• Keine Ergebnisse gefunden

80 6.4 Wahrscheinlichkeitshistogramme

θ c φ

θ d r

Abbildung 6.3: Veranschaulichung der Wahrscheinlichkeitshistogramme f¨ur kortikale Orientierungskar-ten. Berechnet werden die Wahrscheinlichkeiten bis zu einem Abstand von r = 3Λ.

6.4 Wahrscheinlichkeitshistogramme

In diesem Abschnitt wird abschließend eine, aus experimentell gemessenen Karten relativ leicht zu bestimmende, Gr¨oße eingef¨uhrt. Es handelt sich dabei um eine charakteristische Wahrschein-lichkeitsverteilung, deren genaue Form f¨ur die Attraktoren des vorgestellten Modells von Betrag und Vorzeichen der jeweilgen ST-Parameter abh¨angt. Folgende Wahrscheinlichkeitsdichte (PDF) steht bei diesen ¨ Uberlegungen im Vordergrund: Das Neuron am Ort x = 0 habe innerhalb ei-ner Orientierungskarte die pr¨aferierte Orientierung θ c . Das Neuron in der Entfernung r unter dem Winkel φ bevorzugt die Orientierung θ d . Die Orientierungen θ d und θ c werden als Zu-fallsvariablen aufgefasst, und gesucht ist eine gemeinsame PDF P r,φc , θ d ) f¨ur jeden Abstand r und jeden Winkel φ (siehe Abbildung 6.3). Eine solche Verteilung enth¨alt Anteile aus Korre-latoren aller Ordnungen, und es wird sich daher auch zeigen, wie die eben ermittelten Gr¨oßen im Zusammenspiel auftreten. In einem shift-symmetrischen Ensemble h¨angt die so definierte Wahrscheinlichkeitsverteilung nur vom relativen Abstand der beiden Nervenzellen zueinander und von der Di fferenz ihrer Orientierungspr¨aferenzen ab, also P r,φ S = P r Sd − θ c ). Dies folgt aus der Tatsache, dass Orientierungskarten, die durch Symmetrietransformationen auseinander her-vorgehen, ¨aquivalente L¨osungen des Systems sind, und somit statistisch gleich h¨aufig auftreten.

Damit kommen phasengedrehte und r¨aumlich gedrehte Verteilungen mit gleicher Wahrschein-lichkeit vor, und P r,φ S kann nur von unter diesen Transformationen invarianten Gr¨oßen wie θ c − θ d abh¨angen.

Was geschieht nun, wenn das Ensemble nicht mehr shift-symmetrisch ist? Dann kann diese Funk-tion nicht nur von der Winkeldi fferenz der bevorzugten Orientierungen abh¨angen, sondern auch mit der Lage der Neuronen zueinander variieren. Welche genaue Form diese Variation besitzt, kann nur eine Analyse der Symmetrietransformation und ihrer Auswirkungen auf θ c , θ d und φ zeigen, die hier nicht ausgef¨uhrt wird. F¨ur eine gegebene feste Winkeldi fferenz θ d − θ c l¨asst sich eine Darstellung dieser Verteilungen im Ortsraum gewinnen, indem r und φ variiert werden.

Schnabel hat in seiner Doktorarbeit [47] solche Verteilungen f¨ur die Attraktoren mit linearer ST-Kopplung sowie f¨ur gemessene Orientierungskarten untersucht. Dabei sind deutliche Anisotropi-en in dAnisotropi-en WahrscheinlichkeitsverteilungAnisotropi-en aufgetretAnisotropi-en, welche im ¨ Ubrigen in einer interessanten Relation zur Statistik nat¨urlicher Bilder stehen (vgl. [82]), auf die hier aus Platzgr¨unden nicht

Figure 3.6:Scheme which illustrates the definition of the co-occurrence statisticsPrc,θd), the probability that two groups of neurons separated by a vectorr=r(cosφ,sinφ)have orientation preferencesθc and θd, respectively.

3.14 Edge Statistics and Shift-Twist Symmetry

In the remaining part of this chapter we discuss yet another statistics, the pair occurrence statistics Prcd), defined as the probability that two groups of neurons separated by a vector r=r(cosφ,sinφ) have orientation preferences θc and θd, respectively (see Fig. 3.6). Beyond its applicability to the analysis of orientation maps this statistics can also be computed for any datasets which consist of planar arrangements of oriented entities, such as line segments in natural scenes (c.f. [52] and Section 6.4) or nematic liquid crystals [53]. Often in such systems Euclidean symmetry is a good approximation. Here we derive the general form of Prcd) assuming that EuclideanE(2) symmetry holds. Furthermore, we discuss how this statistics can be applied to orientation maps in order to reveal signatures of shift symmetry breaking in the data. We find that shift symmetry breaking leads to characteristic modulations of the probability histogram which, in general, can be written as a sum of two components: (a) cloverleaf modulations with a 4-fold symmetry and (b) bipolar modulations with a 2-fold symmetry. Since these modulations do not occur in the shift symmetric case their appearance can be used as signatures of shift symmetry breaking.

