• Keine Ergebnisse gefunden

Although the successful force-extension measurement on a DNA carpet shown in Fig.4.15 was a single event, the fact that the force drops back to zero at the contour length of λ-DNA supports strongly the idea that the force was generated by DNA.

This observation confirms the feasibility of stretching a carpet of DNA with a simple force apparatus. For combined measurements of force and birefringence still a lot of problems have to be solved. The first point is to clarify the reason of why the DNA breaks. The fact that the breakage is reversible indicates that the tether itself breaks.

Investigation with fluorescence microscopy showed that the streptavidin/biotin link-age broke [51]. To see this, a spherically shaped glass surface14 coated with strepta-vidin was brought in contact with a gold covered coverslip on which DNA has been grafted by the thiol/gold chemistry; the free end had been functionalized with biotin.

The thickness of the gold layer was less than 20 nm enabling an observation of the YOYO-1 labelled DNA. Because of the spherical shape there was a region were the distance between gold surface and glass is in the order of the thickness of the DNA carpet of about 1µm and thus one expects to obtain double-end-grafted DNA. In-deed by moving the upper glass with a motor a couple of molecules were stretched.

When the DNA was fully stretched, the tether at the streptavidin-coated glass sur-face broke. Surprisingly there were molecules which were able to bind again to the streptavidin surface even though the tether has been broken before. This could ex-plain the observation made with the force apparatus why we observed a breakage of the molecules and why the force could be measured again. To enhance the stability of the streptavidin/biotin linkage one could functionalize each DNA molecules with multiple biotins with a technique described in [17].

The second point for a successful investigation of the B-S transition is the force apparatus itself. Because of the bad reproducibility of the experiment a lot of im-provements are required for routine force measurements. One important point is the possibility of grafting the DNA inside the sample cell in order to preserve the DNA from being damaged by shear flows. Furthermore the stability of the system has to be improved. A more compact design would be desirable what can be achieved with smaller cantilever. For a cantilever of a length of 7 mm and a width of 1 mm the thick-ness has to be 30µm to get a spring constant of 1 N/m. Such thin glass is provided by Schott and it has been shown that one can achieve a force resolution of 10nN

14The spherical shape were created by melting a glass rod.

with such thin cantilever and fiber-interferometric force measurements [155].

.

The goal of the present work was to develop chemical, molecular biological and phys-ical methods for stretching an ensemble of DNA molecules in a defined way, in order to perform structural analysis of the B-S transition of DNA which may shed light on the interaction of DNA with the RecA protein, responsible for recombination in E.coli. For force-extension measurements on an ensemble of DNA molecules we have constructed a new force apparatus, whose development and characterization is pre-sented. Inside this device functionalized DNA has to be chemically grafted between to substrates for force-extension experiments.

First the efficiency of functionalizing DNA with specific adhesion molecules such as biotin, digoxigenin and thiol for end-grafting DNA onto a substrate is determined.

We show that at least about 70 % of a DNA assay can be labelled with biotin or digoxigenin. The grafting of DNA onto different functionalized surfaces was verified by fluorescence microscopy. For end-grafting DNA specifically onto a streptavidin-coated glass surface via the biotin linker we found a maximal DNA density of at least about 0.14 molecules/µm. The same maximal density is achieved for coupling DNA onto a gold surface with the thiol linker. However in case of digoxigenin maximal graft-ing density is reduced as much as a factor of 10 whith respect to biotin-streptavidin grafting. Based on the binding kinetics of biotin-labelled DNA molecules we also sug-gest a diffusion-controlled binding model and propose future studies on the influence of tether-length on ligand-receptor binding kinetics.

The characterization of the DNA carpet by confocal fluorescence microscopy sug-gested to perform optical single-molecule experiments. The contour length of YOYO-1 stained λ-DNA at a dye:basepair ratio of 1 : 5 was measured to be 19.8. µm by stretching the DNA in an electric field and applying the WLC-model. The value is consistent with values available in literature. By measuring static and and dynamic properties of DNA molecules stretched by an electric field we have shown how one

111

could investigate the influence of hydrodynamic interactions in the case of electro-kinetic stretching of DNA molecules. Using the longitudinal resolution capabilities of confocal microscopy we measured for the first time 3-dimensional monomer density profiles of end-grafted DNA molecules of different length and found an excellent agree-ment with theoretical predictions. Using fluorescently stained colloids we labelled the end segment of individual DNA molecules and were able to measure the distribu-tion funcdistribu-tion of the end-segment of end-grafted DNA molecules. Our results provide the first direct experimental test of theoretical predictions for the conformation of end-attached polymers in the mushroom regime.

