• Keine Ergebnisse gefunden

AGA TA

B. DWEIKO Input Files

As mentioned in Section 4.4.1,

DWEIKO

is used to calculate the relativistic CoulEx cross sections in straight-line approximation for the85Br beam on the two197Au targets with respective beam energies ofEkin=300MeV/u in front of target 1 and Ekin=242MeV/u in front of target 2. For the given transition strengths of gold, B(E2,↓) =33W.u. [Stu88] and for85Br,B(M1,↓) =3.34µ2NandB(E2,↓) =1W.u., the corresponding matrix elements necessary for the

DWEIKO

calculations can be calculated via (see Eq. (2.38))

|〈Jm||M(σλ)||Jn〉|=Æ

(2Jn+1)B(σλ;JnJm) (B.1) withσ=Efor electric andσ=M for magnetic transitions andλas the multipo-larity. This yields

|︁

|︁

|︁〈7/2+g.s.||M(E2)||3/2+1

|︁

|︁

|︁=134.01e fm2 for gold and

|︁

|︁

|︁〈3/2g.s.||M(M1)||1/21

|︁

|︁

|︁=0.38e fm,

|︁

|︁

|︁〈3/2g.s.||M(E2)||1/21

|︁

|︁

|︁=6.66e fm2 for bromine.

In the following, the input files for

DWEIKO

are shown for85Br in Listing B.1 and for197Au in Listing B.2, both for target 1 at a beam energy of 300 MeV/u. To change the incident beam energy,

Einc

in line 7 has to be modified accordingly.

The states of interest Jn and Jm can be defined in lines

144

and

145

1. The corresponding transition strengths are set in line

159

. For more information on

DWEIKO

, see [Ber99]. The source code is available at [Ber].

1Lines can be added if more transitions are relevant

123

Listing B.1:

DWEIKO

input file85Br

1 # Input of program ’DWEIKO’

2 #

3 # charges and masses (AP,ZP,AT,ZT),

4 # bombarding energy per nucleon (Einc) in MeV.

5 #

6 # Ap Zp At Zt Einc[MeV/u]

7 85 35 197 79 300

8 # (P.Napiralla: for T2 use Einc: 242)

9 # IW=0(1) for projectile (target) excitation.

10 # IOPM=1(0) for output (none) of optical

11 # model potentials.

12 # IOELAS=(0)[1]{2} for (no) [center of mass]

13 # {laboratory} elastic scattering cross section.

14 # IOINEL=(0)[1]{2} for (no) [center of mass]

15 # {laboratory} inelastic scattering cross section.

16 # IOGAM=(0)[1]{2} for (no) output

17 # [output of statistical tensors] {output of # gamma-ray

18 # angular distributions}

19 #

20 # ==========================================================

21 #

22 # IW=0(1) IOPM=0(1) IOELAS=0(1)[2] IOINEL=0(1)[2] IOGAM=0(1)[2]

23 0 1 2 2 2

24 #

25 # ==========================================================

26 # NB=number of impact parameter points (NB <= NBMAX).

27 # ACCUR=accuracy required for time integration at

28 # each impact parameter.

29 # BMIN=minimum impact parameter (enter 0 for default)

30 # IOB=1(0) prints (does not print) out

31 # impact parameter probabilities.

32 #

33 # ==========================================================

34 #

35 # NB ACCUR BMIN[fm] IOB=1(0)

36 200 0.001 0 0

37 #

38 # ==========================================================

39 #

40 # OMP switch:

41 # IOPW=0 (no OMP) IOPNUC=0 (no nuclear)

42 # 1 (Woods-Saxon) 1 (vibr. excitat.)

43 # 2 (read)

44 # 3 (t-rho-rho folding potential)

45 # 4 (M3Y folding potential)

46 # If optical potential is provided (IOPW=2), it should be

47 # stored in ’optw.in’ in rows of

48 # R x Real[U(R)] x Imag[U(R)].

49 # The first line in ’optw.in’ is the number

50 # of rows (maximum=NGRID).

