• Keine Ergebnisse gefunden

Effect of diversity on resistance, resilience and recovery of beech trees to

Im Dokument TREE SPECIES DIVERSITY IMPROVES BEECH (Seite 27-33)

508

drought

509

The lower variability in stem radial growth of beech trees growing in more diverse plots (Fig. 3 and 510

Table 2) suggests an overall stabilizing effect of diversity (Pretzsch and Schütze, 2009; Jucker et al., 511

2014). Resistance, resilience and recovery are useful descriptors when looking specifically at growth 512

reactions of trees during and after drought events. The low resistance of TRW and δ13C values of beech 513

trees growing in monospecific plots indicates that stem radial growth declines and δ13C increases 514

during drought. Similar findings are revealed when using RWI data for calculation of resistance (Fig.

515

S6 a)). For beech trees growing in mixtures, resistance of TRW and δ13C is not significantly lower than 516

one. Thus, drought does not influence beech growth and does not markedly alter stomatal 517

conductance, as discussed in the previous section. The lower resistance to drought of monoculture 518

beech trees could lead to future mortality as it was demonstrated by DeSoto et al. (2020) that drought-519

related mortality risk is related to low drought resistance in angiosperms.

520

Metz et al. (2016) also reports lower resistance in stem growth expressed by TRW for beech trees 521

growing in monospecific plots when compared to mixtures, but Forrester et al. (2016) consider the 522

lower stand densities in diverse patches of the mentioned study as the possible cause of this low 523

resistance rather than the effect of species diversity itself. In the present study we can exclude that 524

28 lower stand density caused higher resistance in the diverse plots, since stand density is higher for the 525

diverse plots (Table 1).

526

Conclusion

527

The findings of this study indicate that beech trees in monospecific plots grow slower and more 528

irregular in terms of stem radial growth, and suffer more from drought. Beech trees growing in diverse 529

plots have more soil water available than beech trees in monospecific plots, evidenced by lower δ13C 530

values (although not significant) and a lower increase in δ13C in drought years compared to previous 531

years (i.e. resistance is not significantly lower than one for diverse plots plots). Higher water 532

availability allows higher stomatal conductance, even in dry years, which can result in higher growth 533

rates. However, this overriding effect of biodiversity on beech stem radial growth and drought 534

resistance might diminish in the future with increasing drought intensity and frequency. We 535

acknowledge that the findings of this study result from a relatively moderate sample size (i.e. nine 536

beech trees per diversity level), therefore additional research is required to further explore the 537

interactions between the clearly observed effects of diversity on beech tree growth and its 538

physiological response to drought.

539

29

References

540

Anderegg, W.R.L., Schwalm, C., Biondi, F., Camarero, J.J., Koch, G., Litvak, M., Ogle, K., Shaw, J.D., 541 Shevliakova, E., Williams, A.P., Wolf, A., Ziaco, E., Pacala, S., 2015. Pervasive drought legacies 542

in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532.

543 https://doi.org/10.1126/science.aab1833

544 545 Barbour, M.M., 2007. Stable oxygen isotope composition of plant tissue: a review. Funct. Plant Biol. 34, 83–94.

546

Barbour, M.M., Roden, J.S., Farquhar, G.D., Ehleringer, J.R., 2004. Expressing leaf water and cellulose 547 oxygen isotope ratios as enrichment above source water reveals evidence of a Péclet effect.

548 Oecologia 138, 426–435. https://doi.org/10.1007/s00442-003-1449-3 549

Boettger, T., Haupt, M., Knöller, K., Weise, S.M., Waterhouse, J.S., Rinne, K.T., Loader, N.J., Sonninen, 550 551 E., Jungner, H., Masson-Delmotte, V., Stievenard, M., Guillemin, M.-T., Pierre, M., Pazdur, A., Leuenberger, M., Filot, M., Saurer, M., Reynolds, C.E., Helle, G., Schleser, G.H., 2007. Wood 552 553 Cellulose Preparation Methods and Mass Spectrometric Analyses of δ13C, δ18O, and

Nonexchangeable δ2H Values in Cellulose, Sugar, and Starch:  An Interlaboratory Comparison.