List of suppliers

Nucleic acids:

Oligomers: MWG Biotech AG, Munich, and Thermo Electron Gmbh, Ulm

λ-DNA: Fermentas GmbH, St. Leon-Rot and New England Biolabs GmbH, Frankfurt am Main

KiloBase DNA marker: Amersham Bioscience Gmbh, Freiburg

λ-DNA HindIII Digest: Amersham Bioscience Gmbh, Freiburg Antibodies and Enzymes:

Strepatavidin: Roche Diagnostics Gmbh, Mannheim

anti-digoxigenin: Roche Diagnostics Gmbh, Mannheim

SfoI, ApaI, KasI, NaeI, AscI:New England Biolabs GmbH, Frankfurt am Main

T4 Ligase:New England Biolabs GmbH, Frankfurt am Main

T4 Polynucleoide Kinase: New England Biolabs GmbH, Frankfurt am Main

Klenove Polymerase: New England Biolabs GmbH, Frankfurt am Main Dyes:

YOYO-1, BOBO-1: Molecular Probes, Leiden (Distributor: MobiTec, G¨ottingen) 113

Ethidium bromide: Amersham Bioscience Gmbh, Freiburg Beads

Dynal-beads M-280 Streptavidin: Dynal Biotech Gmbh, Hamburg

Magnetic anti-digoxigenin particles: Roche Diagnostics, Gmbh, Mannheim

Fluospheres

TransFluo Spheres NeutrAvidin: Molecular Probes, Leiden (Distributor: Mo-biTec, G¨ottingen)

TransFluoSpheres unlabelled : Molecular Probes, Leiden (Distributor: Mo-biTec, G¨ottingen)

Miscellaneous:

Gel Extraction Kit: Quiagen Gmbh, Hilden

Ethanol: Sigma-Aldrich Chemie Gmbh, Steinheim

3-Amino-propyltriethoxysilane: Sigma-Aldrich Chemie Gmbh, Steinheim

Glutaraldehyde: Polysciences, Warrington, USA

DTT: Roche Diagnostics Gmbh, Mannheim

Catalase: Sigma-Aldrich Chemie Gmbh, Steinheim

Glucose Oxidase: Sigma-Aldrich Chemie Gmbh, Steinheim

Surcose: Sigma-Aldrich Chemie Gmbh, Steinheim

Tris base: Sigma-Aldrich Chemie Gmbh, Steinheim

EDTA: Sigma-Aldrich Chemie Gmbh, Steinheim

Agarose: USB, Cleveland

TBE:Sigma-Aldrich Chemie Gmbh, Steinheim

Nick Columns: Amersham Bioscience Gmbh, Freiburg

Coupling buffer: Ademtech, 33600 Pessac France

[1] J. Watson and F. Crick: A stucure of desoxyribose nucleid acid, Nature 171, 737 (1953).

[2] J. Watson and F. Crick: Genetic implications of the structurs of desoxyri-bonuclei acid, Nature 171, 962 (1953).

[3] A. N. Glazer and H. Rye: Stable dye-DNA intercalation complexes as reagents for high-sensitivity fluorescence detection, Nature359, 859 (1992).

[4] M. Doi and S. Edwards: The Theory of Polymer Dynamics (Oxford Uni-versity Press, New York, 1992).

[5] P. Flory: Principle of Polymer Chemistry (Cornell University, Ithaca, 1953).

[6] P. G. de Gennes: Scaling Concepts in Polymer Physics (Cornell University, Ithaca, 1979).

[7] J. F. Marko and E. D. Siggia: Stretching DNA, Macromolecules 28, 8759 (1995).

[8] R. Knippers: Molekulare Genetik, 7 ed. (Thieme, Stuttgart, 1997).

[9] S. Zamenhof, G. Brawerman and E. Chargaff: Biochim. et Biophys.

Acta 9, 402 (1952).

[10] C. R. Calladine and H. R. Drew: Understanding DNA, 2nd ed. (Academic Press, San Diego, 1997).

[11] V. A. Bloomfield, D. M. Crothers and I. Tinoco: Nucleic Acids:

Structures, Properties and Functions(University Science Books, Sausalito, CA, 2000).

