann, B. Lipphardt, C. Tamm et al., Physical Review Letters113, 210802 (2014).

[38] A. Shelkovnikov, R. J. Butcher, C. Chardonnet et al., Physical Review Letters100, 150801 (2008).

[39] R. H. Parker, C. Yu, W. Zhong et al., Science360, 191 (2018).

[40] M. Born and R. Oppenheimer, Annalen der Physik20, 457 (1927).

[41] G. Herzberg,Molecular Spectra and Molecular Structure: I. Spectra of Diatomic Molecules, 2nd ed. (Krieger Publishing Company, Malabar, 1989).

[42] J. Brown and A. Carrington,Rotational Spectroscopy of Diatomic Molecules, 1st ed. (Cambridge University Press, Cambridge, New York, Port Melbourne, 2003).

[43] J. Brown, J. Hougen, K.-P. Huber et al., Journal of Molecular Spectroscopy55, 500 (1975).

[44] F. Hund, N. Mott, H. Bethe et al.,Quantentheorie, 2nd ed. (Springer-Verlag, Berlin, Heidelberg, 1933).

[45] J. M. Hollas,Modern Spectroscopy, 4th ed. (John Wiley & Sons, Chichester, 2004).

[46] R. Zare,Angular Momentum(John Wiley & Sons, Chichester, 1987).

[47] E. Hirota, J. M. Brown, J. T. Hougen et al., Pure and Applied Chemistry66, 571 (1994).

[48] J. H. Van Vleck, Physical Review33, 467 (1929).

[49] B. J. Drouin, Journal of Physical Chemistry A117, 10076 (2013).

[50] J. M. Brown, E. A. Colbourn, J. K. G. Watson et al., Journal of Molecular Spectroscopy74, 294 (1979).

[51] O. Von Klein, Zeitschrift f¨ur Physik58, 730 (1929).

[52] J. Van Vleck, Reviews of Modern Physics23, 213 (1951).

[53] F. Scheck,Theoretische Physik 4 (Springer-Verlag, Berlin, Heidelberg, 2007).

[54] J. Brown, M. Kaise, C. Kerr et al., Molecular Physics36, 553 (1978).

[55] K. Maeda, M. L. Wall and L. D. Carr, arXiv.org17, 1 (2014), arXiv:1410.3849 .

[56] C. M. Western, Journal of Quantitative Spectroscopy and Radiative Transfer186, 221 (2017).

[57] K. Maeda, M. L. Wall and L. D. Carr, New Journal of Physics17, 045014 (2015).

[58] R. A. Frosch and H. M. Foley, Physical Review88, 1337 (1952).

[59] S. V. Berdyugina and S. K. Solanki, Astronomy & Astrophysics385, 701 (2002).

[60] G. Herzberg,The spectra and structure of simple free radicals(Cornell Universety Press, New York, 1971).

[61] N. Bel and B. Leroy, Astronomy and Astrophysics335, 1025 (1998).

[62] L. Veseth, Physica56, 286 (1971).

[63] J. M. Brown and J. K. Watson, Journal of Molecular Spectroscopy65, 65 (1977).

[64] B. J. Drouin, C. E. Miller, H. S. M¨uller et al., Journal of Molecular Spectroscopy205, 128 (2001).

[65] W. L. Meerts and A. Dymanus, Canadian Journal of Physics53, 2123 (1975).

[66] J. K. G. Watson, Journal of Molecular Spectroscopy80, 411 (1980).

[67] C. J. H. Schutte, J. E. Bertie, P. R. Bunker et al., Pure and Applied Chemistry69, 1633 (1997).

[68] W. Demtr¨oder,Experimentalphysik 3 (Springer, Berlin, Heidelberg, 1996).

[69] T. J. Kane and R. L. Byer, 10, 65 (1985).

[70] A. C. Nilsson, E. K. Gustafson and R. L. Byer, IEEE Journal of Quantum Electronics25, 767 (1989).

[71] T. J. Kane, A. C. Nilsson and R. L. Byer, Optics Letters12, 175 (1987).

[72] B. P. Abbott, R. Abbott, T. D. Abbott et al., Physical Review Letters116, 061102 (2016).