554 Anal. Chem. 79, 4603–4612. https://doi.org/10.1021/ac0700023 555

Brienen, R.J.W., Gloor, E., Clerici, S., Newton, R., Arppe, L., Boom, A., Bottrell, S., Callaghan, M., 556 557 Heaton, T., Helama, S., Helle, G., Leng, M.J., Mielikäinen, K., Oinonen, M., Timonen, M., 2017.

Tree height strongly affects estimates of water-use efficiency responses to climate and CO 2 558

using isotopes. Nat. Commun. 8, 288. https://doi.org/10.1038/s41467-017-00225-z

559 Bunn, A.G., 2008. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124.

560 561 https://doi.org/10.1016/j.dendro.2008.01.002

Cook, E.R., Peters, K., 1981. The smoothing spline: a new approach to standardizing forest interior tree-562

ring width series for dendroclimatic studies. Tree Ring Bull 41, 45–55.

563 De Keersmaeker, L., Rogiers, N., Vandekerkhove, K., De Vos, B., Roelandt, B., Cornelis, J., De Schrijver, 564 A., Onkelinx, T., Thomaes, A., Hermy, M., Verheyen, K., 2013. Application of the Ancient Forest 565

Concept to Potential Natural Vegetation Mapping in Flanders, A Strongly Altered Landscape in 566 567 Northern Belgium. Folia Geobot. 48, 137–162. https://doi.org/10.1007/s12224-012-9135-z

DeSoto, L., Cailleret, M., Sterck, F., Jansen, S., Kramer, K., Robert, E.M.R., Aakala, T., Amoroso, M.M., 568 Bigler, C., Camarero, J.J., Čufar, K., Gea-Izquierdo, G., Gillner, S., Haavik, L.J., Hereş, A.-M., 569

Kane, J.M., Kharuk, V.I., Kitzberger, T., Klein, T., Levanič, T., Linares, J.C., Mäkinen, H., 570 571 Oberhuber, W., Papadopoulos, A., Rohner, B., Sangüesa-Barreda, G., Stojanovic, D.B., Suárez,

M.L., Villalba, R., Martínez-Vilalta, J., 2020. Low growth resilience to drought is related to 572 573 future mortality risk in trees. Nat. Commun. 11, 1–9.

https://doi.org/10.1038/s41467-020-14300-5 574

Dieler, J., Pretzsch, H., 2013. Morphological plasticity of European beech (Fagus sylvatica L.) in pure and 575 mixed-species stands. For. Ecol. Manag. 295, 97–108.

576 577 https://doi.org/10.1016/j.foreco.2012.12.049

Dittmar, C., Zech, W., Elling, W., 2003. Growth variations of Common beech (Fagus sylvatica L.) under 578

different climatic and environmental conditions in Europe—a dendroecological study. For.

579 Ecol. Manag. 173, 63–78. https://doi.org/10.1016/S0378-1127(01)00816-7 580

Eaton, E., Caudullo, G., Oliveira, S., de Rigo, D., 2016. Quercus robur and Quercus petraea in Europe:

581 distribution, habitat, usage and threats., in: European Atlas of Forest Tree Species. Luxembourg 582 583 City, Luxembourg, pp. 160–163.

EEA, 2012. Global and European temperature (CSI 012 , CLIM 001) [WWW Document]. URL 584

https://www.eea.europa.eu/data-and-maps/indicators/global-and-european-temperature-585 3/assessment (accessed 8.7.17).

586 587 EUFORGEN [WWW Document], 2008. . Distrib. Map Beech Fagus Sylvatica. URL www.euforgen.org Farquhar, G.D., Ehleringer, J.R., Hubick, K.T., 1989. Carbon Isotope Discrimination and Photosynthesis.

588 Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 503–537.

589 https://doi.org/10.1146/annurev.pp.40.060189.002443

590 591 Forrester, D.I., 2014. The spatial and temporal dynamics of species interactions in mixed-species forests:

From pattern to process. For. Ecol. Manag. 312, 282–292.