115

[12] D. F. Williams and L. Maher: Electrostatic mechanisms of DNA defor-mation,Annu. Rev. Biophys. Biomol. Struct. 29, 497 (2000).

[13] J. F. Marko: The micromechanics of DNA,Physics World 37 (2003).

[14] L. D. Landau and E. M. Lifshitz: Theory of Elasticity, 3rd ed. (Pergamon Press, Oxford, 1986).

[15] S. B. Smith, Y. Cui, A. C. Hausrath and C. Bustamante: Stretching DNA beyond its B-form contour length, Biophys. J. 68, A250 (1995).

[16] S. B. Smith, Y. Cui and C. Bustamante: Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules,Science 271, 795 (1996).

[17] P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J.-L. Viovy, D. Chate-nay and F. Caron: DNA: An Extensible Molecule, Science 271, 792 (1996).

[18] A. Ott, M. Magnasco, A. Simon and A. Libchaber: Measurement of the persistence length of polymerized actin using fluorescence microscopy,Phys.

Rev. E48, R1642 (1993).

[19] F. Gittes, B. Mickey, J. Nettleton and J. Howard: Flexural Rigidity of Microtubules and Actin Filament Measured from Thermal Fluctuations in Shape, J. Cell Biol. 120, 923 (1993).

[20] G. S. Manning: Counterion Binding in Polyelectrolyte Theory, Acc. Chem.

Res.12, (1979).

[21] A. Y. Grosberg and A. R. Khokhlov: Statistical Physics of Macro-molecules (AIP Press, New York, 1994).

[22] R. Netz and D. Andelman: Neutral and charged polymers at interfaces, Phys. Rep.380, 1 (2003).

[23] G. Maret and G. Weill: Magnetic Birefringence Study of the Electrostatic and Intrinsic Persistence Length of DNA, Biopolymers 22, 2727 (1983).

[24] C. G. Baumann, S. B. Smith, V. A. Bloomfield and C. Bustamante:

Ionic effects on the elasticity of single DNA molecules, Proc. Natl. Acad. Sci.

94, 6185 (1997).

[25] T. Odijk: Polyelectrolytes near the rod limit,J. Polym. Sci. Polym. Phys. 15, 477 (1977).

[26] D. W. Schaefer, C. J. Brinker, D. Richter, B. Farago and B. Frick:

Dynamics of Weakly Connected Solids: Silica Aerogels, Phys. Rev. Lett. 64, 2316 (1990).

[27] T. Odijk: On the theory of the excluded-volume effect of a polyelectrolyte in a 1-1 electrolyte solution,J. Polym. Sci. Polym. Phys. 16, 627 (1978).

[28] J. Dawson and J. Harpst: Light scattering and Hydrodynamic Properties of Linear and Circular Bacteriophage Lambda DNA,Biopolymers10, 2499 (1971).

[29] R. Verma, J. C. Crocker, D. C. Lubensky and A. G. Yodh: Entropic Colloidal Interactions in Concentrated DNA Solutions, Phys. Rev. Lett. 81, 4004 (1998).

[30] J. Kovac and C. C. Crabb: Modified Gaussian Model for Rubber Elasticity.

2. The Wormlike Chain, Macromolecules 15, 537 (1982).

[31] M. Fixman and J. Kovac: Polymer conformational statistics. III. Modified Gaussian models of stiff chains,J. Chem. Phys. 58, 1564 (1973).

[32] C. Bouchiat, M. D. Wang, J. F. Allemand, T. Strick, S. M. Block and V. Croquette: Estimating the Persistence Length of a Worm-Like Chain Molecule from Force-Extension Measurements, Biophys. J.76, 409 (1999).

[33] S. B. Smith, L. Finzi and C. Bustamante: Direct Mechanical Measure-ments of the Elasticity of Single DNA Molecules by Using Magnetic Beads, Science 258, 1122 (1992).

[34] J.-B. Fournier: Wormlike chain or tense string? A question of resolution, Continuum Mech. Thermodyn.14, 241 (2002).

[35] J. Sambrook, E. F. Fritsch and T. Maniatis: Molecular Cloning. A Laboratory Manual, 2nd ed. (Cold Spring Harbor Laboratory Press, Plainview, NY, 1989).

[36] http://www.neb.com/nebecomm/tech reference/restrictionenzymes/sites/.

[37] P. Darbre: Basic Molecular Biology (Wiley, Weinheim, 2000).