[73] P. Kwee, C. Bogan, K. Danzmann et al., Optics Express20, 10617 (2012).

[74] T. Schuldt, D. Weise, K. D¨oringshoff et al., inInternational Conference on Space Optics 2012 (SPIE, 2017) pp. 1–5.

[75] D. Spence, P. Kean and W. Sibbett, Optics Letters16, 42 (1991).

[76] M. T. Asaki, C.-P. Huang, D. Garvey et al., Optics Letters18, 977 (1993).

References

[77] U. Morgner, F. X. Kartner, S. H. Cho et al., Optics Letters24, 411 (1999).

[78] R. Ell, U. Morgner, F. X. K¨artner et al., Optics Letters26, 373 (2001).

[79] T. Udem,Habilitationsschrift (Munich, 2002) pp. 15–26.

[80] J.-C. Diels,Ultrashort Laser Pulse Phenomena(Elsevier Inc., Amsterdam, 2006) pp. 277–291.

[81] J. Stenger and H. R. Telle, Optics Letters25, 1553 (2000).

[82] W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight et al., Journal of the Optical Society of America B19, 2148 (2002).

[83] M. Dieter,Optics, Light and Lasers, 2nd ed. (Wiley-VCH Verlag, Weinheim, 2007) pp. 114–116.

[84] J. Reichert, R. Holzwarth, T. Udem et al., Optics Communications172, 59 (1999).

[85] J. Ye and S. T. Cundiff,Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Kluwer Academic Publishers, Boston, 2005).

[86] L. Xu, T. W. H¨ansch, C. Spielmann et al., Optics Letters21, 2008 (1996).

[87] K. W. Holman, R. J. Jones, A. Marian et al., Optics Letters28, 851 (2003).

[88] K. W. Holman, R. J. Jones, A. Marian et al., IEEE Journal of Selected Topics in Quantum Electronics9, 1018 (2003).

[89] L. Lessing,Man of High Fidelity: Edwin Howard Armstrong (Bantam Books, New York, 1969).

[90] K.-P. Pun, J. E. Franca and C. Azeredo-Leme,Circuit Design for Wireless Communications (Springer, Boston, 2003).

[91] R. W. Boyd,Nonlinear Optics, 3rd ed. (Academic Press, Cambridge, 2008).

[92] L. Corner, J. Gibb, G. Hancock et al., Applied Physics B: Lasers and Optics74, 441 (2002).

[93] S. E. Harris, M. K. Oshman and R. L. Byer, Physical Review Letters18, 732 (1967).

[94] R. L. Byer and S. E. Harris, Physical Review168, 1064 (1968).

[95] J. E. Midwinter and J. Warner, British Journal of Applied Physics16, 1135 (1965).

[96] J. A. Armstrong, N. Bloembergen, J. Ducuing et al., Physical Review127, 1918 (1962).

[97] M. Yamada, N. Nada, M. Saitoh et al., Applied Physics Letters62, 435 (1993).

[98] H. Kogelnik and T. Li, Applied Optics5, 1550 (1966).

[99] D. G. Hall, Optics Letters21, 9 (1996).

[100] R. W. Boyd, Journal of the Optical Society of America70, 877 (1980).

[101] G. D. Boyd and D. A. Kleinman, Journal of Applied Physics39, 3597 (1968).

[102] S. Guha, Fei-Jain Wu and J. Falk, IEEE Journal of Quantum Electronics18, 907 (1982).

[103] H. E. Major, C. B. E. Gawith and P. G. R. Smith, Optics Communications281, 5036 (2008).

[104] N. Lastzka and R. Schnabel, Optics Express15, 7211 (2007).

[105] A. E. Siegman,Lasers (University Science Books, Mill Valley, 1986).

[106] M. Vainio, J. Peltola, S. Persijn et al., Applied Physics B94, 411 (2009).

[107] N. P. Barnes and J. A. Williams-Byrd, Journal of the Optical Society of America B12, 124 (1995).

[108] A. Henderson and R. Stafford, Applied Physics B85, 181 (2006).

[109] H. Y. Shen, H. Xu, Z. D. Zeng et al., Applied Optics31, 6695 (1992).

