• Keine Ergebnisse gefunden

In this section a special notion of differentiability for linear mappings on a locally convex spaceVis introduced, which is motivated by the following result that is valid under the assumption of continuity.

A.4 Differentiable Linear Mappings 111

Proposition A.14. LetXbe a (real or complex) normed space,G⊆Xopen, and letV andWbe locally convex spaces over the same fieldK .

=RorK .

=Cwith topologies defined by the families

qλ:λ∈L and

q0µ: µM of seminorms separating the points ofVandW, respectively. If F :G→Vis differentiable at the pointx∈Gand Ψ:V→Wis a continuous linear mapping then the composition

Ψ◦F :G→W is differentiable atx, too, and its derivative is given by

D(Ψ◦F)(x) =Ψ◦DF(x). (A.22)

If F is differentiable on all ofGthe same holds true forΨ◦F and (A.22) is valid for anyx∈G.

Proof. By assumption on F (relations (A.1a) and (A.1b)) in connection with linearity ofΨ, the increment ofΨ◦F atxallows for the representation

(Ψ◦F)(x+h)−(Ψ◦F)(x) =Ψ◦DF(x)hR[F,x](h)

, (A.23)

where

h→0limkhk−1qλ R[F,x](h)

=0

for any seminorm qλ,λ∈L. But, due to continuity ofΨ, there exist to any seminorm q0µ onWa finite number of seminorms qλi onV, i=1,. . .,N, and a positive constant Cµsuch that for anyv∈V

q0µ Ψ(v)

6Cµ max

16i6Nqλi(v), and therefore

06khk−1q0µ Ψ R[F,x](h)

6Cµ max

16i6N

khk−1qλi R[F,x](h)

−−→h→0 0.

This is just the formulation of (A.1b) forΨ◦F and thus proves, according to (A.23), differentiability of this mapping atxtogether with (A.22). The remainder of the asser-tion is a trivial consequence.

The above results can easily be generalized toV-valued mappings on an analytic man-ifoldM.

Corollary A.15. LetMbe a (real or complex) analytic manifold of dimension d and letVandWbe locally convex spaces over the same field. If F :U→Vis differentiable at the point m0∈U,(U,φ)a local chart onM, andΨ:V→Wis a continuous linear mapping then

Ψ◦F :U→W is differentiable at m0, and its derivative is given by

Dφ(Ψ◦F)(m0) =Ψ◦DφF(m0). (A.24) Accordingly,Ψ◦F is differentiable on all ofMin case that F is.

112 Concepts of Differentiability

Proposition A.14motivates the following definition which does no longer depend on the assumption of continuity.

Definition A.16. (a) LetXbe a normed space andFa family of differentiable map-pings on Xwith values in a locally convex space V. A linear mappingΨ on V to the locally convex spaceWis calledF-differentiable if and only ifΨ◦F :X→Wis differentiable onXfor any F∈Fwith

D(Ψ◦F)(x) =Ψ◦DF(x), x∈X.

(b) LetMbe an analytic manifold and letV,WandΨbe as above. Assume further-more thatFis a family of differentiableV-valued mappings onM. ThenΨis called F-differentiable if and only ifΨ◦F :M→Wis differentiable onMfor any F∈Fand

Dφ(Ψ◦F)(m0) =Ψ◦DφF(m0) for any chart(U,φ)around the arbitrary element m0∈M.

Appendix B

A Lemma on Norm-Separable C -Algebras

The following result is an adaptation of [43, Lemma 14.1.17] to our needs.

Lemma B.1. LetAbe a unital C-subalgebra ofB(H), where the Hilbert spaceHis separable. There exists a norm-separable C-algebraA0, containing the unit element 1, that lies strongly dense inA.

Proof. Letφn n∈Nbe a dense sequence of non-zero vectors inHand letM .

