• Keine Ergebnisse gefunden

I showed in this thesis the potential effects of trophic cascades, grazing disturbance and nutrient loading on the structuring processes (i.e. plant interactions) of submersed plant communities. Hence, it opens a large area of research in order to clarify the potential key-effects of plant interactions for driving plant communities in freshwater ecosystems and how they may be key drivers mediating ecosystem function and services (Smith 2003, Carpenter 2005), particularly under increased eutrophication which is considered as one of the most visible examples of changes to the biosphere (Smith 2003) and one of the most important threats to biodiversity (Thomas et al. 2004, Suding et al. 2005, Hillebrand et al. 2007).

The use of a short eutrophication gradient did not allow detecting any collapse in facilitation under eu-hypertrophic conditions (Chapter IV). Using gradients with higher resolution, i.e. several levels within a stress factor may confirm the occurrence of such a collapse as experimentally demonstrated along both abiotic and biotic gradients in terrestrial

Concluding remarks and future researches

(Kawai and Tokeshi 2007, Levenbach 2009) and freshwater ecosystems (Chapter III). I also illustrated in Chapter IV the opposite effect of indirect facilitation to direct competition among macrophyte to maintain diverse macrophyte communities with increased nutrient loading as reported by Hillebrand et al. (2007). Such a result illustrates the potential role of indirect facilitation for governing the thresholds of regime shifts. Disentangling these two opposite forces of indirect facilitation and competition may clarify how they interact to control submersed plant diversity an eutrophication gradient and how they drive the thresholds of alternative stable states.

The plant community literature mainly focuses on responses of plant interactions to environmental constraints by manipulating the beneficiary species. However, Brooker et al.

(2008) also stressed the importance to focus on neighbouring effects. Particularly, an interesting experiment would consist in the use of several macrophyte species with contrasting effects on nutrient uptakes as neighbour plants and growing alone or in mixture (increased diversity of neighbours). The increase in diversity may efficiently out-compete the phytoplankton and stabilize the system in a clear water state (Engelhardt and Richie 2001, 2002). As a result, indirect facilitation among macrophyte plants may increase with increased diversity of neighbouring plants.

Ultimately, I advocate for a deeper focus on the potential links between indirect facilitation, nutrient enrichments, grazing pressure and the thresholds of regime shifts. An experimental test of the effects of differences in the intensity of indirect facilitation on shifts in alternative states (see Fig 4, Chapter IV) should be an important step for future theoretical developments. Manipulating of intensity of both, indirect facilitation (see above) and fertilisation (in order to mimic eutrophication) may show when and where ecological thresholds of regime shifts will be surpassed. Finally, such an experiment may integrate other factors such as grazing disturbance in order to focus on how their interacting effects with

Zusammenfassung

Zusammenfassung

Untersuchungen zu Interaktionen zwischen Pflanzen sind fundamental wichtig für das Verständnis der Prozesse, die die Struktur und Funktion von Pflanzengemeinschaften und Ökosystemen steuern. Das Auftreten von positiven Interaktionen („Facilitation“) sowie der Einfluss, den die Antwort der Pflanzengemeinschaft auf Veränderungen in der Umwelt haben ist aus terrestrischen und marinen Ökosystemen bekannt, allerdings ist nur wenig darüber bekannt, wie sie submerse Pflanzengemeinschaften (Makrophyten) steuern. Aufgrund ihrer strukturierenden Funktion in Süßwasser-Ökosystemen (z.B. bei der Sedimentation, der Nährstoffdynamik oder der Stabilität von eutrophierten Ökosystemen) ist das Verständnis, wie positive Interaktionen diese Gemeinschaften beeinflussen von grundlegender Bedeutung.