[110] E. S. Polzik and H. J. Kimble, Optics Letters16, 1400 (1991).

[111] O. Gayer, Z. Sacks, E. Galun et al., Applied Physics B91, 343 (2008).

[112] J. K. Yamamoto, K. Kitamura, N. Iyi et al., Applied Physics Letters61, 2156 (1992).

[113] A. Henderson and R. Stafford, Optics Letters32, 1281 (2007).

[114] U. T. Schwarz and M. Maier, Physical Review B55, 11041 (1997).

[115] A. Ridah, P. Bourson, M. D. Fontana et al., Journal of Physics: Condensed Matter9, 9687 (1997).

[116] J. Kiessling, R. Sowade, I. Breunig et al., Optics Express17, 87 (2008).

[117] I. Ricciardi, E. De Tommasi, P. Maddaloni et al., Molecular Physics110, 2103 (2012).

References

[118] H. Abu-Safia, R. Al-Tahtamouni, I. Abu-Aljarayesh et al., Applied Optics33, 3805 (1994).

[119] B. J. Frey, D. B. Leviton and T. J. Madison, inOptomechanical Technologies for Astronomy, July (SPIE, 2006) p. 62732J.

[120] D. E. Zelmon, D. L. Small and R. Page, Applied Optics37, 4933 (1998).

[121] R. Wynne, J. L. Daneu and T. Y. Fan, Applied Optics38, 3282 (1999).

[122] Y. Okada and Y. Tokumaru, Journal of Applied Physics56, 314 (1984).

[123] F. Riehle,Frequency Standards, 1st ed. (WILEY-VCH Verlag, Weinheim, 2004).

[124] J. Rutman, Proceedings of the IEEE66, 1048 (1978).

[125] D. Allan, Proceedings of the IEEE54, 221 (1966).

[126] E. Rubiola, Review of Scientific Instruments76, 054703 (2005).

[127] R. Syndor and D. Allan,Handbook: Selection and use of precise frequency and time systems (International Telecomunication Union, Geneva, 1997).

[128] F. Vernotte, M. Lenczner, P.-Y. Bourgeois et al., IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control63, 611 (2016).

[129] M. A. Lombardi, T. P. Heavner and S. R. Jefferts, NCSLI Measure2, 74 (2007).

[130] W. Markowitz, R. G. Hall, L. Essen et al., Physical Review Letters1, 105 (1958).

[131] C. J. Bord´e, G. Camy, B. Decomps et al., Journal de Physique42, 1393 (1981).

[132] T. Yoon, J. Ye, J. Hall et al., Applied Physics B72, 221 (2001).

[133] Jun Ye, L. Robertsson, S. Picard et al., IEEE Transactions on Instrumentation and Measurement48, 544 (1999).

[134] R. Felder, Metrologia42, 323 (2005).

[135] P. Jungner, M. D. Eickhoff, S. D. Swartz et al., inLaser Frequency Stabilization and Noise Reduction, April (SPIE, 1995) pp. 1–14.

[136] K. Doringshoff, K. Mohle, M. Nagel et al., in2010 European Frequency and Time Forum, 5 (IEEE, 2010) pp. 1–6.

[137] K. Doringshoff, M. Reggentin, E. V. Kovalchuk et al., in2012 European Frequency and Time Forum(IEEE, 2012) pp. 419–421.

[138] M. A. Lombardi, L. M. Nelson, A. N. Novick et al., inTime and Frequency Measurements Using the Global Positioning System(Cal. Lab. Int. J. Metrology, 2001) pp. 26–33.

[139] J. Levine, Review of Scientific Instruments70, 2567 (1999).

[140] P. Burdack, M. Tr¨obs, M. Hunnekuhl et al., Optics Express12, 644 (2004).

[141] V. Zhang and R. P. Bijunath,NIST Meridian II precision TimeBase, Test 76120S, Tech. Rep. (2016).

[142] D. A. Steck,Quantum and Atom Optics (available online at http://steck.us/teaching, revision 0.12.0, 16 May, 2017).

[143] P. W. Milonni and M. L. Shih, American Journal of Physics59, 684 (1991).

[144] W. Demtr¨oder,Laserspektroskopie 2 (Springer, Berlin, Heidelberg, 2013).