=A00 de-note the von Neumann algebra generated byA. According to von Neumann’s Density Theorem,Mcoincides with the strong closureAof the algebraA, which by assump-tion acts non-degenerately onH(cf. [24, Section I.3.4], [11, Corollary 2.4.15]).

First we assume the existence of a separating vector forM, which is thus cyclic for M0[24, Section I.1.4]. Then any normal functional onMis of the formωψ,ψ0 Mwith ψ,ψ0∈H[54, Theorem V.3.15]. Choose operators Aj,k∈A1satisfying

ωφj,φk(Aj,k)>kωφj,φkMk −2−1, (B.1) which is possible due to Kaplansky’s Density Theorem [48, Theorem 2.3.3]. LetA0 denote the norm-separable C-algebra generated by the unit element 1 together with all the operators Aj,k, j,k∈N, and select a normal functional ωξ,θ on M with the properties kωξ,θ A0k=0 andkωξ,θMk>0. Without loss of generality we can assumekωξ,θMk=1. To anyε>0 there exist vectorsφjkfrom the dense sequence inHrenderingkφj−ξkandkφk−θksmall enough so that

k(ωξ,θ−ωφjk)Mk<ε. (B.2) Making use of (B.1) we then get the estimate

ε>k(ωξ,θ−ωφjk)Mk>k(ωξ,θ−ωφjk)(Aj,k)k

=kωφjk(Aj,k)k>kωφjk Mk −21, which in connection with (B.2) implies

ξ,θMk6k(ωξ,θ−ωφjk)Mk+kωφjkMk<2ε+2−1.

114 A Lemma on Norm-Separable C-Algebras

By arbitraryness ofε we inferkωξ,θMk62−1 in contradiction to the assumption that ωξ,θM be normalized. Thus, ωξ,θ A0=0 implies ωξ,θ M=0, i. e. any normal functional on M annihilating A0 annihilatesM as well. Now, since the C -algebraA0acts non-degenerately onH, von Neumann’s Density Theorem tells us that its strong and σ-weak closures coincide withA000=A0, and this in turn is equal to the von Neumann algebra M; for the existence of an element A∈M not contained inA0 would, by the Hahn-Banach-Theorem, imply aσ-weakly continuous (normal) functional that vanishes onA0but not on A∈M\A0 in contradiction to the above result.

Now suppose that there does not exist a separating vector for the von Neumann algebraM=A. Then the sequence

(nkφnk)−1φn

n∈N⊆H .

=

M

n=1

H is such a vector for the von Neumann algebra M .

= L

n=1ι

(M), where ι denotes the identity representation of M in H. The result of the preceding paragraph thus applies to the C-algebraA .

= L

n=1ι

(A)of operators on the separable Hilbert space Hwhich is weakly dense inM:A=M. We infer that there exists a norm-separable C-subalgebra A0 ofA including its unit 1 .

= (1)n∈N, which is strongly dense in A. Now, ι .

=L

n=1ι is a faithful representation ofA on H and its inverseι−1:A→A is a faithful representation of AonH which is continuous with respect to the strong topologies ofAandA. ThereforeA0 .

−1 A0

is a norm-separable C-subalgebra of A, containing the unit element 1 and lying strongly dense inA.

Bibliography

[1] ALFSEN, E. M. Compact Convex Sets and Boundary Integrals. Springer-Verlag, Berlin, Heidelberg, New York, 1971.

[2] ARAKI, H. Einführung in die Axiomatische Quantenfeldtheorie I. Vorlesung, Eidgenössische Technische Hochschule, Zürich, Wintersemester 1961/62. Aus-gearbeitet von K. Hepp und F. Riahi.

[3] ARAKI, H., AND HAAG, R. Collision cross sections in terms of local observ-ables. Commun. Math. Phys. 4 (1967), 77–91.

[4] ARVESON, W. An Invitation to C-Algebras. Springer-Verlag, New York, Heidel-berg, Berlin, 1976.

