• Keine Ergebnisse gefunden

The scenarios presented in this article explore a wide range of future air pollution trajectories, with 567

a regional to global long-term perspective. The scenarios systematically explore two key 568

uncertainties: the stringency of climate policy and the stringency of air pollution control. The 569

resulting range of emission trajectories is much wider than the original RCPs. This range – including 570

the description of underlying assumptions – makes the scenario set attractive for exploring the 571

impacts of air pollution control, in conjunction with climate policy. The purpose of developing this 572

wide set of scenarios was to respond to three limitations of currently available scenarios: limited 573

exploration of the full range of possible air pollution futures (as in the RCPs), the rather short-term, 574

from the perspective of climate discussion, and often only regional or sectoral focus of air pollution 575

projections. The newly developed scenarios have made progress in these areas.

576 577

The developed scenarios have some limitations, specifically with respect to potential impact of air 578

pollution policies on land use, including agricultural waste burning. In some regions open burning of 579

biomass contributes strongly to local pollution episodes and would be targeted by air pollution 580

policy; such scenarios were not explored here. These limitations could be addressed in future work.

581

Furthermore, for specific regions, more detailed scenarios exist that provide finer spatial resolution 582

and a much more specific representation of policies.

583 584

The implementation of climate mitigation policies is highly relevant for air pollution control, due to 585

important co-benefits between climate policy and reduction of air pollutant emissions. Especially 586

for some species (SO2 and NOX), climate policy may result in substantial co-benefits. This is for 587

instance illustrated by the fact that implementing stringent climate policies can reduce emissions of 588

these species further than even the most tight air pollution policies in place. The combination of air 589

pollution and climate policy could form an effective strategy for reducing emissions, especially in 590

Asian regions now characterized by very high emission levels.

591 592

After 2030, additional policies that go beyond current policies are necessary to avoid an increase in 593

air pollutant emissions. The implementation of a CLE scenario is expected to halt the growth and 594

stabilize global emissions towards 2030 for most of the species (NOX, BC, OC, CO, VOC) and generate 595

substantial decreases for SO2. At the regional level, developments are more diverse. The maximum 596

feasible reduction scenario would result in a more than 75% reduction in 2030 compared to the 2005 597

emissions of NOX, SO2 and CO. However, unless stricter controls after 2030 are enforced, emissions 598

might start to increase again, primarily for SO2 and NOX, due to increases in activity levels induced by 599

population and GDP growth. Alternatively, introduction of ambitious climate policies could help in 600

reversing these trends.

601 602

In the period after 2030, the simulations are based on the assumed relationship between economic 603

growth and emissions factors. There is substantial evidence that wealthier societies tend to 604

introduce more stringent air pollution control policies, at least for some pollutants (e.g. trends are 605

observed for SO2, but not for CO2). There is substantial debate on the question whether income can 606

be seen as a real driver of this process (or instead policy interventions) and whether the observations 607

for some income levels and species can be applied more universally. Here, we have used income to 608

derive possible trajectories for future emission factors. However, it is not implied that such emission 609

factor improvements will be implemented automatically; rather they need a well-designed and 610

targeted multi-pollutant policy.

611 612

In the context of climate policy, stringent air pollution control policies are most relevant by mid-613

century. Towards the end of the century air pollutant emissions strongly decrease given the shift 614

towards renewable energy and significant improvements in energy efficiency. Mid-century maximum 615

feasible reduction policies can have a considerable impact. To reach ambitious air pollution control 616

M AN US CR IP T

AC CE PT ED

targets during the century, strict air pollution control policies are required also in a world with 617

effective greenhouse gas mitigation policies in place. The most promising perspective to reach low air 618

pollutant levels would be combining important reductions of CO2 and other long-lived greenhouse 619

gases, with accelerated action on air pollutants.