[145] W. Bennet, Physical Review126, 580 (1962).

[146] E. D. Hinkley, Applied Physics Letters16, 351 (1970).

[147] J. Reid, J. Shewchun, B. K. Garside et al., Applied Optics17, 300 (1978).

[148] P. Maddaloni, M. Bellini and P. De Natale,Laser-Based Measurements for Time and Frequency Domain Applications, Series in Optics and Optoelectronics (Taylor & Francis Group, London, New York, 2013).

[149] P. Werle, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy54, 197 (1998).

[150] R. N. Hager and R. C. Anderson, Journal of the Optical Society of America60, 1444 (1970).

[151] M. Gehrtz, G. C. Bjorklund and E. A. Whittaker, Journal of the Optical Society of America B 2, 1510 (1985).

[152] G. C. Bjorklund, Optics Letters5, 15 (1980).

References

[153] G. C. Bjorklund, M. D. Levenson, W. Lenth et al., Applied Physics B32, 145 (1983).

[154] J. M. Chowing, Journal of the Audio Engineering Society21, 526 (1973).

[155] G. C. Bjorklund and M. D. Levenson, Physical Review A24, 166 (1981).

[156] J. L. Hall, L. Hollberg, T. Baer et al., Applied Physics Letters39, 680 (1981).

[157] R. K. Raj, D. Bloch, J. J. Snyder et al., Physical Review Letters44, 1251 (1980).

[158] G. Camy, C. Bord´e and M. Ducloy, Optics Communications41, 325 (1982).

[159] J. J. Snyder, R. K. Raj, D. Bloch et al., Optics Letters5, 163 (1980).

[160] J. H. Shirley, Optics Letters7, 537 (1982).

[161] A. Schenzle, R. G. DeVoe and R. G. Brewer, Physical Review A25, 2606 (1982).

[162] F. Bertinetto, P. Cordiale, G. Galzerano et al., IEEE Transactions on Instrumentation and Measurement 50, 490 (2001).

[163] E. Jaatinen, Optics Communications120, 91 (1995).

[164] D. J. McCarron, S. A. King and S. L. Cornish, Measurement Science and Technology19, 105601 (2008).

[165] W. Demtr¨oder,Laserspektroskopie 1, 6th ed. (Springer, Berlin, Heidelberg, 2011).

[166] X. Qin and S. D. Zhang, Journal of the Korean Physical Society65, 2017 (2014).

[167] S. Y. T. van de Meerakker, H. L. Bethlem and G. Meijer, Nature Physics4, 595 (2008).

[168] D. H. Levy, Science214, 263 (1981).

[169] W. Christen and K. Rademann, Physical Review A77, 012702 (2008).

[170] G. Scoles,Atomic and Molecular Beam Methods, 1st ed. (Osford Univerisy Press, New York, Oxford, 1988).

[171] P. Andresen, N. Aristov, V. Beushausen et al., Journal of Chemical Physics95, 5763 (1991).

[172] J. Farthing, I. Fletcher and J. Whitehead, Phys. Chem.65, 1663 (1983).

[173] M. C. Van Beek and J. J. Ter Meulen, Chemical Physics Letters337, 237 (2001).

[174] L. Ploenes, D. Haas, D. Zhang et al., Review of Scientific Instruments87, 053305 (2016).

[175] S. M. Barnett, Journal of Modern Optics57, 1445 (2010).

[176] C. Cohen-Tannoudji, J. Dupont-Roc and G. Grynberg,Atom-Photon Interactions (Wiley-VCH Verlag, Weinheim, 1998).

[177] J. Dalibard and C. Cohen-Tannoudji, Journal of the Optical Society of America B2, 1707 (1985).

[178] B. Mollow, Physical Review188, 1969 (1969).

[179] G. Lindblad, Commun. Math. Phys.48, 119 (1976).

[180] C. A. Brasil, F. F. Fanchini and R. de Jesus Napolitano, Revista Brasileira de Ensino de F´ısica35, 1 (2013).

[181] P. Pearle, European Journal of Physics33, 805 (2012).

[182] J. Johansson, P. Nation and F. Nori, Computer Physics Communications183, 1760 (2012).