592 593 https://doi.org/10.1016/j.foreco.2013.10.003

30 Forrester, D.I., Bonal, D., Dawud, S., Gessler, A., Granier, A., Pollastrini, M., Grossiord, C., 2016.

594 Drought responses by individual tree species are not often correlated with tree species diversity 595

in European forests. J. Appl. Ecol. 53, 1725–1734. https://doi.org/10.1111/1365-2664.12745 596 597 Gessler, A., Brandes, E., Keitel, C., Boda, S., Kayler, Z.E., Granier, A., Barbour, M., Farquhar, G.D.,

Treydte, K., 2013. The oxygen isotope enrichment of leaf-exported assimilates – does it always 598 reflect lamina leaf water enrichment? New Phytol. 200, 144–157.

599

https://doi.org/10.1111/nph.12359

600 601 Gessler, A., Ferrio, J.P., Hommel, R., Treydte, K., Werner, R.A., Monson, R.K., 2014. Stable isotopes in tree rings: towards a mechanistic understanding of isotope fractionation and mixing processes 602

from the leaves to the wood. Tree Physiol. 34, 796–818. https://doi.org/10.1093/treephys/tpu040 603 Grossiord, C., 2019. Having the right neighbors: how tree species diversity modulates drought impacts 604 605 on forests. New Phytol. https://doi.org/10.1111/nph.15667

Grossiord, C., Granier, A., Gessler, A., Jucker, T., Bonal, D., 2014a. Does Drought Influence the

606 607 Relationship Between Biodiversity and Ecosystem Functioning in Boreal Forests? Ecosystems 17, 394–404. https://doi.org/10.1007/s10021-013-9729-1

608

Grossiord, C., Granier, A., Ratcliffe, S., Bouriaud, O., Bruelheide, H., Chećko, E., Forrester, D.I., Dawud, 609 610 S.M., Finér, L., Pollastrini, M., Scherer-Lorenzen, M., Valladares, F., Bonal, D., Gessler, A.,

2014b. Tree diversity does not always improve resistance of forest ecosystems to drought. Proc.

611 Natl. Acad. Sci. 111, 14812. https://doi.org/10.1073/pnas.1411970111 612

Hacket-Pain, A.J., Lageard, J.G.A., Thomas, P.A., 2017. Drought and reproductive effort interact to 613 control growth of a temperate broadleaved tree species (Fagus sylvatica). Tree Physiol. 37, 744–

614 615 754. https://doi.org/10.1093/treephys/tpx025

Hafner, B.D., Tomasella, M., Häberle, K.-H., Goebel, M., Matyssek, R., Grams, T.E.E., 2017. Hydraulic 616 617 redistribution under moderate drought among English oak, European beech and Norway

spruce determined by deuterium isotope labeling in a split-root experiment. Tree Physiol. 37, 618 950–960. https://doi.org/10.1093/treephys/tpx050

619

Hanewinkel, M., Cullmann, D.A., Schelhaas, M.-J., Nabuurs, G.-J., Zimmermann, N.E., 2013. Climate 620 621 change may cause severe loss in the economic value of European forest land. Nat. Clim. Change

3, 203–207. https://doi.org/10.1038/nclimate1687 622

Helle, G., Schleser, G.H., 2004. Beyond CO2-fixation by Rubisco – an interpretation of 13C/12C

623 variations in tree rings from novel intra-seasonal studies on broad-leaf trees. Plant Cell Environ.

624

27, 367–380. https://doi.org/10.1111/j.0016-8025.2003.01159.x

625 Hodgson, D., McDonald, J.L., Hosken, D.J., 2015. What do you mean, ‘resilient’? Trends Ecol. Evol. 30, 626 627 503–506. https://doi.org/10.1016/j.tree.2015.06.010

Houston Durrant, T., de Rigo, D., Caudullo, G., 2016. Fagus sylvatica and other beeches in Europe:

628

distribution, habitat, usage and threats., in: European Atlas of Forest Tree Species.

629 Luxembourg, pp. 94–95.

630 631 IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D.

632 Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M.

633 Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, 634 635 USA,.

Isbell, F.I., Polley, H.W., Wilsey, B.J., 2009. Biodiversity, productivity and the temporal stability of 636 637 productivity: patterns and processes. Ecol. Lett. 12, 443–451.

https://doi.org/10.1111/j.1461-0248.2009.01299.x

638 Jucker, T., Bouriaud, O., Avacaritei, D., Coomes, D.A., 2014. Stabilizing effects of diversity on

639 aboveground wood production in forest ecosystems: linking patterns and processes. Ecol. Lett.