620 621

Acknowledgements 622

This paper is written as a follow-up of the EU FP7 Project PEGASOS (Pan-European Gas-Aerosols-623

Climate Interaction Study - Atmospheric Chemistry and Climate Change Interactions, grant 624

agreement no: 265148). The results presented in this study are from the reports of the PEGASOS 625

project, which was led by PBL (PBL Netherlands Environmental Impact Assessment Agency) and 626

benefitted from the contribution of two institutes involved in the project: IIASA (International 627

Institute for Applied Systems Analysis) and JRC (Joint Research Centre), collaborating thus with the 628

GAINS and respectively EDGAR research teams. The GAINS team provided emission factors for six air 629

pollutants included in the CLE (activity and emissions data implying the implementation of existing 630

current legislation) and MFR (emissions and activity data implying besides the current legislation also 631

the use of most of the todays best available technologies) data sets for 2030 and the EDGAR group 632

provided the sectoral Implied Emission Factors from 1970-2008 for the 26 IMAGE regions that were 633

used for model calibration. Data availability via ECCAD (http://eccad.sedoo.fr) platform under the 634

scenario family PBL-PEGASOSv2.

635 636 637

M AN US CR IP T

KLIMONT, Z., NGUYEN, B., POSCH, M., RAFAJ, P., SANDLER, R., SCHÖPP, W., WAGNER, F. &

640

WINIWARTER, W. 2011. Cost-effective control of air quality and greenhouse gases in Europe:

641

Modeling and policy applications. Environmental Modelling and Software, 26, 1489-1501.

642

Recent trends and future scenarios. Annual Review of Environment and Resources.

647

BOLLEN, J. & BRINK, C. 2012. Air Pollution Policy in Europe: Quantifying the Interaction with 648

Greenhouse Gases and Climate Change Policies. CPB Discussion Paper. CPB Netherlands 649

Bureau for Economic Policy Analysis.

650

BOND, T. C., DOHERTY, S. J., FAHEY, D. W., FORSTER, P. M., BERNTSEN, T., DEANGELO, B. J., FLANNER, 651

M. G., GHAN, S., KÄRCHER, B., KOCH, D., KINNE, S., KONDO, Y., QUINN, P. K., SAROFIM, M. C., 652

SCHULTZ, M. G., SCHULZ, M., VENKATARAMAN, C., ZHANG, H., ZHANG, S., BELLOUIN, N., 653

GUTTIKUNDA, S. K., HOPKE, P. K., JACOBSON, M. Z., KAISER, J. W., KLIMONT, Z., LOHMANN, 654

U., SCHWARZ, J. P., SHINDELL, D., STORELVMO, T., WARREN, S. G. & ZENDER, C. S. 2013.

655

Bounding the role of black carbon in the climate system: A scientific assessment. Journal of 656

Geophysical Research: Atmospheres, 118, 5380-5552.

657

BOND, T. C., STREETS, D. G., YARBER, K. F., NELSON, S. M., WOO, J. H. & KLIMONT, Z. 2004. A 658

technology-based global inventory of black and organic carbon emissions from combustion.

659

Journal of Geophysical Research D: Atmospheres, 109.

660

BOUWMAN, L., KRAM, T. & KLEIN-GOLDEWIJK, K. 2006. Integrated modelling of global environmental 661

change. An overview of IMAGE 2.4, Bilthoven, Netherlands Environmental Assessment 662

Agency.

663

CHANG, Y.-F. & MCCARTY, J. G. 1996. Novel oxygen storage components for advanced catalysts for 664

emission control in natural gas fueled vehicles. Catalysis Today, 30, 163-170.

665

CHUWAH, C., VAN NOIJE, T., VAN VUUREN, D. P., HAZELEGER, W., STRUNK, A., DEETMAN, S., 666

BELTRAN, A. M. & VAN VLIET, J. 2013. Implications of alternative assumptions regarding 667

future air pollution control in scenarios similar to the Representative Concentration 668

Pathways. Atmospheric Environment, 79, 787-801.

669

COFALA, J., AMANN, M., KLIMONT, Z., KUPIAINEN, K. & HÖGLUND-ISAKSSON, L. 2007. Scenarios of 670

global anthropogenic emissions of air pollutants and methane until 2030. Atmospheric 671

Environment, 41, 8486-8499.