[183] J. Johansson, P. Nation and F. Nori, Computer Physics Communications184, 1234 (2013).

[184] K. R. German, The Journal of Chemical Physics62, 2584 (1975).

[185] A. L. Stancik and E. B. Brauns, Vibrational Spectroscopy47, 66 (2008).

[186] A. Kolchencko, S. Rautian and R. Sokolovskii, Soviet Physics JETP28, 986 (1969).

[187] R. G. Brewer and A. Mooradian,Laser Spectroscopy (Springer, Boston, 1974).

[188] J. L. Hall, C. J. Bord´e and K. Uehara, Physical Review Letters37, 1339 (1976).

[189] C. J. Bord´e, G. Camy and B. Decomps, Physical Review A20, 254 (1979).

[190] R. C. Hilborn, American Journal of Physics50, 982 (1982).

[191] T. Schuldt, K. D¨oringshoff, A. Milke et al., Journal of Physics: Conference Series723, 012047 (2016).

[192] A. Nevsky, R. Holzwarth, J. Reichert et al., Optics Communications192, 263 (2001).

[193] J. Hrabina, O. Acef, F. Burck et al., Measurement Science Review14, 213 (2014).

[194] E. Jaatinen, D. J. Hopper and J. Back, Measurement Science and Technology20, 025302 (2009).

[195] P. C. D. Hobbs, Applied Optics36, 903 (1997).

References

[196] R. W. P. Drever, J. L. Hall, F. V. Kowalski et al., Applied Physics B31, 97 (1983).

[197] H. R. Barry, B. Bakowski, L. Corner et al., Chemical Physics Letters319, 125 (2000).

[198] C. E. Wieman and L. Hollberg, Review of Scientific Instruments62, 1 (1991).

[199] L. Ricci, M. Weidem¨uller, T. Esslinger et al., Optics Communications117, 541 (1995).

[200] C. J. Hawthorn, K. P. Weber and R. E. Scholten, Review of Scientific Instruments72, 4477 (2001).

[201] B. Mroziewicz, Opto-Electronics Review16, 347 (2008).

[202] T. F¨uhrer, D. Stang and T. Walther, Optics Express17, 4991 (2009).

[203] T. F¨uhrer, S. Euler and T. Walther, Journal of the Optical Society of America B28, 508 (2011).

[204] T. C. Briles, D. C. Yost, A. Cing¨oz et al., Optics Express18, 9739 (2010).

[205] L. Scharfenberg,Crossed beam scattering with a Stark-decelerated molecular beam, Ph.D. thesis, Technische Universit¨at Berlin (2012).

[206] S. A. Meek, M. F. Parsons, G. Heyne et al., Review of Scientific Instruments82, 093108 (2011).

[207] J. J. Ter Meulen, W. Ubachs and A. Dymanus, Chemical Physics Letters129, 533 (1986).

[208] K. R. German, The Journal of Chemical Physics64, 4192 (1976).

[209] R. T. Carter, I. M. Povey, H. Bitto et al., The Journal of Chemical Physics104, 5365 (1996).

[210] J. Xin, I. Ionescu, D. Kuffel et al., Chemical Physics291, 61 (2003).

[211] G. Stark, J. W. Brault and M. C. Abrams, Journal of the Optical Society of America B11, 3 (1994).

[212] R. C. M. Learner and A. P. Thorne, Journal of the Optical Society of America B5, 2045 (1988).

[213] K. Bielska, S. W´ojtewicz, P. Morzy´nski et al., Journal of Quantitative Spectroscopy and Radiative Transfer 201, 156 (2017).