51 #

52 # ==========================================================

53 #

54 # IOPW IOPNUC

55 1 0

56 #

57 # ==========================================================

58 # If IOPW=1, enter V0_ws [VI_ws] = real part [imaginary]

59 # (>0, both) of Woods-Saxon.

60 # r0_ws [r0I_ws] = radius parameter (R_ws = r0 * (ap^1/3 + at^1/3).

61 # d_ws [dI_ws] = diffuseness.

62 # If IOPW is not equal to 1, place a ’#’ sign

63 # at the beginning of this line, or delete it.

64 #

65 # ==========================================================

66 #

67 # V0 [MeV] r0[fm] d[fm] VI [MeV] r0_I [fm] dI [fm]

68 50. 1.2 0.8 58. 1.2 0.8

69 #

70 # ==========================================================

71 #

72 # If IOPW=1 and Ap, or At, equal to one (proton),

73 # enter here spin-orbit part.

74 # If not, place a ’#’ sign at the beginning of this line,

75 # or delete it.

76 # VS0 = depth parameter of the spin-orbit potential (>0).

77 # r0_S = radius parameter.

78 # dS = difuseness.

79 # V_surf = depth parameter of the surface potentail (>0).

80 # a_surf = difuseness.

81 #

82 # ==========================================================

83 #

84 # VS0 [MeV] r0_S [fm] dS [fm] V_surf [fm] d_surf [fm]

85 # 15. 1.02 0.6 50. 0.6

86 #

87 # ==========================================================

125

88 #

89 # If IOPW=4, enter Wrat = ratio of imaginary to real

90 # part of M3Y interaction

91 # If IOPW is not equal to 4, place a ’#’ sign at the

92 # beginning of this line, or delete it.

93 #

94 # ==========================================================

95 #

96 # Wrat

97 # 1.

98 #

99 # ==========================================================

100 #

101 #

102 # If IOELAS=1,2 or IOINEL=1,2 enter here THMAX, maximum

103 # angle (in degrees and in the center of mass),

104 # and NTHETA (<= NGRID), the number of points in scatering angle.

105 #

106 # If IOELAST or IOINEL are not 1, or 2, place a ’#’ sign

107 # at the beginning of this line,

108 # or delete it.

109 #

110 # ==========================================================

111 #

112 # THMAX NTHETA

113 6. 150

114 #

115 # ==========================================================

116 #

117 # If IOINEL=1 enter the state (JINEL) for the inelastic

118 # angular distribution.

119 # If IOINEL is not 1, or 2, place a ’#’ sign at the

120 # beginning of this line, or delete it.

121 #

122 #

123 #

124 # ==========================================================

125 #

126 # JINEL

127 2

128 #

129 # ==========================================================

130 #

131 # ==========================================================

132 #

133 # NST: number of nuclear levels (<= NSTMAX).

134 2

135 #

136 # ==========================================================

137 #

138 # state label (I), energy (EX), and spin (SPIN).

139 # I ranges from 1 to NST.

140 #

141 # ==========================================================

142 #

143 # I Ex[MeV] SPIN

144 1 0 1.5

145 2 1.191 0.5

146 #

147 # ==========================================================

148 #

149 # Reduced matrix elements for E1, E2, E3, M1 and M2 excitations:

150 # <I_j||O(E/M;L)||I_i>, j > i ,

151 # for the electromagnetic transitions.

152 # To stop, add a row of zeros at the end of this list.

153 # If no electromagnetic

154 # excitation is wanted, enter a row of zeros.

155 #

156 # ==========================================================

157 #

158 # i -> j E1[e fm] E2[e fm^2] E3[e fm^3] M1[e fm] M2[e fm^2]

159 1 2 0 6.66 0 0.38 0

160 0 0 0 0 0 0 0

161 #

162 # (P.Napiralla: B(M1)[mu_N^2] = 90.44*B(M1)[e^2fm^2])

163 # ==========================================================

164 #

165 # If IOPNUC=1 enter sum rule fraction of nuclear deformation

166 # parameters for monopole, dipole, quadrupole nuclear

167 # excitations (DELTE0,DELTE1,DELTE2,DELTE3)

168 # for each excited state J: DELTE_i = f_i * (sum rule).