[5] ASIMOW, L.,ANDELLIS, A. J. Convexity Theory and its Applications in Func-tional Analysis. Academic Press, Inc., London, New York, 1980.

[6] BARUT, A. O., AND RACZKA˛ , R. Theory of Group Representations and Ap-plications, 2nd rev. ed. Pa´nstwowe Wydawnictwo Naukowe–Polish Scientific Publishers, Warszawa, 1980.

[7] BAUMGÄRTEL, H.,ANDWOLLENBERG, M. Causal Nets of Operator Algebras.

Akademie-Verlag, Berlin, 1992.

[8] BISHOP, E., AND DE LEEUW, K. The representation of linear functionals by measures on sets of extreme points. Ann. Inst. Fourier (Grenoble) 9 (1959), 305–

331.

[9] BORCHERS, H.-J. Translation group and spectrum condition. Commun. Math.

Phys. 96 (1984), 1–13.

[10] BORCHERS, H.-J., AND BUCHHOLZ, D. The energy-momentum spectrum in local field theories with broken Lorentz-symmetry. Commun. Math. Phys. 97 (1985), 169–185.

[11] BRATTELI, O., ANDROBINSON, D. W. Operator Algebras and Quantum Stat-istical Mechanics 1, 2nd ed. Springer-Verlag, New York, Berlin, Heidelberg, 1987.

[12] BRATTELI, O., ANDROBINSON, D. W. Operator Algebras and Quantum Stat-istical Mechanics 2, 2nd ed. Springer-Verlag, Berlin, Heidelberg, New York, 1997.

116 BIBLIOGRAPHY

[13] BUCHHOLZ, D. Gauss’ law and the infraparticle problem. Phys. Lett. B 174 (1986), 331–334.

[14] BUCHHOLZ, D. On particles, infraparticles, and the problem of asymptotic com-pleteness. In VIIIth International Congress on Mathematical Physics (Marseille, 1986), M. Mebkhout and R. Sénéor, Eds., World Scientific, pp. 381–389.

[15] BUCHHOLZ, D. Harmonic analysis of local operators. Commun. Math. Phys. 129 (1990), 631–641.

[16] BUCHHOLZ, D., D’ANTONI, C.,AND LONGO, R. Nuclear maps and modular structures II: Applications to quantum field theory. Commun. Math. Phys. 129 (1990), 115–138.

[17] BUCHHOLZ, D.,ANDPORRMANN, M. To be published.

[18] BUCHHOLZ, D.,ANDPORRMANN, M. How small is the phase space in quantum field theory? Ann. Inst. Henri Poincaré - Physique théorique 52 (1990), 237–257.

[19] BUCHHOLZ, D., PORRMANN, M., AND STEIN, U. Dirac versus Wigner: To-wards a universal particle concept in local quantum field theory. Phys. Lett. B 267 (1991), 377–381.

[20] BUCHHOLZ, D.,ANDWICHMANN, E. H. Causal independence and the energy-level density of states in local quantum field theory. Commun. Math. Phys. 106 (1986), 321–344.

[21] CHOQUET, G. Existence et unicité des représentations intégrales au moyen des points extrémaux dans les cônes convexes. Séminaire BOURBAKI 9 (December 1956), 139–01–139–15.

[22] COURANT, R., ANDJOHN, F. Introduction to Calculus and Analysis – Volume II. John Wiley & Sons, New York, London, Sydney, Toronto, 1974.

[23] DIRAC, P. A. M. The Principles of Quantum Mechanics, 4th ed. At The Claren-don Press, Oxford, 1958.

[24] DIXMIER, J. Von Neumann Algebras. North-Holland Publishing Co., Amster-dam, New York, Oxford, 1981.

[25] DIXMIER, J. C-Algebras, rev. ed. North-Holland Publishing Co., Amsterdam, New York, Oxford, 1982.