In meiner Dissertation untersuchte ich als erstes im Rahmen eines Review-Artikels das Zusammenspiel von direkten und indirekten positiven Interaktionen entlang von Umwelt- und Grazing-Gradienten bzw. auf die Struktur und Stabilität von Pflanzengemeinschaften in vielen verschiedenen Ökosystemen. Im Folgenden untersuchte ich experimentell die Funktion von indirekten positiven Interaktionen als ein potentieller Mechanismus zur Regulierung von Makrophyten-Gemeinschaften in drei verschiedenen Zusammenhängen: Ich konzentrierte mich auf 1) den potentiellen indirekten positiven Effekt von Fischen auf Makrophyten durch Verminderung der Herbivoren (indirekte positive Interaktion über zwei trophische Ebenen), 2) die mögliche indirekte positive Interaktion zwischen Makrophyten bei steigendem Fraßdruck und 3) mit steigender Eutrophierung. Als Fischart, Herbivore und Makrophyten wählte ich für diese Untersuchungen dominante und weit verbreitete Arten.

Der Review-Artikel legt die Vermutung nahe, dass indirekte und direkte positive Interaktionen insgesamt ein Maximum in Umgebungen mit mittlerem Stress und Störungen verursachen, was unter diesen Umweltbedingungen zu einer sehr diversen

Pflanzengesellschaft führt. Ein Zusammenbruch der positiven Interaktionen in Gemeinschaften mit hohem Stress und vielen Störungen wiederum kann auf verminderte Schutzwirkung der Nachbarn zurückgeführt werden. Dies kann zu einer lokalen Abnahme der Biodiversität, zum Aussterben von Pflanzengemeinschaften und zu Veränderungen im Zustand des Ökosystems führen. Die experimentelle Herangehensweise wiederum hebt das Auftreten von indirekten positiven Effekten in Süßwasser-Ökosystemen, welche den Zustand von Makrophyten (Überleben und Biomasse) positiv beeinflussten, hervor. Die Anwesenheit von Arten mit positivem Einfluss (benefactors) wie Fischen (höhere trophische Ebene) oder Makrophyten (gleiche trophische Ebene) fängt direkte negative Interaktionen (z.B. Pflanzen-Herbivoren oder Pflanzen-Phytoplankton Interaktionen) auf.

Die Erhaltung des Überlebens- und Wachstums-Erfolgs der Pflanzen durch positive Effekte der Nachbarn zeigt die Bedeutung der indirekten positiven Interaktionen für aquatische Pflanzengemeinschaften und wie sie negative biotische (z.B. Fraßdruck) und abiotische Faktoren (z.B. erhöhte Eutrophierung) auffangen können. Darüber hinaus zeigte ich auch, dass der schützende Effekt durch die Nachbarpflanzen unter starken Fraßdruck abnehmen kann und durch den Zusammenbruch der indirekten positiven Interaktionen einen Erfolg der Pflanzen vermindern kann. Die Folgen eines solchen Kollapses sind von großer Bedeutung für die Reaktion der Pflanzengemeinschaften und Ökosysteme auf Umweltveränderungen.

Eine Abnahme des schützenden Effekts der Nachbarpflanzen könnte zu einem Zusammenbruch der gesamten Süßwasser-Vegetation führen, wie es aus anderen Ökosystemen bekannt ist. Demzufolge könnte dies in Süßwasser-Ökosystemen teilweise den Verlust der Klarwasser-Phase, d.h. den Wechsel zu einem trüben, von Phytoplankton dominierten Stadium, erklären.

Summary

Summary

The study of plant interactions is fundamental for understanding the processes involved in driving the structure and functioning of plant communities and ecosystems.

Although the occurrence of facilitation and how it mediates the response of plant communities to environmental change have been reported in terrestrial and marine ecosystems, few is known about its importance for driving submersed aquatic plant (macrophyte) communities.

However, because macrophytes have an important structuring role for freshwater ecosystems (e.g. on sedimentation, nutrient dynamic or stability of ecosystems under eutrophication), it is of primary importance to understand how facilitation may affect these communities. In my thesis, I first explored in a review the interacting role of direct and indirect facilitation occurring along environmental and grazing constraints respectively, on the structure and stability of plant communities in a wide range of ecosystems. Then, I experimentally addressed the role of indirect facilitation as a potential mechanism driving macrophyte communities within three different contexts: I focussed on 1) the potential indirect positive effects of fish on macrophyte plants by decreasing the abundance of herbivores (indirect facilitation across trophic levels), 2) the potential indirect facilitation among macrophytes with increased grazing pressure, and 3) with increased eutrophication. For these approaches, I chose dominant and widely distributed species of fish, herbivores and macrophyte plants.