Pair cooccurence statistics

Suppose we were given an ensemble of orientation maps and would like to test the hypothesis that shift symmetry is broken in this dataset, say, to some - presumably small - degree which we want to specify. How should we proceed? One possibility would be to calculate the second order correlation functions, C1(r) and C2(r), and to test for any cloverleaf signature inC2(r)

39

Figure 3.7: When rotated by an angleα, a pair of orientationsθc andθd separated by a distance rand angleφis mapped to(r,φ,θc,θd) = (r,φ+α,θc+α,θd+α).

by determining its q value, as described in Section 3.7. As an alternative, here we propose to measure the pair cooccurrence statistics of orientation preferences, which we define as the joint probability distribution of finding a pair of oriented elements, say, located at xc and xd, with orientationsθc andθd, respectively (see Fig. 3.6). For orientation mapsθc andθddenote the preferred orientations at two locations in the map, whereas for natural scenes they may represent the orientations of local line segments in an image (see Fig. 6.2 in Chapter 6). Since we assume translation symmetry of the ensemble this statistics only depends on the difference vector r=xdxc, which we will also denote by (r,φ), its representation in polar coordinates.

Accordingly, in the following we writePrcd) orPr,φcd) for the joint probability density.

For orientation mapsθc andθdare random variables andr andφare parameters. For natural scenesr and φmay also be conceived as random variables since for a given image there is not necessarily a contour at every position.

Symmetries

Next we derive the general functional form of Pr,φcd) assuming EuclideanE(2) symmetry.

Up to which point this assumption holds remains to be quantified, especially for ensembles of natural images. For orientation maps it provides a valuable framework, as we will see in Chapter 5. The functional formPr,φcd)has to fulfill following requirements:

1. P(r,φ,θcd) isπ-periodic inθc andθd since orientations are defined moduloπ :

Pr,φ(θcd) =Pr,φ(θc+Zπ,θd+Zπ) (3.31) 2. Symmetry under (shift-twist) rotations requires that

Pr,φcd) =Pr,φ+αc+α,θd+α) (3.32) for any angle α, see Fig.3.7. Inversion symmetry is included as the particular case α=π.

3. Reflection symmetry (e.g. with respect to reflections at thex-axis) implies

Pr,φ(θcd) =Pr,φ(−θc,θd) (3.33)

3.14 Edge Statistics and Shift-Twist Symmetry

4. When symmetry under inversions holds we also have

Pr,φcd) =Pr,φdc) (3.34) A decomposition ofPr,φ(θcd) into its Fourier components with respect to the angular variables φ,θc and θd reads

Pr,φcd) =

µ,ν,κ∈Z

˜

aµνκ(r)ei(2µθc+2νθd+κφ)

with Fourier coefficients ˜aµνκ(r). This ansatz already respects requirement (1). If P is going to fulfill conditions (2-4) then only a subset of coefficients don’t vanish:

For example, invariance under rotations requires

Pr,φcd) = 1 2π

0

dαPr,φ+αc+α,θd+α)

= 1

µ,ν,κ∈Z

˜

aµνκ(r)ei(2µθc+2νθd+κφ)

0

dαei(2µ+2ν+κ)α

=

µ,ν,κ

˜

aµνκ(r)ei(2µθc+2νθd+κφ)δ(2µ+ 2ν+κ)

such that ˜aµνκ(r) = aµν(r)δ(2µ+ 2ν+κ). Thus, any rotation invariant Pr,φcd) can be written as

µ,ν∈Z

aµν(r)ei(2µθc+2νθd−2(µ+ν)φ) with some appropriate set of coefficient functionsaµν(r).

Similarly, reflection symmetry requires

aµν =aνµ

and

aµν =aµ,ν, respectively. Furthermore, since Pr,φcd)∈Rwe have

aµν = ¯aµ,ν = ¯aµν, such that

aµν ∈R.

Therefore, the general form ofP satisfying conditions (1-4) reads Pr,φcd) = 1

4

µ,ν∈Z

(aµν(r) +aνµ(r) +a−µ,−ν(r) +a−ν,−µ(r))ei(2µθc+2νθd−2(µ+ν)φ)

=

µ,ν∈Z

aµν(r) cos ((µ+ν)(θc+θd−2φ)) cos ((µ−ν)(θdθc))

41

By means of the symmetries of aµν this expression further simplifies to Pr,φcd) =

m,n∈N

pmn(r) cos (m(θc+θd−2φ)) cos(n(θdθc)) (3.35) with indicesm, n∈Nand

pmn =

a1

2(m+n),12(mn)+a1

2(mn),12(m+n)+ +a1

2(m+n),−12(m−n)+a1

2(m−n),−12(m+n) ifm+n is even

0 ifm+nis odd.

The matrix pmn thus has the structure

p00 0 p02 0 p04 . . . 0 p11 0 p13 0 . . . p20 0 p22 0 p24 . . . 0 p31 0 p33 0 . . . p40 0 p42 0 p44 . . .