[38] J. Chevallier, Y. Jing, M. Odile and X.-M. Tang: Biotin and Digoxi-genin as label for Light and Electron Microscopy in Situ Hybridization Probes:

Where do we stand, Journal of Histochemistry and Cytochemistry 4584), 481 (1997).

[39] R. M. Zimmermann and E. C. Cox: DNA stretching on functionalized gold surfaces, Nucleic Acids Res. 22, 492 (1994).

[40] S. Dubiley, E. Kirillov, Y. Lysov and A. Mirzabkov: Fractionation, phosphorylation and ligation on olignucleotides microchips to enhance sequenc-ing by hybridization, Nucl. Acids Res. 25, 2259 (1997).

[41] L. A. Chrisey, E. O’Ferrall, B. J. Spargo, C. S. Dulcey and J. M.

Calvert: Fabrication of patterned DNA surfaces,Nucleic Acids Res.24, 3040 (1996).

[42] L. A. Chrisey, G. U. Lee and E. O’Ferrall: Covalent attachment of synthetic DNA to selfassembled monolayer films, Nucl. Acids Res. 24, 3031 (1996).

[43] A. Bensimon, A. J. Simon, V. Croquette, F. Heslot and A. Bensi-mon: Alignment and sensitive detection of DNA by a moving interface,Science 265, 2096 (1994).

[44] D. Bensimon, A. J. Simon, V. Croquette and A. Bensimon: Stretching DNA with a Receding Meniscus: Experiments and Models,Phys. Rev. Lett.74, 4754 (1995).

[45] H. Yokota, F. Johnson, H. Lu, R. Robinson, A. Belu, M. Garri-son, B. Ratner, B. Trask and D. Miller: A new method for straighten-ing DNA molecules for optical restriction mappstraighten-ing, Nucl. Acids Res. 25, 1064 (1997).

[46] G. H. Seong, Y. Yanagida, M. Aizawa and E. Kobatake: Atomic force microscopy identification of transcription factor NFkB bound to streptavidin-pin holding DNA probe,Anal. Biochem. 309, 241 (2002).

[47] H. Li, S. H. Park, J. H.Reif, T. LaBean and H. Yan: DNA templated Self-Assemby of Protein and Nanoparticle Linear Arrays, J. Am. Chem. Soc.

126, 418 (2004).

[48] J. F. Allemand, D. Bensimon, L. Jullien, A. Bensimon and V. Cro-quette: pH-Dependent Specific Binding and Combing of DNA, Biophys. J.

73, 2064 (1997).

[49] S. Sivasankar, S. Subramaniam and D. Leckband: Direct molecular level measurements of the electrostatic properties of a protein surface, Proc.

Natl. Acad. Sci.95, 12961 (1998).

[50] A.-Z. Li, H. Huang, X. Re, L. Qi and K. Marx: A Gel Electrophore-sis Sudy of Competitive Effects of Monovalent Counterion on the Extend of Divalent Counterions Binding to DNA, Biophys. J.74, 964 (1998).

[51] J. Koota: Phd thesis, University of Konstanz, (2005).

[52] D. Shoup and A. Szabo: Role of diffusion in ligand binding to macro-molecules and cell-bound receptors, Biophys. J.40, 33 (1982).

[53] A. Sadana and A. Madugula: Binding Kinetics of Antigene by Immobi-lized Antibody or of Antibody by ImmobiImmobi-lized Antigen: Influence of Lateral Interactions and Variable Rate Coefficients, Biotechnol. Prog.9, 259 (1993).

[54] A. Ramakrishnan and A. Sadana: A kinetic study of analyte-receptor binding and dissociation for biosensor application: a fractal analysis for two different DNA systems, BioSystems66, 165 (2002).

[55] A. Ramakrishnan and A. Sadana: Analysis of analyte-receptor binding kinetics for biosensor applications: an overview of the influence of the fractal dimension on the surface on the binding rate coefficient., Biotechnol. Biochem.

29, 45 (1999).

[56] R. Kopelman: inThe Fractal Approach to Heterogenous Chemistry, edited by D. Avnir (John Wiley, Chichester, 1989).

[57] R. Kopelman: Fractal Reaction Kinetics, Science 241, 1620 (1988).

[58] S. Havlin: in The Fractal Approach to Heterogenous Chemistry, edited by D.

Avnir (John Wiley & Sons, Chichester, 1989).