The review paper suggests that both direct and indirect facilitation interact and produce a peak of facilitation in intermediately stressed and disturbed environments leading to highly diverse communities in these environments. However, a collapse of facilitation in highly stressed and / or disturbed communities occurs due to declined protecting effects of neighbours. This may lead to a local decrease in biodiversity, extinctions of plant communities and changes in ecosystem states. The experimental approaches underlined the

occurrence of indirect facilitation in freshwater ecosystems which positively affected the performances (i.e. both survival and biomass) of macrophytes. The presence of different kinds of neighbouring species (benefactors) such as fish (higher trophic level) or other macrophytes (the same trophic level) buffered direct negative interactions (i.e. herbivore or plant-phytoplankton interactions). The maintenance of plant performance due to protecting neighbouring effects demonstrates the importance of indirect facilitation for structuring aquatic plant communities and how it can buffer the negative effects of both biotic (i.e.

grazing) and abiotic factors (i.e. increased eutrophication). Furthermore, I also showed that the protecting effect of neighbouring plants can decrease under strong grazing pressure resulting in a collapse of indirect positive interactions and thus, a collapse of plant performance. The implications of such a collapse are highly relevant regarding the response of communities and ecosystem functioning to environmental change. A decline in protecting effects of neighbouring plants might contribute to a collapse of vegetation in freshwater ecosystems as reported in other ecosystems and hence may partially explain the loss of clear water states, i.e. the switch to a turbid phytoplankton-dominated state in freshwater ecosystems.

References

Abrams P.A., Menge B.A., Mittlebach G.G., Spiller D. and Yodzis P. 1996. The role of indirect effects in food webs. In: Food Webs: Dynamics and Structure, eds Polis, G. &

Winemiller, K. Chapman & Hall, New York, pp. 371–395.

Allen T.F. and Starr T.B. 1982. Hierarchy: perspectives for ecological complexity. University of Chicago Press, Chicago.

Allen J.M.R. and Wootton R.J. 1984. Temporal patterns in diet and rate of food consumption of the three-spined stickleback (Gasterosteus aculeatus L.) in Llyn Frongoch, an upland Welsh lake. Freshwater Biology, 14, 335-346.

Al-Mufti, M. M., C. L. Sydes, S. B. Furness, J. P. Grime, and S. R. Band. 1977. A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. Journal of Ecology 65: 759–791.

Angelstein, S., C. Wolfram, K. Rahn, U. Kiwel, S. Frimel, I. Merbach, and H. Schubert. 2009.

The influence of different sediment nutrient contents on growth and competition of Elodea nuttalli and Myriophyllum spicatum in nutrient-poor waters. Fundamental and Applied Limnology 175: 49-57.

Anthelme, F., R. Michalet, and M. Saadou. 2007. Positive associations involving the tussock grass Panicum turgidum Forssk. in the Aïr-Tenere Natural reserve, Niger. Journal of Arid Environment 68: 348–362.

Anthelme, F., and R. Michalet. 2009. Grass-to-tree facilitation in an arid grazed environment (Air Mountains, Sahara). Basic and Applied Ecology 10: 437-446.

Asner, G.P. Elmore, A.J., Olander L.P., Martin R.E., and Harris A.T. 2004. Grazing systems, ecosystem responses and global change. Annual Review of environment and Resources 29: 261-299.

Atsatt, P.R. and O’Dowd D.J. 1976. Plant defense guilds: many plants are functionally interdependent with respect to their herbivores. Science 193: 24-29.

Bakker, E. S., H. Olff, C. Vandenberghe, K. de Maeyer, C. Smit, J.M. Gleichman, F. W. M.

Vera. 2004. Ecological anachronisms in the recruitment of temperate light-demanding tree species in wooded pastures. Journal of Applied Ecology 41: 571–582.

