• Keine Ergebnisse gefunden

1. Murray K, Selleck P, Hooper P, Hyatt A, Gould A, Gleeson L, Westbury H, Hiley L, Selvey L, Rodwell B, and et al.: A morbillivirus that caused fatal disease in horses and humans. Science 1995, 268:94-97.

2. Paterson DL, Murray PK, and McCormack JG: Zoonotic disease in Australia caused by a novel member of the paramyxoviridae. Clin Infect Dis 1998, 27:112-118.

3. O'Sullivan JD, Allworth AM, Paterson DL, Snow TM, Boots R, Gleeson LJ, Gould AR, Hyatt AD, and Bradfield J: Fatal encephalitis due to novel paramyxovirus transmitted from horses. Lancet 1997, 349:93-95.

4. Chua KB, Goh KJ, Wong KT, Kamarulzaman A, Tan PS, Ksiazek TG, Zaki SR, Paul G, Lam SK, and Tan CT: Fatal encephalitis due to Nipah virus among pig-farmers in Malaysia. Lancet 1999, 354:1257-1259.

5. Chua KB, Koh CL, Hooi PS, Wee KF, Khong JH, Chua BH, Chan YP, Lim ME, and Lam SK:

Isolation of Nipah virus from Malaysian Island flying-foxes. Microbes Infect 2002, 4:145-151.

6. Luby SP, Hossain MJ, Gurley ES, Ahmed BN, Banu S, Khan SU, Homaira N, Rota PA, Rollin PE, Comer JA, Kenah E, Ksiazek TG, and Rahman M: Recurrent zoonotic transmission of Nipah virus into humans, Bangladesh, 2001-2007. Emerg Infect Dis 2009, 15:1229-1235.

7. Rahman MA, Hossain MJ, Sultana S, Homaira N, Khan SU, Rahman M, Gurley ES, Rollin PE, Lo MK, Comer JA, Lowe L, Rota PA, Ksiazek TG, Kenah E, Sharker Y, and Luby SP: Date palm sap linked to Nipah virus outbreak in Bangladesh, 2008. Vector Borne Zoonotic Dis 2012, 12:65-72.

8. Khan MS, Hossain J, Gurley ES, Nahar N, Sultana R, and Luby SP: Use of infrared camera to understand bats' access to date palm sap: implications for preventing Nipah virus transmission.

Ecohealth 2010, 7:517-525.

9. Luby SP, Rahman M, Hossain MJ, Blum LS, Husain MM, Gurley E, Khan R, Ahmed BN, Rahman S, Nahar N, Kenah E, Comer JA, and Ksiazek TG: Foodborne transmission of Nipah virus,

Bangladesh. Emerg Infect Dis 2006, 12:1888-1894.

10. Sazzad HM, Hossain MJ, Gurley ES, Ameen KM, Parveen S, Islam MS, Faruque LI, Podder G, Banu SS, Lo MK, Rollin PE, Rota PA, Daszak P, Rahman M, and Luby SP: Nipah virus infection outbreak with nosocomial and corpse-to-human transmission, Bangladesh. Emerg Infect Dis 2013, 19:210-217.

11. Luby SP, Gurley ES, and Hossain MJ: Transmission of human infection with Nipah virus. Clin Infect Dis 2009, 49:1743-1748.

12. Young PL, Halpin K, Selleck PW, Field H, Gravel JL, Kelly MA, and Mackenzie JS: Serologic evidence for the presence in Pteropus bats of a paramyxovirus related to equine morbillivirus. Emerg Infect Dis 1996, 2:239-240.

13. Olson JG, Rupprecht C, Rollin PE, An US, Niezgoda M, Clemins T, Walston J, and Ksiazek TG:

Antibodies to Nipah-like virus in bats (Pteropus lylei), Cambodia. Emerg Infect Dis 2002, 8:987-988.

14. Epstein JH, Field HE, Luby S, Pulliam JR, and Daszak P: Nipah virus: impact, origins, and causes of emergence. Curr Infect Dis Rep 2006, 8:59-65.