640 641 17, 1560–1569. https://doi.org/10.1111/ele.12382

Kelty, M.J., 2006. The role of species mixtures in plantation forestry. For. Ecol. Manag., Improving 642 Productivity in Mixed-Species Plantations 233, 195–204.

643 https://doi.org/10.1016/j.foreco.2006.05.011 644

Klesse, S., Weigt, R.B., Treydte, K., Saurer, M., Siegwolf, R.T.W., Frank, D.C., 2018. Oxygen isotopes in 645 tree rings are less sensitive to tree size and stand dynamics than carbon isotopes. Plant, Cell &

646 647 Environment. https://doi.org/doi 10.1111/pce.13424

Köcher, P., Gebauer, T., Horna, V., Leuschner, C., 2009. Leaf water status and stem xylem flux in 648

relation to soil drought in five temperate broad-leaved tree species with contrasting water use 649 strategies. Ann. For. Sci. 66, 101–101. https://doi.org/10.1051/forest/2008076

650

31 Latte, N., Lebourgeois, F., Claessens, H., 2016. Growth partitioning within beech trees (Fagus sylvatica 651 L.) varies in response to summer heat waves and related droughts. Trees 30, 189–201.

652

https://doi.org/10.1007/s00468-015-1288-y

653 Laumer, W., Andreu, L., Helle, G., Schleser, G.H., Wieloch, T., Wissel, H., 2009. A novel approach for 654 the homogenization of cellulose to use micro-amounts for stable isotope analyses. Rapid 655 Commun. Mass Spectrom. RCM 23, 1934–1940. https://doi.org/10.1002/rcm.4105 656

Leavitt, S.W., Long, A., 1989. Drought Indicated in Carbon-13/Carbon-12 Ratios of Southwestern Tree 657 Rings1. JAWRA J. Am. Water Resour. Assoc. 25, 341–347. https://doi.org/10.1111/j.1752-658 1688.1989.tb03070.x

659

Loreau, M., Hector, A., 2001. Partitioning selection and complementarity in biodiversity experiments.

660 661 Nature 412, 72–76.

McCarroll, D., Loader, N.J., 2004. Stable isotopes in tree rings. Quat. Sci. Rev. 23, 771–801.

662

Metz, J., Annighöfer, P., Schall, P., Zimmermann, J., Kahl, T., Schulze, E.-D., Ammer, C., 2016. Site-663 adapted admixed tree species reduce drought susceptibility of mature European beech. Glob.

664 665 Change Biol. 22, 903–920. https://doi.org/10.1111/gcb.13113

Mölder, I., Leuschner, C., 2014. European beech grows better and is less drought sensitive in mixed than 666 667 in pure stands: tree neighbourhood effects on radial increment. Trees 28, 777–792.

Morin, X., Fahse, L., Scherer-Lorenzen, M., Bugmann, H., 2011. Tree species richness promotes

668 productivity in temperate forests through strong complementarity between species. Ecol. Lett.

669

14, 1211–1219.

670 671 Mosteller, F., 1977. Data Analysis and Regression: A Second Course in Statistics. Addison-Wesley Publishing Company.

672

Nussbaumer, A., Waldner, P., Etzold, S., Gessler, A., Benham, S., Thomsen, I.M., Jørgensen, B.B., 673 Timmermann, V., Verstraeten, A., Sioen, G., Rautio, P., Ukonmaanaho, L., Skudnik, M., 674 Apuhtin, V., Braun, S., Wauer, A., 2016. Patterns of mast fruiting of common beech, sessile and 675 common oak, Norway spruce and Scots pine in Central and Northern Europe. For. Ecol. Manag.

676

363, 237–251. https://doi.org/10.1016/j.foreco.2015.12.033

677 Pasta, S., de Rigo, D., Caudullo, G., 2016. Acer pseudoplatanus in Europe: distribution, habitat, usage 678 and threats., in: European Atlas of Forest Tree Species. Publ. Luxembourg, pp. 56–58.

679

Perot, T., Vallet, P., Archaux, F., 2013. Growth compensation in an oak–pine mixed forest following an 680 681 outbreak of pine sawfly (Diprion pini). For. Ecol. Manag. 295, 155–161.

https://doi.org/10.1016/j.foreco.2013.01.016

682 683 Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team, 2016. {nlme}: Linear and Nonlinear Mixed Effects Models} R package version 3.1-128.