Baraza, E., R. Zamora and J.A. Hodar. 2006. Conditional outcomes in plant-herbivore interactions: neighbours matter. Oikos 113: 148-156.

Barko, J. W., and R. M. Smart. 1986. Sediment-related mechanisms of growth limitation in submersed macrophytes. Ecology 67: 1328-1340.

Barrat-Segretain, M. H., and A. Elger. 2004. Experiments on growth interactions between two invasive macrophyte species. Journal of Vegetation Science 15: 109-114.

Batra S.W.T. 1977. Bionomics of the aquatic moth, Acentropus niveus (Olivier), a potential biological control agent for Eurasian Watermilfoil and Hydrilla. Journal of the New York Entomological Society, 85, 142-152.

Beck M.W., Heck K.L., Able K.W., Childers D.L., Eggleston D.B., Gillanders B.M., Halpern B., Hays C.G., Hoshino K., Minello T.J., Orth R.J., Sheridan P.F. & Weinstein M.P.

2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience, 51, 633-641.

Berg, K. 1942. Contributions to the biology of the aquatic moth Acentropus niveus (Oliv.).

Videnskabelige meddelser fra Dansk Naturhistoriska Forening, 105, 59-139.

Bertness, M. D., and R. M. Callaway. 1994. Positive interactions in communities. Trends in Ecology and Evolution 9: 191–193.

Bertness, M.D., Leonard, G.H., Levine, J.M., Schmidt, P.R. and Ingraham, A.O. 1999.

Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology 80: 2711-2726.

Bertness, M.D., and Ewanchuk, P.J. 2002. Latitudinal and climate-driven variation in the

References

Bertolo A., Lacroix G. and Lescher-Moutoue F. 1999. Scaling food chains in aquatic mesocosms: do the effects of depth override the effects of planktivory ? Oecologia, 121, 55-65.

Boulant, N., M. L. Navas, E. Corket, and J. Lepart. 2008. Habitat amelioration and associational defence as main facilitative mechanisms of pine seedling survival in Mediterranean grasslands grazed by domestic livestock. Ecoscience 115: 407-415.

Brönmark C. 1994. Effects of tench and perch on interactions in a freshwater, benthic food chain. Ecology, 75, 1818–1824.

Brönmark C. and Weisner S.E.B. 1992. Indirect effects of fish community structure on submerged vegetation in shallow, eutrophic lakes: an alternative mechanism.

Hydrobiologia, 243/244, 293–301.

Brooker, R. W., and T. V. Callaghan. 1998. The balance between positive and negative plant interactions and relationship to environmental gradients: a model. Oïkos 81: 196–201.

Brooker, R. W. 2006. Plant-plant interactions and environmental change. New Phytologist 171: 271-284.

Brooker, R. W., D. Scott, S. C. F. Palmer, and E. Swaine. 2006. Transient facilitative effects of heather on Scots pine along a grazing disturbance gradient in Scottish moorland.

Journal of Ecology 94: 637-645.

Brooker, R. W., F. T. Maestre, R. M. Callaway, C. L. Lortie, L. A. Cavieres, G. Kunstler, P.

Liancourt, K. Tielboerger, J. M. J. Travis, F. Anthelme, C. Armas, L. C. Coll, E. Corcket, S. Delzon, E. Forey, Z. Kikvidze, J. Olofsson, F. Pugnaire, C. L. Quiroz, P. Saccone, K.

Schiffers, M. Seifan, B. Touzard, and R. Michalet. 2008. Facilitation in plant communities: the past, the present and the future. Journal of Ecology 96: 18-24.

Brooker, R. W., and R. M. Callaway. 2009. Facilitation in a conceptual melting pot. Journal of Ecology 97: 1117-1120.

Bruno, J. F., J. J. Stachowicz, and M. D. Bertness. 2003. Inclusion of facilitation in to ecological theory. Trends in Ecology and Evolution 18: 119–125.