15. Field H, Young P, Yob JM, Mills J, Hall L, and Mackenzie J: The natural history of Hendra and Nipah viruses. Microbes Infect 2001, 3:307-314.

16. Field HE, Mackenzie JS, and Daszak P: Henipaviruses: emerging paramyxoviruses associated with fruit bats. Curr Top Microbiol Immunol 2007, 315:133-159.

17. Drexler JF, Corman VM, Gloza-Rausch F, Seebens A, Annan A, Ipsen A, Kruppa T, Muller MA, Kalko EK, Adu-Sarkodie Y, Oppong S, and Drosten C: Henipavirus RNA in African bats. PLoS One 2009, 4:e6367.

18. Drexler JF, Corman VM, Muller MA, Maganga GD, Vallo P, Binger T, Gloza-Rausch F, Rasche A, Yordanov S, Seebens A, Oppong S, Adu Sarkodie Y, Pongombo C, Lukashev AN, Schmidt-Chanasit J, Stocker A, Carneiro AJ, Erbar S, Maisner A, Fronhoffs F, Buettner R, Kalko EK, Kruppa T, Franke CR, Kallies R, Yandoko ER, Herrler G, Reusken C, Hassanin A, Kruger DH, Matthee S, Ulrich RG, Leroy EM, and Drosten C: Bats host major mammalian paramyxoviruses. Nat Commun 2012, 3:796.

19. Peel AJ, Baker KS, Crameri G, Barr JA, Hayman DT, Wright E, Broder CC, Fernandez-Loras A, Fooks AR, Wang LF, Cunningham AA, and Wood JL: Henipavirus neutralising antibodies in an isolated island population of African fruit bats. PLoS One 2012, 7:e30346.

20. Hayman DT, Suu-Ire R, Breed AC, McEachern JA, Wang L, Wood JL, and Cunningham AA:

Evidence of henipavirus infection in West African fruit bats. PLoS One 2008, 3:e2739.

21. Iehle C, Razafitrimo G, Razainirina J, Andriaholinirina N, Goodman SM, Faure C, Georges-Courbot MC, Rousset D, and Reynes JM: Henipavirus and Tioman virus antibodies in pteropodid bats, Madagascar. Emerg Infect Dis 2007, 13:159-161.

22. Weiss S, Nowak K, Fahr J, Wibbelt G, Mombouli JV, Parra HJ, Wolfe ND, Schneider BS, and Leendertz FH: Henipavirus-related sequences in fruit bat bushmeat, Republic of Congo. Emerg Infect Dis 2012, 18:1536-1537.

23. Hayman DT, Wang LF, Barr J, Baker KS, Suu-Ire R, Broder CC, Cunningham AA, and Wood JL:

Antibodies to henipavirus or henipa-like viruses in domestic pigs in Ghana, West Africa. PLoS One 2011, 6:e25256.

4. Negrete OA, Levroney EL, Aguilar HC, Bertolotti-Ciarlet A, Nazarian R, Tajyar S, and Lee B:

EphrinB2 is the entry receptor for Nipah virus, an emergent deadly paramyxovirus. Nature 2005, 436:401-405.

25. Xu K, Broder CC, and Nikolov DB: Ephrin-B2 and ephrin-B3 as functional henipavirus receptors.

Semin Cell Dev Biol 2012, 23:116-123.

26. Negrete OA, Wolf MC, Aguilar HC, Enterlein S, Wang W, Muhlberger E, Su SV, Bertolotti-Ciarlet A, Flick R, and Lee B: Two key residues in ephrinB3 are critical for its use as an alternative receptor for Nipah virus. PLoS Pathog 2006, 2:e7.

27. Lee B: Envelope-receptor interactions in Nipah virus pathobiology. Ann N Y Acad Sci 2007, 1102:51-65.

28. Diederich S, Sauerhering L, Weis M, Altmeppen H, Schaschke N, Reinheckel T, Erbar S, and Maisner A: Activation of the Nipah virus fusion protein in MDCK cells is mediated by cathepsin B within the endosome-recycling compartment. J Virol 2012, 86:3736-3745.