169 # If IOPNUC=0 insert a comment card (’#’) in front of each

170 # entry row, or delete them.

171 #

172 # ==========================================================

173 #

174 # j f0 f1 f2 f3

175 # 2 0 0 0.59 0

176 # 3 0 1.1 0 0

177 #

127

178 # ==========================================================

179 #

180 # If IOGAM=2, enter

181 # IFF,IGG = initial and final states (iff > igg) for

182 # the gamma transition.

183 # THMIN, THMAX = minimum and maximum values of

184 # gamma-ray angles (in degrees).

185 # NTHETA = number of angle points (<= NGRID).

186 #

187 # ==========================================================

188 #

189 # IFF IGG THMIN THMAX NTHETA

190 2 1 0. 179. 179

191 #

192 # ==========================================================

193 #

Listing B.2:

DWEIKO

input file197Au

1 # Input of program ’DWEIKO’

2 #

3 # charges and masses (AP,ZP,AT,ZT),

4 # bombarding energy per nucleon (Einc) in MeV.

5 #

6 # Ap Zp At Zt Einc[MeV/u]

7 85 35 197 79 300

8 # (P.Napiralla: for T2 use Einc: 242)

9 # IW=0(1) for projectile (target) excitation.

10 # IOPM=1(0) for output (none) of optical

11 # model potentials.

12 # IOELAS=(0)[1]{2} for (no) [center of mass]

13 # {laboratory} elastic scattering cross section.

14 # IOINEL=(0)[1]{2} for (no) [center of mass]

15 # {laboratory} inelastic scattering cross section.

16 # IOGAM=(0)[1]{2} for (no) output

17 # [output of statistical tensors] {output of # gamma-ray

18 # angular distributions}

19 #

20 # ==========================================================

21 #

22 # IW=0(1) IOPM=0(1) IOELAS=0(1)[2] IOINEL=0(1)[2] IOGAM=0(1)[2]

23 1 1 2 2 2

24 #

25 # ==========================================================

26 # NB=number of impact parameter points (NB <= NBMAX).

27 # ACCUR=accuracy required for time integration at

28 # each impact parameter.

29 # BMIN=minimum impact parameter (enter 0 for default)

30 # IOB=1(0) prints (does not print) out

31 # impact parameter probabilities.

32 #

33 # ==========================================================

34 #

35 # NB ACCUR BMIN[fm] IOB=1(0)

36 200 0.001 0 0

37 #

38 # ==========================================================

39 #

40 # OMP switch:

41 # IOPW=0 (no OMP) IOPNUC=0 (no nuclear)

42 # 1 (Woods-Saxon) 1 (vibr. excitat.)

43 # 2 (read)

44 # 3 (t-rho-rho folding potential)

45 # 4 (M3Y folding potential)

46 # If optical potential is provided (IOPW=2), it should be

47 # stored in ’optw.in’ in rows of

48 # R x Real[U(R)] x Imag[U(R)].

49 # The first line in ’optw.in’ is the number

50 # of rows (maximum=NGRID).

51 #

52 # ==========================================================

53 #

54 # IOPW IOPNUC

55 1 0

56 #

57 # ==========================================================

58 # If IOPW=1, enter V0_ws [VI_ws] = real part [imaginary]

59 # (>0, both) of Woods-Saxon.

60 # r0_ws [r0I_ws] = radius parameter (R_ws = r0 * (ap^1/3 + at^1/3).

61 # d_ws [dI_ws] = diffuseness.

62 # If IOPW is not equal to 1, place a ’#’ sign

63 # at the beginning of this line, or delete it.

64 #

65 # ==========================================================

66 #

67 # V0 [MeV] r0[fm] d[fm] VI [MeV] r0_I [fm] dI [fm]

68 50. 1.2 0.8 58. 1.2 0.8

69 #

70 # ==========================================================

129

71 #

72 # If IOPW=1 and Ap, or At, equal to one (proton),

73 # enter here spin-orbit part.