Butler A. J. and Jernakoff P. 2000. Seagrass in Australia: strategic review and development of an R & D plan. CSIRO Publishing, Collingwood.

Callaway, R. M. 1995. Positive interactions among plants. Botanical Review 61: 306-349.

Callaway, R. M., Z. Kikvidze, and D. Kikodze. 2000. Facilitation by unpalatable weeds may conserve plant diversity in overgrazed meadows in the Caucasus Mountains. Oikos 89:

275-282.

Callaway, R. M., R. W. Brooker, P. Choler, Z. Kikvidze, C. J. Lortie, R. Michalet, L. Paolini, F. I. Pugnaire, B. Newingham, E. T. Aschehoug, C. Armas, D. Kikodze, and B. J. Cook.

2002. Interdependence among alpine plants increases with stress: a global model. Nature 417: 844–848.

Callaway, R. M., D. Kikodze, M. Chiboschvili, and L. Ketsuriani. 2005. Unpalatable plants protect neighbors from grazing and increase plant community diversity. Ecology 86:

1856-1862.

Callaway, R. M. 2007. Positive Interactions and Interdependence in Plant Communities.

Springer, The Netherlands.

Carpenter S.R., Kitchell J.F. and Hodgson, J.R. 1985. Cascading trophic interactions and lake productivity. BioScience, 35, 634-639.

Carpenter, S.R. and Lodge D.M. 1986. Effects of submersed macrophytes on ecosystem processes. Aquatic Botany 26: 341-370.

Carpenter, S.R. and Kitchell J.F. 1993. The trophic cascade in lakes: synthesis of ecosystem experiments. Bulletin of the Ecological Society of America, 74, 186-187.

Carpenter, S. R. 2005. Eutrophication of aquatic ecosystems: Bistability and soil phosphorus.

References

Cavieres, L. A., M. T. K. Arroyo, A. Penaloza, M. A. Molina-Montenegro, and C. Torres.

2002. Nurse effect of Bolax gummifera cushion plants in the alpine vegetation of the Chilean Patagonian Andes. Journal of Vegetation Sciences 13: 547-554.

Cavieres, L. A., E. Badano, A. Sierra-Almeida, S. Gomez-Gonzalez, and M. A. Molina-Montenegro. 2006. Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile.

New Phytologist. 169: 59-69.

Chambers, P. A., J. W. Barko, and C. S. Smith. 1993. Evaluation of invasions and declines of submersed aquatic macrophytes. Journal of Aquatic Plant Management 31: 218-220.

Chapin, F.S., B.H. Walker, R.J. Hobbs, D.U. Hooper, J.H. Lawton, O.E. Sala and D. Tilman.

1997. Biotic control over the functioning of ecosystems. Science 277: 500-504.

Chapin, F.S., Zavaleta, E.S., Eviner, V.T., Naylor, R.L., Vitousek, P.M., Reynolds, H.L., Hooper, D.U., Lavorel, S., Sala, O.E., Hobbie, S.E, et al. 2000. Consequences of changing biodiversity. Nature 405: 234-242.

Choi C., Bareiss C., Walenciak O. and Gross E. 2002. Impact of polyphenols on growth of the aquatic herbivore Acentria ephemerella. Journal of Chemical Ecology, 28 (11): 2245-2256.

Choler, P., R. Michalet, and R. M. Callaway. 2001. Competition and facilitation on gradients in alpine communities. Ecology 82: 3295–3308.

Clements, F.E. 1916. Plant succession: an analysis of the development of vegetation.

Carnegie Institute of Washington, Washington.

Clements, F.E. 1928. Plant succession as indicators. Wilson, New York.

Clements, F.E. 1936. Nature and structure of the climax. Journal of Ecology 24: 252-284.

Coley, P.D, Bryant, J.P. and Chapin, F.S. 1985. Resource availability and plant antiherbivore defense. Science 230: 895-899.

Connell, J.H. (1978) Diversity in tropical rain forests and coral reefs. Science, 199, 1302–

1310.