684 685 Pretzsch, H., 2014. Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures. For. Ecol. Manag. 327, 251–264.

686 687 https://doi.org/10.1016/j.foreco.2014.04.027

Pretzsch, H., Schütze, G., 2009. Transgressive overyielding in mixed compared with pure stands of 688

Norway spruce and European beech in Central Europe: evidence on stand level and explanation 689 on individual tree level. Eur. J. For. Res. 128, 183–204. https://doi.org/10.1007/s10342-008-0215-9 690 691 Pretzsch, H., Schütze, G., Uhl, E., 2013. Resistance of European tree species to drought stress in mixed

versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biol. 15, 483–

692 693 495. https://doi.org/10.1111/j.1438-8677.2012.00670.x

Richards, A.E., Forrester, D.I., Bauhus, J., Scherer-Lorenzen, M., 2010. The influence of mixed tree 694

plantations on the nutrition of individual species: a review. Tree Physiol. 30, 1192–1208.

695 https://doi.org/10.1093/treephys/tpq035

696 697 Roden, J., Siegwolf, R., 2012. Is the dual-isotope conceptual model fully operational? Tree Physiol. 32, 1179–1182. https://doi.org/10.1093/treephys/tps099

698

Roden, J.S., Lin, G., Ehleringer, J.R., 2000. A mechanistic model for interpretation of hydrogen and 699 700 oxygen isotope ratios in tree-ring cellulose. Geochim. Cosmochim. Acta 64, 21–35.

https://doi.org/10.1016/S0016-7037(99)00195-7 701

Rosengren, U., Sandén, H., Jönsson, U., Stjernquist, I., Thelin, G., Wallander, H., 2005. Functional 702 703 Biodiversity Aspects on the Nutrient Sustainability in Forests-Importance of Root Distribution.

J. Sustain. For. 21, 77–100. https://doi.org/10.1300/J091v21n02_06

704 Sarris, D., Siegwolf, R., Körner, C., 2013. Inter- and intra-annual stable carbon and oxygen isotope 705

signals in response to drought in Mediterranean pines. Agric. For. Meteorol. 168, 59–68.

706 707 https://doi.org/10.1016/j.agrformet.2012.08.007

32 Saurer, M., Siegenthaler, U., Schweingruber, F., 1995. The climate-carbon isotope relationship in tree 708 rings and the significance of site conditions. Tellus B 47, 320–330.

709

https://doi.org/10.1034/j.1600-0889.47.issue3.4.x

710 711 Scartazza, A., Moscatello, S., Matteucci, G., Battistelli, A., Brugnoli, E., 2013. Seasonal and inter-annual dynamics of growth, non-structural carbohydrates and C stable isotopes in a Mediterranean 712 beech forest. Tree Physiol. 33, 730–742. https://doi.org/10.1093/treephys/tpt045

713

Schäfer, C., Grams, T., Rötzer, T., Feldermann, A., Pretzsch, H., 2017. Drought Stress Reaction of 714 715 Growth and Δ13C in Tree Rings of European Beech and Norway Spruce in Monospecific Versus

Mixed Stands Along a Precipitation Gradient. Forests 8, 177. https://doi.org/10.3390/f8060177 716

Scharnweber, T., Manthey, M., Criegee, C., Bauwe, A., Schröder, C., Wilmking, M., 2011. Drought 717 matters – Declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L.

718 in north-eastern Germany. For. Ecol. Manag. 262, 947–961.

719

https://doi.org/10.1016/j.foreco.2011.05.026

720 721 Schwendenmann, L., Pendall, E., Sanchez-Bragado, R., Kunert, N., Hölscher, D., 2015. Tree water uptake in a tropical plantation varying in tree diversity: interspecific differences, seasonal shifts 722

and complementarity. Ecohydrology 8, 1–12. https://doi.org/10.1002/eco.1479

723 Sikkema, R., Caudullo, G., de Rigo, D., 2016. Carpinus betulus in Europe: distribution, habitat, usage

724 and threats.