... ... ... ... ...

The terms of Eq.(3.35) depend onθc andθdthrough the product of cos (m(θc+θd−2φ))and cos(n(θdθc)). Both terms are invariant under (shift-twist) rotations and the second term is also invariant under orientation shifts, since it only depends on the angle difference

∆=θdθc (3.36)

Denoting the average angle as

Σ= 1

2(θd+θc) (3.37)

we can expressPr,φcd) in the set of new coordinatesΣand ∆, Pr,φ (Σ,∆) :=Pr,φc(Σ,∆),θd(Σ,∆))·J whereJ denotes the Jacobian of the coordinate transform

J =�∂(θcd)/∂(Σ,∆)�= 1.

By rotation symmetry

Pr,φ,∆) =Pr,0 (Σ−φ,∆). Thus, in the following it is sufficient to consider

Pr(Σ,∆) :=Pr,0 (Σ,∆) =

m,n∈N

pmn(r) cos (2mΣ) cos(n∆). (3.38) The back transform is simply given by

Pr,φcd) =Pr(Σ(θcd)−φ,∆(θcd)). (3.39) We can, without loss of generality, restrict the range to ∆∈[−π/2,π/2) andΣ∈[0,π). Figure 3.8 explains this mapping in more detail.

3.14 Edge Statistics and Shift-Twist Symmetry

0 π

0

0 π/2

− π/2

0 π

θ d

π/2

π

θ c Σ

0 0

π/2 π/4

− π/4

− π/2

Σ

π/2

π/4 3π/4 π

a

b

Figure 3.8:Illustration of the coordinate transform fromc,θd)to(Σ,∆), Eq.(3.36) and (3.37) . (a) The plot is periodic inθc andθd, arrows denote wrap around in the indicated directions which are necessary in order to achieveΣ[0,π] and[π/2,π/2]. (b) Configurations ofθc andθd for each combination of Σand ∆. Collinear arrangements correspond toΣ= 0modand= 0, parallel arrangements to Σ=π/2modand= 0.

43

Let us discuss how to measure Pr(Σ,∆), in practice, for a given orientation map z(x). First we calculate the angle mapθ(x) = 12argz(x). Then we consider every pairxc andxdin the map and determineθc =θ(xc)andθd=θ(xd). We calculate its relative distancer=|xdxc|and angle φ.

Every pair(r,φ,θcd)is then brought into a ’standard form’ (rcd) = (r,0,θcφ,θdφ) by applying a rotation−φ. For this pair we determine the difference angle∆=θdθc =θdθc and the average angle Σ= (θc+θd)/2 = (θc+θdφ)/2 and increase the corresponding bin in the histogramPr(Σ,∆)by one. The resulting Pr(Σ,∆) is expected to approach the form (3.38) for a sufficiently large dataset.

Now, given such a histogramPr(Σ,∆) how can we decide whether shift symmetry is broken or not? Using Bayes’ theorem,Pr(Σ,∆) can always be written as the product of two components,

Pr(Σ,∆) =Pr(Σ|∆)Pr(∆) The marginal probability distribution of∆,

Pr(∆) = dΣPr(Σ,∆) and the conditional probability distribution ofΣ for a given∆,

Pr(Σ|∆) =Pr(Σ,∆)/Pr(∆).

By construction Pr(∆) is shift symmetric. In general, this does not apply forPr(Σ|∆). For a shift invariant ensemble Pr(Σ|∆) would be flat, i.e.

Pr(Σ|∆) = 1/π.

Thus, a departure ofPr(Σ|∆)from that constant value is a signature of shift symmetry breaking.

In conclusion, for our purpose it is more convenient to consider the conditional probability density Pr(Σ|∆) than the entire distributionPr(Σ,∆). It also has the advantage that we do not have to cope with the singular behaviour of Pr(Σ,∆) forr →0, which comes from the fact that for continuous arrangements of edges, i.e. for orientation maps,

r→0lim(θdθc) = 0 such that

rlim→0Pr(∆) =δ(∆)

Therefore, in the limitr→0 we expect Pr(Σ,∆) to become singular,

rlim0Pr(Σ,∆) =Pr(Σ|∆)δ(∆).

As shown abovePr(Σ|∆)can be decomposed as follows Pr(Σ|∆) =

m,n∈N

cmn(r) cos (2mΣ) cos(n∆) (3.40) with c00 = 1/π and cmn = 0for odd numbers m+n. For even numbers m+nthere are two possibilities, (1) m and n are even, (2) m and n are odd. As we will see in Chapter (5) this distinction is useful since it allows to decompose Pr(Σ|∆) into a direct sum

Pr(Σ|∆) = 1

πP�(2)r (Σ|∆)⊕P�(4)r (Σ|∆) (3.41) whereP(4)r refers to subset (1) and is called thecloverleaf component, whereasP(2)r refers to subset (2) and is called the collinear component in the following.