672

DENTENER, F., KINNE, S., BOND, T., BOUCHER, O., COFALA, J., GENEROSO, S., GINOUX, P., GONG, S., 673

HOELZEMANN, J. J., ITO, A., MARELLI, L., PENNER, J. E., PUTAUD, J. P., TEXTOR, C., SCHULZ, 674

M., VAN DER WERF, G. R. & WILSON, J. 2006. Emissions of primary aerosol and precursor 675

gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmospheric Chemistry 676

and Physics, 6, 4321-4344.

677

DORADO, M. P., BALLESTEROS, E., ARNAL, J. M., GOMEZ, J. & LOPEZ, F. J. 2003. Exhaust emissions 678

from a diesel engine fuelled with transesterified waste olive oil. Fuel, 82, 1311-1315.

679

EC-JRC/PBL 2011. Emission Database for Global Atmospheric Research (EDGAR), release version 4.2.

680

GRANIER, C., BESSAGNET, B., BOND, T., D'ANGIOLA, A., VAN DER GON, H. D., FROST, G. J., HEIL, A., 681

KAISER, J. W., KINNE, S., KLIMONT, Z., KLOSTER, S., LAMARQUE, J. F., LIOUSSE, C., MASUI, T., 682

regional scales during the 1980-2010 period. Climatic Change, 109, 163-190.

686

IPCC 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories.

687

M AN US CR IP T

AC CE PT ED

JACOB, D. J. & WINNER, D. A. 2009. Effect of climate change on air quality. Atmospheric Environment, 688

43, 51-63.

689

KLIMONT, Z., COFALA, J., XING, J., WEI, W., ZHANG, C., WANG, S., KEJUN, J., BHANDARI, P., MATHUR, 690

R., PUROHIT, P., RAFAJ, P., AMANN, M., CHAMBERS, A. & HAO, J. 2009. Projections of SO2, 691

KLEEFELD, J., PUROHIT, P., KUPIAINEN, K., WINIWARTER, W., AMANN, M., ZHAO, B., WANG, 695

S., BERTOK, I. & SANDER, R. in preparation. Global scenarios of air pollutants and methane:

696

AARDENNE, J., COOPER, O. R., KAINUMA, M., MAHOWALD, N., MCCONNELL, J. R., NAIK, V., 700

RIAHI, K. & VAN VUUREN, D. P. 2010. Historical (1850-2000) gridded anthropogenic and 701

biomass burning emissions of reactive gases and aerosols: Methodology and application.

702

Atmospheric Chemistry and Physics, 10, 7017-7039.

703

MCCOLLUM, D. L., KREY, V. & RIAHI, K. 2012. Beyond Rio: Sustainable energy scenarios for the 21st 704

century. . Natural Resources Forum, 36, 215-230.

705

MCCOLLUM, D. L., KREY, V., RIAHI, K., KOLP, P., GRUBLER, A., MAKOWSKI, M. & NAKICENOVIC, N.

706

2013. Climate policies can help resolve energy security and air pollution challenges. Climatic 707

NAKICENOVIC, N., RIAHI, K., SMITH, S. J., STOUFFER, R. J., THOMSON, A. M., WEYANT, J. P. &

711

WILBANKS, T. J. 2010. The next generation of scenarios for climate change research and 712

assessment. Nature, 463, 747-756.

713

OECD 2012. OECD Environmental Outlook to 2030. Paris: Organisation for Economic Co-operation 714

and Development.

715

RAFAJ, P., AMANN, M. & SIRI, J. G. 2014. Factorization of air pollutant emissions: Projections versus 716

observed trends in Europe. Science of the Total Environment, 494, 272-282.

717

RAFAJ, P., SCHÖPP, W., RUSS, P., HEYES, C. & AMANN, M. 2013. Co-benefits of post-2012 global 718

climate mitigation policies. Mitigation and Adaptation Strategies for Global Change, 18, 801-719

824.

720

RAO, S., KEPPO, I. & RIAHI, K. 2006. Importance of technological change and spillovers in long-term 721

climate policy. Energy Journal, 27, 123-139.

722

RAO, S., PACHAURI, S., DENTENER, F., KINNEY, P., KLIMONT, Z., RIAHI, K. & SCHOEPP, W. 2013. Better 723

air for better health: Forging synergies in policies for energy access, climate change and air 724

pollution. Global Environmental Change, 23, 1122-1130.