Connell J.H. (1990). Apparent versus “real” competition in plants. In Perspective in plant competition. Ed J.B. Grace, & D. Tilman. Pp. 9-26. Academic Press, San Diego, California, USA.

Corcket, E., R. M. Callaway, and R. Michalet. 2003. Insect herbivory and grass competition in a calcareous grassland: results from a plant removal experiment. Acta Oecologica 24:

139–146.

Crain, C.M. 2008. Interactions between marsh plant species vary in direction and strength depending on environmental and consumer context. Journal of Ecology 96: 166-173.

Crawley M. J. 1997. Plant Ecology. 2nd ed. Blackwell Science, Oxford.

Crawley, M.J., A.E. Johnston, J. Silverton, M. Dodd, C. de Mazancourt, M.S. Heard, D.F.

Henman and G.R. Edwards. 2005. Determinants of species richness in the park grass experiment. American Naturalist 165: 179-192.

Cronin, G., and D. M. Lodge. 2003. Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytes. Oecologia 137: 32-41.

Cyr H. and Pace M.L. 1993. Magnitude and patterns of herbivory in aquatic and terrestrial ecosystems. Nature, 361: 148-150.

Day, T. 2000. Competition and the effect of spatial resource heterogeneity on evolutionary diversification. American Naturalist 155: 790-803.

Day, T. 2001. Population structure inhibits evolutionary diversification under competition for resources. Genetica 112-113: 71-86.

Diehl, S. and Kornijow, R. 1998. Influence of submerged macrophytes on trophic interactions

References

Macrophytes in Lakes (Ed. by E. Jeppesen, M. Söndergaard, M. Söndergaard & K.

Christoffersen), pp. 24-46. Berlin, Springer.

Dionne, M. and Folt, C.L. 1991. An experimental analysis of macrophyte growth forms as fish foraging habitat. Canadian Journal of Fisheries and Aquatic Sciences 48: 123-131.

Doebeli, M. and Dieckman, U. 2003. Speciation along environmental gradient. Nature 421:

259-264.

Duffy J.E. 2006. Biodiversity and the functioning of seagrass ecosystems. Marine Ecology Progress Series, 311: 233-250.

Dutoit, T. and D. Alard. 1995. Permanent seed banks in chalk grassland under various management regimes: their role in the restoration of species-rich plant communities.

Biodiversity and Conservation 4: 939-950.

Edwards, G. R., Newman, J. A., Parsons, A. J. et al. 1994. Effects of the scale and spatial distribution of the food resource and animal state on diet selection: an example with sheep. J. Anim. Ecol. 63: 816_/826.

Elton, C. 1927. Animal ecology. MacMillan, New York, New York, USA.

Elton, C. 1958. The ecology of invasion by animals and plants. Methuen and Cie, London.

Engelhardt, K. A. M., and M. E. Richie. 2002. The effect of aquatic plant species richness on wetland ecosystem processes. Ecology 83: 2911-2924.

Eskelinen, A. and Virtanen R. 2005. Local and regional processes in low-productive mountain plant communities: the role of seed and microsite limitation in relation to grazing. Oikos 110: 360-368.

Eskelinen, A. 2008. Herbivore and neighbour effects on tundra plants depend on species identity, nutrient availability and local environmental conditions. Journal of Ecology 96:

155-165.

Estes J.A., Tinker M.T., Williams T.M. & Doak D.F. 1998. Killer whale predation on sea

Etzenhouser, M. J., Owens, M. K., Spalinger, D. E. et al. 1998. Foraging behavior of browsing ruminants in a heterogeneous landscape. Landscape Ecol. 13: 55-64.

Falkowski, P. G.and J. A. Raven. 2007. Aquatic Photosynthesis, 2nd edn. PrincetonUniversity press, Princeton, N.J., USA.

Finke D.L. & Denno R.F. 2006. Spatial refuge from intraguild predation: implications for prey suppression and trophic cascades. Oecologia 149 (2): 265-275.

Gause, G.F. 1934. The struggle for existence. Haffner, New York.