Abbreviations

AC alternating current

AlGaInP aluminium gallium indium phosphide AOM acoustic-optical modulator

AR anti-reflective AVAR Allan variance BBO beta barium borate

BIPM bureau of weights and measures

CIPM international committee for weights and measures CORDIC coordinate rotation digital computer

CW continuous wave

DC direct current

DFB distributed feedback

DFG difference frequency generation ECDL external cavity diode laser EDM electric dipole moment EMF electromotive force EOM electro-optic modulator ERF error function

FEM finite element method FFT fast Fourier transform FM frequency modulation

FPGA field-programmable gate array FPI Fabry-Perot interferometer FSR free spectral range

FT Fourier transform

FWHM full width at half maximum GMT greenwich mean time

GNSS global navigation satellite system GPS global positioning system

HR high-reflective

HV high voltage

IR infrared

IUPAC international union of pure and applied chemistry LHC large hadron collider

LIF laser induced fluorescence

LISA laser interferometer space antenna MBD maxwell-boltzmann distribution MDEV modified Allan deviation

MPI multiphoton ionization

MTS modulation transfer spectroscopy MVAR modified Allan variance

Nd:YAG neodymium-doped yttrium aluminum garnet NIST national institute of standards and technology NPRO non-planar ring oscillator

NTC negative temperature coefficient OD deuterated hydroxyl radical OFC optical frequency comb OH hydroxyl radical

OPA optical parametric amplification OPO optical parametric oscillator PBS polarizing beam splitter PCF photonic crystal fiber

PD photodiode

PDH Pound-Drever-Hall PEEK polyether ether ketone PI proportional-integral

PID proportional-integral-derivative PLL phase-locked loop

PMM phase mismatching PMT photomultiplier tube

PPLN periodically-poled lithium niobate PPM perfectly phase matched

PPS pulse per second

PTFE polytetrafluoroethylene PVAR parabolic variance PVC polyvinyl chloride PWM pulse-width modulation PZT piezoelectric transducer

QM quantum mechanical

QPM quais phase matching

Chapter 11. Abbrevations

RAM residual amplitude modulation

REMPI resonance-enhanced multiphoton ionization RFT rotating-frame transformation

RMS root-mean-square

RTD resistance temperature detector RWA rotating-wave approximation SAW surface acoustic wave

SFG sum frequency generation SHG second-harmonic generation

SM standard model

SNR signal to noise ratio SSE sum of square errors TAI international atomic time TB thermal background

TDLAS tunable diode laser absorption spectroscopy TEC temperature controller

TEM transverse electromagnetic mode TOF time-of-flight

TTL transistor-transistor logic UHV ultra-high vacuum

ULE ultra-low expansion

USNO united states naval observatory UTC coordinated universal time

UV ultraviolet

VCXO voltage-controlled crystal oscillator WM wavelength modulation

YAG yttrium aluminum garnet

Acknowledgments

During the last couple of years, I worked side by side with great people. Foremost, I would like to especially thank Dr. Samuel Meek for inviting me into his group and providing excellent conditions for our work. I am grateful for his continuous support, mentoring, brilliant ideas in advancing the project and great motivational speeches.

Furthermore, I would also like to thank Prof. Dr. John Furneaux as a constant source of knowledge during my first year. Without his contributions, I probably would not have come this far.

A big thank-you goes out to Prof. Dr. Alec Wodtke for hosting our group and providing the best working environment possible. The laboratory I was allowed to work in was great, but the real treasures are the people, the group members at the university, as well the ones sitting at the MPI who I could ask anytime for advice, and it was provided.

I am also thankful to Tim Diedrich and Reinhard B¨ursing for technical suggestions to my drawings, moving them from good to excellent. As well I am thanking the mechanical workshop for transferring my drawings into precise physical objects.

I am especially thankful to Prof. Dr. Ansgar Reiners, who joined my thesis advisory committee and allowed me to enroll in the GAUSS program. Furthermore, I would like to thank Prof. Dr. Claus Ropers, Prof. Dr. Stefan Mathias, Prof. Dr. Dirk Schwarzer and Dr. Holger Nobach for being members of my examination board.

Sincere thanks are also given to all my colleagues, who helped me to clear my mind during a good game of table soccer, namely Marvin Kammler, Sven Kaufmann, Nils Hertl, Jascha Lau and Tim Diedrich. The order in this list does not reflect the skill level. You are all awesome!

Special gratitude goes to my parents, for their faith in me and providing the old sunflower Toyota, so I could swiftly move up the Fassberg. And last but not least Nora, you have my gratitude for your love, encouragement, and support. I’m grateful for the quality time together, and even more for your patience when I spent to little time with you.

Thank you all so very much.

Im Dokument Precision Spectroscopy on OH (Seite 161-173)