[26] FELL, J. M. G., AND DORAN, R. S. Representations of -Algebras, Locally Compact Groups, and Banach-Algebraic Bundles – Volume 1. Academic Press, Inc., San Diego, London, 1988.

[27] FREDENHAGEN, K.,ANDFREUND, J. Work in progress.

[28] FREDENHAGEN, K., AND HERTEL, J. Zwei Sätze über Kompaktheit. Unpub-lished manuscript, 1979.

BIBLIOGRAPHY 117

[29] FRÖHLICH, J., MORCHIO, G.,ANDSTROCCHI, F. Charged sectors and scatter-ing states in quantum electrodynamics. Ann. Phys. 119 (1979), 241–284.

[30] GRÜNING, A. Ladungssektoren positiver Energie im Hochenergielimes des Schwingermodells. Master’s thesis, Universität Göttingen, 1999.

[31] HAAG, R. Local relativistic quantum physics. Physica 124A (1984), 357–364.

[32] HAAG, R. Local Quantum Physics, 2nd rev. and enl. ed. Springer-Verlag, Berlin, Heidelberg, New York, 1996.

[33] HAAG, R.,AND KASTLER, D. An algebraic approach to quantum field theory.

J. Math. Phys. 5 (1964), 848–861.

[34] HAAG, R., AND SWIECA, J. A. When does a quantum field theory describe particles? Commun. Math. Phys. 1 (1965), 308–320.

[35] HALMOS, P. R. Measure Theory, 12th ed. D. Van Nostrand Company, Inc., Princeton, New Jersey, Toronto, Melbourne, London, 1968.

[36] HELGASON, S. Groups and Geometric Analysis. Academic Press, Inc., Orlando, London, 1984.

[37] HEUSER, H. Lehrbuch der Analysis – Teil 2, 8th ed. B. G. Teubner, Stuttgart, 1993.

[38] HEWITT, E.,ANDROSS, K. A. Abstract Harmonic Analysis II. Springer-Verlag, Berlin, Heidelberg, New York, 1970.

[39] HEWITT, E., AND STROMBERG, K. Real and Abstract Analysis, 2nd ed.

Springer-Verlag, Berlin, Heidelberg, New York, 1969.

[40] JANTSCHER, L. Distributionen. Walter de Gruyter, Berlin, New York, 1971.

[41] JARCHOW, H. Locally Convex Spaces. B. G. Teubner, Stuttgart, 1981.

[42] KADISON, R. V., ANDRINGROSE, J. R. Fundamentals of the Theory of Oper-ator Algebras – Volume I. Academic Press, Inc., New York, London, 1983.

[43] KADISON, R. V., ANDRINGROSE, J. R. Fundamentals of the Theory of Oper-ator Algebras – Volume II. Academic Press, Inc., Orlando, London, 1986.

[44] KÖTHE, G. Topological Vector Spaces I, 2nd rev. ed. Springer-Verlag, Berlin, Heidelberg, New York, 1983.

[45] NACHBIN, L. The Haar Integral. D. Van Nostrand Company, Inc., Princeton, New Jersey, Toronto, New York, London, 1965.

[46] NUSSBAUM, A. E. Reduction theory for unbounded closed operators in Hilbert space. Duke Math. J. 31 (1964), 33–44.

[47] PEDERSEN, G. K. Measure theory for C algebras. Math. Scand. 19 (1966), 131–145.

118 BIBLIOGRAPHY

[48] PEDERSEN, G. K. C-Algebras and their Automorphism Groups. Academic Press, Inc., London, New York, San Francisco, 1979.

[49] PERESSINI, A. L. Ordered Topological Vector Spaces. Harper & Row Publishers, New York, Evanston, London, 1967.

[50] PHELPS, R. R. Lectures on Choquet’s Theorem. American Book, Van Nostrand, Reinhold, New York, Toronto, London, Melbourne, 1966.