[59] J. Sery-Levy, J. Samuel, D. Farin and D. Avnir: in Photochemsistry on Solid Surfaces, edited by M. Anpo and T. Matsuura (Elsevier, Amsterdam, 1989).

[60] P. Pfeiffer and M. Obert: inThe Fractal Approach to Heterogenous Chem-istry, edited by D. Avnir (John Wiley & Sons, Chichester, 1998).

[61] P. Schaaf and J. Talbot: Kinetics of Random Sequential Adsorption,Phys.

Rev. Lett. 62, 175 (1989).

[62] P. Lavalle, P. Schaaf, M. Ostafin, J.-C. Voegel and B. Senger: Ex-tended random sequential adsorption model of irreversible deposition processes:

From simulations to experiments, Proc. Natl. Acad. Sci.96, 11100 (1999).

[63] P. Schaaf, A. Johner and J. Talbot: Asymptotic behavior of Particle Deposition, Phys. Rev. Lett. 66, 1603 (1991).

[64] J. S. Wang and R. B. Pandey: Kinetics and Jamming Coverage in a Ran-dom Sequential Adsorption of Polymer Chains,Phys. Rev. Lett.77, 1773 (1996).

[65] A. Dugaiczyk, H. Boyer and H. Goodman: Ligation of EcoRI endonuclease-generated DNA fragments into linear and circular structures, J.

Mol. Biol. 96, 171 (1975).

[66] Handbook of Biological Confocal Microscopy, edited by J. Pawley (Plenum Press, New York, 1995).

[67] A. Egner and S. Hell: Comparison of the axial resolution of practical Nipkow-disk confocal fluorescence microscopy with that of multifocal multipho-ton microscopy: theory and experiment, J. Microscopy 206, 24 (2001).

[68] R. P. Haugland: Handbook of Fluorescent Probes and Research Chemicals, 6th ed. (Molecular Probes, Inc., Eugene / Leiden, 1996).

[69] S. Gurriera, K. Well, I. Johnson and C. Bustamante: Direct Visual-ization of Individual DNA Molecules by Fluorescence Microscopy: Characteri-zation of the Factors Affecting Signal/Background and OptimiCharacteri-zation of Imaging Conditions using YOYO, Anal. Biochem. 249, 44 (1997).

[70] D. S. Smith, T. T. Perkins and S. Chu: Dynamical Scaling of DNA Diffusion Coefficients, Macromolecules 29, 1372 (1996).

[71] C. Jeppesen, J. Y. Wong, T. Kuhl, I. J., N. Mullah, S. Zalipsky and C. M. Marques: Impact of polymer Tether Length on multiple Ligand-Receptor Bound Formation.,Science 293, 465 (2001).

[72] A. G. Moreira and C. M. Marques: The role of polymer spacers in specific adhesion, J. Chem. Phys. 120, 6229 (2004).

[73] J. R¨uhe, M. Ballauff, M. Biesalski, P. Dziezok, F. Gr¨ohn, D. Jo-hannsmann, N. Houbenov, N. Hugenberg, R. Konradi, S. Minko, M. Motornov, R. R. Netz, M. Schmidt, C. Seidel, M. Stamm, T.

Stephan, D. Usov and H. Zhang: Polyelectrolyte Brushes, Adv. Polymer Chem. (2003).

[74] Y. C. Chen, J. Zheng, Z. Cheng and e. al.: Onset of tethered Chain Overcrowding,Phys. Rev. Lett. 93, 283012 (2004).

[75] C. Schroeder, H. Babcock, E. Shaqfeh and S. Chu: Observation of polymer conformation in extensional flow., Science 301, 1515 (2003).

[76] T. T. Perkins, D. E. Smith, G. Larson and S. Chu: Stretching of a single tethered polymer in a Uniform Flow, Science 268, 83 (1995).

[77] D. Smith, H. Babcock and S. Chu: Single-polymer dynamics in steady shear flow., Science 283, 1724 (1999).

[78] T. T. Perkins, D. Smith, G. Larson and S. Chu: Stretching a single tethered polymer in an elongational flow., Science 276, 83 (1995).

[79] R. Larson, T. T. Perkins, D. Smith and S. Chu: Hydrodynamics of a DNA molecule in a flow field,Phys.Rev. E 55, 1794 (1997).

[80] C. Haber, T. Ruiz and D. Wirtz: Shape anisotropy oof a single random-walk polymer, Proc. Natl. Acad. Sci. 97, 10792 (2000).