725

RIAHI, K., DENTENER, F., GIELEN, D., GRUBLER, A., JEWELL, J., KLIMONT, Z., KREY, V., MCCOLLUM, D., 726

PACHAURI, S., RAO, S., VAN RUIJVEN, B., VAN VUUREN, D. P. & WILSON, C. 2012. Chapter 17 - 727

Energy Pathways for Sustainable Development. Global Energy Assessment - Toward a 728

Sustainable Future. Cambridge University Press, Cambridge, UK and New York, NY, USA and 729

the International Institute for Applied Systems Analysis, Laxenburg, Austria.

730

ROGELJ, J., RAO, S., MCCOLLUM, D. L., PACHAURI, S., KLIMONT, Z., KREY, V. & RIAHI, K. 2014a. Air-731

pollution emission ranges consistent with the representative concentration pathways.

732

Nature Climate Change, 4, 446-450.

733

ROGELJ, J., SCHAEFFER, M., MEINSHAUSEN, M., SHINDELL, D. T., HARE, W., KLIMONT, Z., VELDERS, G.

734

J. M., AMANN, M. & SCHELLNHUBER, H. J. 2014b. Disentangling the effects of CO2 and short-735

lived climate forcer mitigation. Proceedings of the National Academy of Sciences of the 736

United States of America, 111, 16325-16330.

737

M AN US CR IP T

AC CE PT ED

SHARMA, S., GOEL, A., GUPTA, D., KUMAR, A., MISHRA, A., KUNDU, S., CHATANI, S. & KLIMONT, Z.

738

2015. Emission inventory of non-methane volatile organic compounds from anthropogenic 739

sources in India. Atmospheric Environment, 102, 209-219.

740

SHINDELL, D., KUYLENSTIERNA, J. C. I., VIGNATI, E., VAN DINGENEN, R., AMANN, M., KLIMONT, Z., 741

ANENBERG, S. C., MULLER, N., JANSSENS-MAENHOUT, G., RAES, F., SCHWARTZ, J., FALUVEGI, 742

G., POZZOLI, L., KUPIAINEN, K., HÖGLUND-ISAKSSON, L., EMBERSON, L., STREETS, D., 743

RAMANATHAN, V., HICKS, K., OANH, N. T. K., MILLY, G., WILLIAMS, M., DEMKINE, V. &

744

FOWLER, D. 2012. Simultaneously mitigating near-term climate change and improving 745

human health and food security. Science, 335, 183-189.

746

SMITH, S. J. & WIGLEY, T. M. L. 2006. Multi-gas forcing stabilization with minicam. Energy Journal, 27, 747

373-391.

748

STERN, D. I. 2003. The Environmental Kuznets Curve - http://www.ecoeco.org/pdf/stern.pdf).&#32.

749

International Society for Ecological Economics Internet Encyclopedia of Ecological Economics.

750

SYRI, S., AMANN, M., CAPROS, P., MANTZOS, L., COFALA, J. & KLIMONT, Z. 2001. Low-CO2 energy 751

pathways and regional air pollution in Europe. Energy Policy, 29, 871-884.

752

TASK FORCE ON HEMISPHERIC TRANSPORT OF AIR POLLUTION 2010. Hemispheric Transport of Air 753

Pollution 2010, Geneva, Switzerland, UN-ECE.

754

TAYLOR, K. E., STOUFFER, R. J. & MEEHL, G. A. 2012. An Overview of CMIP5 and the experiment 755

design. Bull. Amer. Meteor. Soc, 93, 485-498.

756

UNDESA 2011. World Population Prospects: The 2010 Revision, 757

http://esa.un.org/unpd/wpp/index.htm,. Population Division of the Department of Economic 758

and Social Affairs of the United Nations Secretariat, . 759

UNEP & WMO 2011. Integrated Assessment of Black Carbon and Tropospheric Ozone - Summary for 760

Decicion Makers. In: ULLSTEIN, B. (ed.). UNEP and WMO.