29. Pager CT, Craft WW, Jr., Patch J, and Dutch RE: A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L. Virology 2006, 346:251-257.

30. Popa A, Carter JR, Smith SE, Hellman L, Fried MG, and Dutch RE: Residues in the hendra virus fusion protein transmembrane domain are critical for endocytic recycling. J Virol 2012, 86:3014-3026.

31. Diederich S, Moll M, Klenk HD, and Maisner A: The nipah virus fusion protein is cleaved within the endosomal compartment. J Biol Chem 2005, 280:29899-29903.

32. Vogt C, Eickmann M, Diederich S, Moll M, and Maisner A: Endocytosis of the Nipah virus glycoproteins. J Virol 2005, 79:3865-3872.

33. Kruger N, Hoffmann M, Weis M, Drexler JF, Muller MA, Winter C, Corman VM, Gutzkow T, Drosten C, Maisner A, and Herrler G: Surface glycoproteins of an African henipavirus induce

syncytium formation in a cell line derived from an African fruit bat, Hypsignathus monstrosus. J Virol 2013, 87:13889-13891.

34. Weis M, Behner L, Hoffmann M, Kruger N, Herrler G, Drosten C, Drexler JF, Dietzel E, and Maisner A: Characterization of African bat henipavirus GH-M74a glycoproteins. J Gen Virol 2014, 95:539-548.

35. Pernet O, Beaty S, and Lee B: Functional rectification of the newly described African henipavirus fusion glycoprotein (Gh-M74a). J Virol 2014, 88:5171-5176.

36. Lawrence P, Escudero Perez B, Drexler JF, Corman VM, Muller MA, Drosten C, and Volchkov V: Surface glycoproteins of the recently identified African Henipavirus promote viral entry and cell fusion in a range of human, simian and bat cell lines. Virus Res 2014, 181:77-80.

37. Moll M, Kaufmann A, and Maisner A: Influence of N-glycans on processing and biological activity of the nipah virus fusion protein. J Virol 2004, 78:7274-7278.

38. Kuhl A, Hoffmann M, Muller MA, Munster VJ, Gnirss K, Kiene M, Tsegaye TS, Behrens G, Herrler G, Feldmann H, Drosten C, and Pohlmann S: Comparative analysis of Ebola virus glycoprotein interactions with human and bat cells. J Infect Dis 2011, 204 Suppl 3:S840-849.

39. Hoffmann M, Muller MA, Drexler JF, Glende J, Erdt M, Gutzkow T, Losemann C, Binger T, Deng H, Schwegmann-Wessels C, Esser KH, Drosten C, and Herrler G: Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses. PLoS One 2013, 8:e72942.

40. Moll M, Diederich S, Klenk HD, Czub M, and Maisner A: Ubiquitous activation of the Nipah virus fusion protein does not require a basic amino acid at the cleavage site. J Virol 2004, 78:9705-9712.

41. Aguilar HC, Matreyek KA, Filone CM, Hashimi ST, Levroney EL, Negrete OA, Bertolotti-Ciarlet A, Choi DY, McHardy I, Fulcher JA, Su SV, Wolf MC, Kohatsu L, Baum LG, and Lee B: N-glycans on Nipah virus fusion protein protect against neutralization but reduce membrane fusion and viral entry. J Virol 2006, 80:4878-4889.

42. Meulendyke KA, Wurth MA, McCann RO, and Dutch RE: Endocytosis plays a critical role in proteolytic processing of the Hendra virus fusion protein. J Virol 2005, 79:12643-12649.

43. Pager CT, Wurth MA, and Dutch RE: Subcellular localization and calcium and pH requirements for proteolytic processing of the Hendra virus fusion protein. J Virol 2004, 78:9154-9163.

44. Kruger N, Hoffmann M, Drexler JF, Muller MA, Corman VM, Drosten C, and Herrler G: The attachment glycoprotein of an African henipavirus is differentially restricted in chiropteran and non-chiropteran cells. J Virol 2014, 88:11973-11980