[81] P. LeDuc, C. Haber, G. Bao and D. Wirtz: Dynamics of individual flexible polymers in a shear flow, Nature399, 564 (1999).

[82] S. B. Smith and A. J. Bendich: Electrophoretic Charge Density and Per-sistence Length of DNA as Measured by Fluorescence Microscopy,Biopolymers 29, 1167 (1990).

[83] S. Ferree and H. Blanch: Electrokinetic Stretching of Tethered DNA, Biophys. J.85, 2539 (2003).

[84] T. Kreer, S. Metzger, M. M¨uller, K. Binder and J. Baschnagel:

Static properties of end-tethered polymers in good solvent: A comparison be-tween different models, J. Chem. Phys. 120, 4012 (2004).

[85] J.-L. Viovy: Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms, Rev. Mod. Phys. 72, 813 (2000).

[86] W. Volkmuth, T. Duke, M. C. Wu, R. Austin and A. Szabo: DNA Electrodiffussion in a 2D Array of Posts, Phys.Rev.Lett.72, 2117 (1994).

[87] J. M. Schurr and S. B. Smith: Theory for the Extension of a Linear Polyelectrolyte Attached at One End in an Electric Field, Biopolymers 29, 1161 (1990).

[88] D. Stigter and C. Bustamante: Theory for the Hydrodynamic and Elec-trophoretic Stretch of Tethered B-DNA, Biophys. J.75, 1197 (1998).

[89] D. Long, J. L. Viovy and A. Ajdari: Simultaneous Action of Electric Fields and Nonelectric Forces on a Polyelectrolyte: Motion and Deformation., Phys.Rev.Lett.76, 3858 (1996).

[90] J.-C. Meiners and S. R. Quake: Femtonewton Force Spectroscopy of Single Extended DNA Molecules, Phys. Rev. Lett. 84, 5014 (2000).

[91] J. W. Hatfield and S. R. Quake: Dynamic Properties of an Extended Polymer in Solution, Phys. Rev. Lett. 82, 3548 (1999).

[92] F. Johansen and J. Jacobsen: 1 H NMR studies of this bis-intercalation of a homodimeric oxazole yellow dye in DNA oligonucleotides.,J. Biomol. Struct.

Dyn. 16, 205 (1998).

[93] CRC Handbook of Chemistry and Physics, 80th ed., edited by D. R. Lide (CRC Press, Boca Raton, YEAR).

[94] N. Otsu: A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics 9, 62 (1979).

[95] S. R. Quake, H. Babcock and S. Chu: The dynamics of partially extended single molecules of DNA,Nature 388, 151 (1997).

[96] A. Crut, D. Lasne, J. F. Allemand, M. Dahan and P. Desbiollles:

Transverse fluctuations of single DNA molecules attached at both extremities to a surface, Phys. Rev. E 67, 0519101 (2003).

[97] Y. Marciano and F. Brochard-Wyart: Normal Modes of Stretched Poly-mer Chains,Macromolecules 28, 985 (1995).

[98] R. Rzehak: Conformational fluctuations of a tethered polymer in uniform flow,Eur. Phys. J. E 10, 1 (2003).

[99] D. Stigter: Wall effects on DNA stretch and relaxation,Biophys. Chem.101, 447 (2001).

[100] P. G. de Gennes: Conformations of Polymers Attached to an Interface, Macromolecules 13, 1069 (1980).

[101] O. Bakajin, T. Duke, C. Chou, S. CChan, R. Austin and E. C. Cox:

Electrohydrodynamic Stretching of DNA in Confined Environments,Phys. Rev.

Lett. 80, 1998 (1998).

[102] R. Rzehak, D. Kienle, T. Kawakatsu and W. Zimmermann: Partial draining of a tetherd polymer in flow,Europhys. Lett. 46, 821 (1999).

[103] Y. Harada, T. Funatsu, K. Murakami, Y. Nonoyama, A. Ishihama and T. Yanagida: Single molecule Imaging of RNA Polymerase-DNA Inter-actions Real Time,Biophys. J. 76, 709 (1999).

[104] I. J.: Intermolecular and surface forces (PUBLISHER, Amsterdam, 2002).

[105] P. Auroy, L. Auvray and L. Leger: Characterization of the brush regime for grafted polymer layers at the solid-liquid interface, Phys. Rev. Lett.66, 719 (1991).

[106] S. Alexander: J. Phys. (France) 38, 983 (1977).