761

VAN RUIJVEN, B., DE VRIES, B., VAN VUUREN, D. P. & VAN DER SLUIJS, J. P. 2009. A global model for 762

residential energy use: Uncertainty in calibration to regional data. Energy, 35, 269-282.

763

VAN RUIJVEN, B., URBAN, F., BENDERS, R. M. J., MOLL, H. C., VAN DER SLUIJS, J. P., DE VRIES, B. &

764

VAN VUUREN, D. P. 2008. Modeling Energy and Development: An Evaluation of Models and 765

Concepts. World Development, 36, 2801-2821.

766

VAN VLIET, J., HOF, A. F., MENDOZA BELTRAN, A., VAN DEN BERG, M., DEETMAN, S., DEN ELZEN, M.

767

G. J., LUCAS, P. L. & VAN VUUREN, D. P. 2014. The impact of technology availability on the 768

timing and costs of emission reductions for achieving long-term climate targets. Climatic 769

Change, 123, 559-569.

770

VAN VUUREN, D. P., BOUWMAN, L. F., SMITH, S. J. & DENTENER, F. 2011a. Global projections for 771

anthropogenic reactive nitrogen emissions to the atmosphere: An assessment of scenarios in 772

the scientific literature. Current Opinion in Environmental Sustainability, 3, 359-369.

773

VAN VUUREN, D. P., COFALA, J., EERENS, H. E., OOSTENRIJK, R., HEYES, C., KLIMONT, Z., DEN ELZEN, 774

M. G. J. & AMANN, M. 2006. Exploring the ancillary benefits of the Kyoto Protocol for air 775

pollution in Europe. Energy Policy, 34, 444-460.

776

VAN VUUREN, D. P., EDMONDS, J., KAINUMA, M., RIAHI, K., THOMSON, A., HIBBARD, K., HURTT, G.

777

C., KRAM, T., KREY, V., LAMARQUE, J. F., MASUI, T., MEINSHAUSEN, M., NAKICENOVIC, N., 778

SMITH, S. J. & ROSE, S. K. 2011b. The representative concentration pathways: An overview.

779

Climatic Change, 109, 5-31.

780

VAN VUUREN, D. P., LUCAS, P. L. & HILDERINK, H. 2007. Downscaling drivers of global environmental 781

change: Enabling use of global SRES scenarios at the national and grid levels. Global 782

Environmental Change, 17, 114-130.

783

VAN VUUREN, D. P., MEINSHAUSEN, M., PLATTNER, G. K., JOOS, F., STRASSMANN, K. M., SMITH, S. J., 784

United States of America, 105, 15258-15262.

788

M AN US CR IP T

AC CE PT ED

VAN VUUREN, D. P., STEHFEST, E., DEN ELZEN, M. G. J., KRAM, T., VAN VLIET, J., DEETMAN, S., ISAAC, 789

M., GOLDEWIJK, K. K., HOF, A., BELTRAN, A. M., OOSTENRIJK, R. & VAN RUIJVEN, B. 2011c.

790

RCP2.6: Exploring the possibility to keep global mean temperature increase below 2°C.

791

Climatic Change, 109, 95-116.

792

WANG, S. X., ZHAO, B., CAI, S. Y., KLIMONT, Z., NIELSEN, C. P., MORIKAWA, T., WOO, J. H., KIM, Y., FU, 793

X., XU, J. Y., HAO, J. M. & HE, K. B. 2014. Emission trends and mitigation options for air 794

pollutants in East Asia. Atmospheric Chemistry and Physics, 14, 6571-6603.

795

WEI, W., WANG, S., CHATANI, S., KLIMONT, Z., COFALA, J. & HAO, J. 2008. Emission and speciation of 796

non-methane volatile organic compounds from anthropogenic sources in China. Atmospheric 797

Environment, 42, 4976-4988.

798 799 800

M AN US CR IP T

AC CE PT ED

The co-benefits of future climate and air pollution policies are assessed 1

A wide range of emission trajectories explores policy co-benefits 2

Climate mitigation policies are found highly relevant for air pollution control 3

Strengthened air pollution policies can offset growth in future air pollutants 4

Carbon-intensive Asian regions benefit from joint air pollutant and climate policy 5

6