74 # If not, place a ’#’ sign at the beginning of this line,

75 # or delete it.

76 # VS0 = depth parameter of the spin-orbit potential (>0).

77 # r0_S = radius parameter.

78 # dS = difuseness.

79 # V_surf = depth parameter of the surface potentail (>0).

80 # a_surf = difuseness.

81 #

82 # ==========================================================

83 #

84 # VS0 [MeV] r0_S [fm] dS [fm] V_surf [fm] d_surf [fm]

85 # 15. 1.02 0.6 50. 0.6

86 #

87 # ==========================================================

88 #

89 # If IOPW=4, enter Wrat = ratio of imaginary to real

90 # part of M3Y interaction

91 # If IOPW is not equal to 4, place a ’#’ sign at the

92 # beginning of this line, or delete it.

93 #

94 # ==========================================================

95 #

96 # Wrat

97 # 1.

98 #

99 # ==========================================================

100 #

101 #

102 # If IOELAS=1,2 or IOINEL=1,2 enter here THMAX, maximum

103 # angle (in degrees and in the center of mass),

104 # and NTHETA (<= NGRID), the number of points in scatering angle.

105 #

106 # If IOELAST or IOINEL are not 1, or 2, place a ’#’ sign

107 # at the beginning of this line,

108 # or delete it.

109 #

110 # ==========================================================

111 #

112 # THMAX NTHETA

113 6. 150

114 #

115 # ==========================================================

116 #

117 # If IOINEL=1 enter the state (JINEL) for the inelastic

118 # angular distribution.

119 # If IOINEL is not 1, or 2, place a ’#’ sign at the

120 # beginning of this line, or delete it.

121 #

122 #

123 #

124 # ==========================================================

125 #

126 # JINEL

127 2

128 #

129 # ==========================================================

130 #

131 # ==========================================================

132 #

133 # NST: number of nuclear levels (<= NSTMAX).

134 2

135 #

136 # ==========================================================

137 #

138 # state label (I), energy (EX), and spin (SPIN).

139 # I ranges from 1 to NST.

140 #

141 # ==========================================================

142 #

143 # I Ex[MeV] SPIN

144 1 0 1.5

145 2 0.5475 3.5

146 #

147 # ==========================================================

148 #

149 # Reduced matrix elements for E1, E2, E3, M1 and M2 excitations:

150 # <I_j||O(E/M;L)||I_i>, j > i ,

151 # for the electromagnetic transitions.

152 # To stop, add a row of zeros at the end of this list.

153 # If no electromagnetic

154 # excitation is wanted, enter a row of zeros.

155 #

156 # ==========================================================

157 #

158 # i -> j E1[e fm] E2[e fm^2] E3[e fm^3] M1[e fm] M2[e fm^2]

159 1 2 0 134.01 0 0 0

160 0 0 0 0 0 0 0

131

161 #

162 # (P.Napiralla: B(M1)[mu_N^2] = 90.44*B(M1)[e^2fm^2])

163 # ==========================================================

164 #

165 # If IOPNUC=1 enter sum rule fraction of nuclear deformation

166 # parameters for monopole, dipole, quadrupole nuclear

167 # excitations (DELTE0,DELTE1,DELTE2,DELTE3)

168 # for each excited state J: DELTE_i = f_i * (sum rule).

169 # If IOPNUC=0 insert a comment card (’#’) in front of each

170 # entry row, or delete them.

171 #

172 # ==========================================================

173 #

174 # j f0 f1 f2 f3

175 # 2 0 0 0.59 0

176 # 3 0 1.1 0 0

177 #

178 # ==========================================================

179 #

180 # If IOGAM=2, enter

181 # IFF,IGG = initial and final states (iff > igg) for

182 # the gamma transition.

183 # THMIN, THMAX = minimum and maximum values of

184 # gamma-ray angles (in degrees).

185 # NTHETA = number of angle points (<= NGRID).

186 #

187 # ==========================================================

188 #

189 # IFF IGG THMIN THMAX NTHETA

190 2 1 0. 179. 179

191 #

192 # ==========================================================

193 #