Gerdol, R., L. Brancaleoni, M. Menghini and R. Marchesini. 2000. Response of dwarf shrubs to neighbour removal and nutrient addition and their influence on communtiy structure in a subalpine heath. Journal of Ecology 88: 256-266.

Gillanders B.M. 2006. Seagrasses, fish and fisheries. In: Seagrasses: Biology, Ecology and Conservation (Eds A. W. D. Larkum, R. J. Orth and C. M. Duarte), pp. 503-536.

Springer, Berlin.

Gleason, H.A. 1926. The individualistic concept of the plant association. Bulletin of the Torrey Botanic Club 53: 7-26.

Golberg, D.E. and A.M. Barton. 1992. Patterns and consequences of interspecific competition in natural communties: a review of field experiments with plants. American Naturalist 139: 771-801.

Goldberg, D. E., T. Rajaniemi, J. Gurevitch, and A. Stewart- Oaten. 1999. Empirical approaches to quantifying interaction intensity: competition and facilitation along productivity gradients. Ecology 80:1118–1131.

Goldberg, D.E., R. Turkington, L. Olsvig-Whittaker and A.R. Dyer. 2001. Density dependence in an annual plant community: variation among life history stages.

Ecological Monographs 71: 423-446.

References

Gomez-Aparicio, L., R. Zamora, J. Castro, and J. A. Hodart. 2008. Facilitation of tree saplings by nurse plants: Microhabitat amelioration or protection against herbivores?

Journal of Vegetation Sciences 19: 161-172.

Gopal, B., and U. Goel. 1993. Competition and allelopathy in aquatic plant communities.

Botanical Reviews 59: 155-210.

Graff, P., M. R. Aguiar, and E. Chaneton. 2007. Shifts in positive and negative plant interactions along a grazing intensity gradient. Ecology 88: 188-199.

Grime, J. P. 1973. Competitive exclusion in herbaceous vegetation. Nature 242: 344-347.

Grime, J. P. 1974. Vegetation classification by reference to strategies. Nature 250: 26-31.

Grime, J. P. 1979. Plant strategies and vegetation Processes. John Whiley and Sons., Chichester.

Gross E.M, Meyer H., and G. Schilling. 1996. Release and ecological impact of algicidal hydrolysable polyphenols in Myriophyllum spicatum. Phytochemistry 41:133–138.

Gross E.M., Johnson R.L. & Hairston N.G. 2001. Experimental evidence for changes in submersed macrophyte species composition caused by the herbivore Acentria ephemerella (Lepidoptera). Oecologia 127: 105-114.

Gross E., Feldbaum C. & Choi. C. 2002. High abundance of herbivorous Lepidoptera larvae (Acentria ephemerella Denis & Schiffermüller) on submerged macrophytes in Lake Constance (Germany). Archiv für Hydrobiologie 155 (1): 1-21.

Gross, N., G. Kunstler, P. Liancourt, F. de Bello, K. N. Suding, and S. Lavorel. 2009. Linking individual response to biotic interactions with community structure: a trait-based framework. Functional Ecology in press.

Gross, N., P. Liancourt, P. Choler, K. N. Suding, and S. Lavorel. 2009. Strain and vegetation effects on local limiting resources explain the outcomes of biotic interactions. Perspective in Plant Ecology, Evolution and Systematics. In press.

Grubb, P.J. 1977. The maintenance of species richness in plant communities: the importance of the regeneration niche. Biol Rev 52:107– 145

Hacker, S.D. and S. D. Gaines. 1997. Some implications of direct positive interactions for community species diversity. Ecology 78: 1990–2003.

Haenni J.P. 1980. Contribution a la connaissance de la biologie des papillons aquatiques (Lepidoptera, Pyraloidea) sur la rive sud du Lac de Neuchatel. Bulletin de la Société Neuchâteloise des Sciences Naturelles 103 : 29-43.

Hanley, M.E., Lamont, B.B., Fairbanks, M.M. and Rafferty, C.M. 2007. Plant structural traits

Hanley, M.E., Lamont, B.B., Fairbanks, M.M. and Rafferty, C.M. 2007. Plant structural traits