[51] REEH, H., AND SCHLIEDER, S. Bemerkungen zur Unitäräquivalenz von Lo-rentzinvarianten Feldern. Nuovo Cimento 22 (1961), 1051–1068.

[52] SCHMÜDGEN, K. Unbounded Operator Algebras and Representation Theory.

Birkhäuser Verlag, Basel, Boston, Berlin, 1990.

[53] SCHROER, B. Infrateilchen in der Quantenfeldtheorie. Fortschr. Phys. 11 (1963), 1–32.

[54] TAKESAKI, M. Theory of Operator Algebras I. Springer-Verlag, New York, Heidelberg, Berlin, 1979.

[55] VARADARAJAN, V. S. Lie Groups, Lie Algebras, and Their Representations, 1st Springer ed. Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1984.

[56] WEIDMANN, J. Lineare Operatoren in Hilberträumen. B. G. Teubner, Stuttgart, 1976.

[57] WIGNER, E. P. On unitary representations of the inhomogeneous Lorentz group.

Ann. of Math. 40 (1939), 149–204.

Acknowledgements

My sincere gratitude is due to Prof. Dr. Detlev Buchholz for his support and forbear-ance. I not only learned a lot from his views on theoretical physics and its relationship to mathematics, but his ideas also constituted the basis on which I could erect my con-tributions to the topic presented in this thesis.

I should furthermore like to thank Prof. Dr. Klaus Fredenhagen for his immediate read-iness to write the additional report on this work.

Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged which I obtained from the Graduiertenkolleg at the II. Institut für Theoretische Physik of the University of Hamburg.

I want to thank AnnA for all her support and encouragement, and for unrepiningly sharing the burden of my strain in the final stages of this project.

Eventually, I want to express my deepest gratitude to my parents for their patience and confidence. I am afraid that I shall be unable to pass back even only part of what they have done for me.

120

German translation of the quotation on page53

D

IODOROS

: Griechische Weltgeschichte IV, 59 (5)

(nach der Übersetzung von Otto Veh)

Theseus beseitigte auch bei Eleusis den Kerkyon, der die Passanten zum Ringkampf veranlaßte und den, der unterlag, umbrachte. Sodann tötete er auch den Prokrustes, wie er hieß, der am sogenannten Korydallos in Attika hauste. Der nötigte die vor-überziehenden Wanderer, sich auf ein Bett niederzulegen und war einer zu lang, dann schlug er ihm die herausragenden Körperteile ab; denen aber, die kleiner waren, zog er die Füße in die Länge, weshalb er den Namen Prokrustes erhielt.

Lebenslauf

Name Martin Porrmann

Geburtsdatum 25. Januar 1962

Geburtsort Wolfenbüttel, Niedersachsen

28. August 1968–19. Juli 1972 Besuch der Wilhelm-Raabe-Schule in Wolfenbüttel 31. August 1972–20. Mai 1981 Besuch des Theodor-Heuss-Gymnasiums in

Wolfen-büttel

20. Mai 1981 Abitur

WiSe 1981/82–WiSe 1983/84 Grundstudium der Physik und Philosophie an der Frei-en Universität Berlin

9. Februar 1984 Vorprüfung zur Diplomprüfung in Physik

SoSe 1984–WiSe 1988/89 Hauptstudium der Physik an der Universität Hamburg 23. Januar 1989 Diplom-Physiker, Titel der Diplomarbeit: ‘Ein verschärftes

Nuklea-ritätskriterium in der lokalen Quantenfeldtheorie’

ab SoSe 1989 Arbeit an der hier vorgelegten Dissertation

1. Oktober 1989–30. September 1992 Wissenschaftlicher Mitarbeiter an der Univer-sität Hamburg

ab SoSe 1997 Fortsetzung der Arbeit an der Georg-August-Universität zu Göttingen 1. April 1997–30. April 1998 Wissenschaftlicher Mitarbeiter an der Universität

Göt-tingen