[107] J. Field, C. Tobrakcioglu, L. Dai, G. Hadziioannou, G. Smith and W. Hamilton: Neutron reflectivity study of end adsorbed diblock copolymers:

cross-over from mushrooms to brushes, J. Phys. II (France) 2, 2221 (1992).

[108] J. Field, C. Tobrakcioglu, R. C. Ball, H. B. Stanley, L. Dai, W.

Barford, J. Penfold, G. Smith and W. Hamilton: Determination of End-Adsobed Polymer density Profiles by Neutron Reflectometry, Macro-molecules 25, 434 (1992).

[109] M. Adamuti-Trache, W. E. McMullen and J. F. Douglas: Segmen-tal concentration profiles of end-tethered polymers with excluded-volume and surface interactions, J. Chem. Phys. 105, 4798 (1996).

[110] G. Weill and J. des Cloizeaux: Dynamics of polymers in dilute solutions:

an explanation of anomalous indices by cross-over effects,J. Phys. (France)40, 99 (1979).

[111] E. Eisenriegler: in Sift Matter, edited by J. K. G. Dhont, G. Gomper and D. Richte (Forschungszentrum J¨ulich, J¨ulich, 2002), Vol. 1.

[112] T. Bickel: Phd thesis, Strasbourg, (2001).

[113] J. Schwinefus and V. A. Bloomfield: The greater negative charge den-sity of DNA in Tris-Borate Buffers does not enhance DNA condenstation by multivalent Cations,Biopolymers 54, 572 (2000).

[114] T. Bickel, C. Jeppesen and C. M. Marques: Local entropic effects of polymers grafted to soft interfaces,Eur. Phys. J. E 4, 33 (2001).

[115] T. Bickel and C. M. Marques: Scale-dependent rigidity of polymer-ornamented membranes, Eur. Phys. J. E 9, 349 (2002).

[116] C. Bustamante, C. W. Macosko and G. J. L. Wuite: Grabbing the cat by the tail: Manipulation molecules one by one, Nature (2000).

[117] M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez and H. E.

Gaub: Reversible Unfolding of Individual Titin Immunoglobulin Domains by AFM,Science 276, 1109 (1997).

[118] A. J. Griffiths, J. H. Miller, D. T. Suzuki, R. C. Lewontin and W. M. Gelbart: An Introduction to Genetic Analysis, 7 ed. (W. H. Freeman,, New York, 2000).

[119] D. Schafer, J. Gelles, M. Sheetz, R. Landick and H. Yin: Tran-scription by single molecules of RNA polymerase observed by light microscopy, Nature352, (1991).

[120] H. Yin, M. Wang, K. Svoboda, R. Landick, S. Block and J. Gelles:

Transcription against a applied force, Science 270, 1653 (1995).

[121] H. Yin, R. Landick and J. Gelles: Tethered particle motion method for studying transcript elongation by a single RNA polymerase molecule,Biophys.

J.67, 2468 (1994).

[122] P. Blanco, R. Brewer, M. Corzett, R. Balhorn, Y. Yeh, S. Kowal-czykowski and R. J. Baskin: Processive translocation and DNA unwinding by individual RecBCD enzyme molecules,Nature 409, 374 (2001).

[123] T. Strick, V. Croquette and D. Bensimon: Single molecule analysis of DNA uncoiling by a type II DNA topoisomerase,Nature 901 (2000).

[124] J. F. Allemand, D. Bensimon, R. Lavery and V. Croquette:

Stretched and overwound DNA forms a Pauling-like structure with exposed bases, Proc. Natl. Acad. Sci. USA 95, 14152 (1998).

[125] L. Pauling and R. Corey: Proc. Natl. Acad. Sci.39, 84 (1953).

[126] M. Radding: Recombination activities of RecA Protein, Cell 25, (1981).

[127] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J. D. Wat-son: Molecular Biology of the Cell, 3rd ed. (Garland, New York, 1994).

[128] P. C. and M. Takahashi: Geometry of the DNA strands within RecA nu-cleofilament: role in homolgous recombination, Quart. Rev. Biophys. 36, 429 (2004).

[129] S. Datta, M. Prabu, M. Vaze, N. Ganesh, N. Chandra, K. Mu-niyappa and M. Vijayan: Crystal structures of mycobacterium tuberculosis

RecA and its complex with ADP-AIF: implication for decreased ATPase

RecA and its complex with ADP-AIF: implication for decreased ATPase