725 Skomarkova, M.V., Vaganov, E.A., Mund, M., Knohl, A., Linke, P., Boerner, A., Schulze, E.-D., 2006.

726

Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios 727 in tree rings of beech (Fagus sylvatica) growing in Germany and Italy. Trees 20, 571–586.

728 https://doi.org/10.1007/s00468-006-0072-4 729

Tegel, W., Seim, A., Hakelberg, D., Hoffmann, S., Panev, M., Westphal, T., Büntgen, U., 2014. A recent 730 731 growth increase of European beech (Fagus sylvatica L.) at its Mediterranean distribution limit contradicts drought stress. Eur. J. For. Res. 133, 61–71.

https://doi.org/10.1007/s10342-013-0737-732 7

733

Thornthwaite, C.W., 1948. An Approach toward a Rational Classification of Climate. Geogr. Rev. 38, 55–

734 735 94. https://doi.org/10.2307/210739

Treydte, K., Boda, S., Graf Pannatier, E., Fonti, P., Frank, D., Ullrich, B., Saurer, M., Siegwolf, R., 736

Battipaglia, G., Werner, W., Gessler, A., 2014. Seasonal transfer of oxygen isotopes from 737 precipitation and soil to the tree ring: source water versus needle water enrichment. New 738

Phytol. 202, 772–783. https://doi.org/10.1111/nph.12741

739 Treydte, K.S., Frank, D.C., Saurer, M., Helle, G., Schleser, G.H., Esper, J., 2009. Impact of climate and 740 741 CO2 on a millennium-long tree-ring carbon isotope record. Geochim. Cosmochim. Acta 73,

4635–4647. https://doi.org/10.1016/j.gca.2009.05.057 742

Van de Peer, T., Verheyen, K., Kint, V., Van Cleemput, E., Muys, B., 2017. Plasticity of tree architecture 743 through interspecific and intraspecific competition in a young experimental plantation. For.

744 745 Ecol. Manag. 385, 1–9. https://doi.org/10.1016/j.foreco.2016.11.015

van der Werf, G.W., Sass-Klaassen, U.G.W., Mohren, G.M.J., 2007. The impact of the 2003 summer 746 747 drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus

robur L.) on a dry site in the Netherlands. Intra-Annu. Anal. Wood Form. 25, 103–112.

748

https://doi.org/10.1016/j.dendro.2007.03.004

749 Verheyen, K., Bulteel, H., Palmborg, C., Olivié, B., Nijs, I., Raes, D., Muys, B., 2008. Can 750 751 complementarity in water use help to explain diversity–productivity relationships in

experimental grassland plots? Oecologia 156, 351–361.

752 753 Wigley, T.M.L., Briffa, K.R., Jones, P.D., 1984. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. J. Clim. Appl. Meteorol. 23, 201–

754 213. https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2 755

Zang, C., Hartl-Meier, C., Dittmar, C., Rothe, A., Menzel, A., 2014. Patterns of drought tolerance in 756 757 major European temperate forest trees: climatic drivers and levels of variability. Glob. Change

Biol. 20, 3767–3779. https://doi.org/10.1111/gcb.12637 758

Zang, C., Pretzsch, H., Rothe, A., 2012. Size-dependent responses to summer drought in Scots pine, 759 Norway spruce and common oak. Trees 26, 557–569. https://doi.org/10.1007/s00468-011-0617-760 761 z

Zeng, X., Liu, X., Treydte, K., Evans, M.N., Wang, W., An, W., Sun, W., Xu, G., Wu, G., Zhang, X., 2017.

762

Climate signals in tree-ring δ18 O and δ13 C from southeastern Tibet: insights from 763

33 observations and forward modelling of intra- to interdecadal variability. New Phytol. 216, 1104–

764 1118. https://doi.org/10.1111/nph.14750 765

Zimmermann, J., Hauck, M., Dulamsuren, C., Leuschner, C., 2015. Climate Warming-Related Growth 766 767 Decline Affects Fagus sylvatica, But Not Other Broad-Leaved Tree Species in Central European

Mixed Forests. Ecosystems 18, 560–572. https://doi.org/10.1007/s10021-015-9849-x 768

Im Dokument TREE SPECIES DIVERSITY IMPROVES BEECH (Seite 27-33)