• Keine Ergebnisse gefunden

Dietzia sp. strain 2 with the intermediates of cholate degradation in strain Chol1

7.3 E NRICHMENT EXPERIMENTS

7.3.5 Dietzia sp. strain 2

7.3.5.2 Dietzia sp. strain 2 with the intermediates of cholate degradation in strain Chol1

We analyzed the capability of Dietzia sp. strain 2 to degrade DHOCTO, DHOPDC, DHADD and THSATD as well as its ability to degrade cholate both in the presence of these compounds.

Dietzia sp. strain 2 could neither grow with nor degrade the above-mentioned compounds.

In the presence of DHOCTO, Dietzia sp. strain 2 could not use cholate, which might be due to either DHOCTO is being toxic or DHOCTO blocking the uptake of cholate into the cells.

Discussion

Pseudomonassp. strain Chol1 Dietziasp. strain 2

OH

OH

S-CoA O

Figure 7-4: Biochemical pathways of cholate degradation in Pseudomonas sp. strain Chol1 and Dietzia sp. strain 2, drawn in red and blue colors, respectively. The activities of 3-hydroxy steroid dehydrogenase (3-Hsd), and 3-keto steroid dehydrogenase (3-Ksdh) could not be detected in Dietzia sp. strain 2. Cholyl-CoA ligase could be detected in Dietzia sp. strain 2. DHOPDC and DHADD are potentially interfering with the biochemical pathway of cholate degradation in Dietzia sp. strain 2 and lead to the accumulation of compound X and related compounds in the culture supernatant of Dietzia sp. strain 2. Pathways are based on metabolites detected in culture supernatants during growth with cholate. CoA-esters of the respective compounds are not shown for simplicity except for cholyl-CoA in Dietzia sp. strain 2.

Discussion

131

Figure 7-5: Potential structure analogues of compounds X1 and X2 accumulated in the culture supernatant of Dietzia sp. strain 2. (a) 3,12-dioxo-23,24-dinorchola-4,6-dienoic acid (Mukherjee et al., 1993), (b) 4,6-androstadiene-3,17-dione (Zalewski and Dunn, 1970), (c) 1,4,6-androstatriene-3,17-dione, (d) Equilin (Deghengh et al., 1967), (e) Equilenin (Zderic et al., 1958), (f) 12β-hydroxy-1,4,6-androstatriene-3,17-dione, (g) 12α-hydroxy-3-oxo-4,6-choladien-24-oic-acid, (h) 3,12-dioxo-4,6-choladien-24-oic acid (Hayakawa, 1982). λmax of the respective are indicated. a and f were dissolved in methanol while b dissolved in water.

Discussion

132

In M. tuberculosis strain H37Rv, the mce4 locus, a part of mce (mammalian cell entry) operon was identified in involving the uptake of cholesterol (Senaratne et al., 2008; Van der Geize et al., 2007). The mce4 locus was also identified in Rhodococcus jostii strain RHA1, responsible for uptake of cholesterol. However, the growth of the mutant (∆mce4) of R. jostii was not affected with cholate, suggested that mce4 might not be involved in transporting cholate into the cell (Mohn et al., 2008). So far, no cholate specific transporters and the compound blocking the transport of cholate into the cells are known.

The growth of Dietzia sp. strain 2 ceased with cholate in the presence of DHOPDC. Further, we saw the accumulation of an array of compounds similar to compound X in the culture supernatant (Fig. 6-32b). All of these compounds were showing a similar UV-absorption spectrum to compound X and eluted at different time points (Fig. 6-32b and c), suggesting that their core part responsible for absorbing light might be similar, while they may differ in length of their side chain. The existing differences in length of their side chain caused them to elute at different time points. Such steroids having an oxidized A- and B-rings differing from each other by the length of the acyl side chain have earlier been reported in A. simplex (Mukherjee et al., 1993) and S. rubescens (Hayakawa, 1982). In Dietzia sp. strain 2, there is a possibility for the A/-and B-rings to be broken before the activation/or oxidation of the acyl side chain during cholate degradation. If this is the case in Dietzia sp. strain 2, steroid compounds without the acyl side chain (e.g. DHADD and THSATD) could neither be a substrate for growth nor transform into some other compounds.

Dietzia sp. strain 2 could not grow with cholate in the presence of DHOPDC which might be due to DHOPDC is blocking either the enzyme responsible for converting compound X into further products of degradation or blocking the transport of compound X into the cells.

In some instances, while in the presence of DHADD, Dietzia sp. strain 2 could not degrade cholate and accumulated compounds X1 and X2 in the culture supernatant. In this situation, the growth of Dietzia sp. strain 2 ceased. In other instances, Dietzia sp. strain 2 could degrade cholate in the presence of DHADD, and transiently accumulating compounds X1 and X2 in the culture supernatant, which were degraded later.

Discussion

133

In this situation, the growth of Dietzia sp. strain 2 did not cease. Altogether, these results suggest that DHADD could also potentially interfere with the biochemical pathway of Dietzia sp.

strain 2.

Concerning the growth of Dietzia sp. strain 2 with THSATD, there was a slight increase in OD600

in the growth experiment, which was due to the presence of ∆1/∆4-monoene of 3-ketocholate in the medium along with THSATD. We have shown that Dietzia sp. strain 2 is accumulating

1/∆4-monoene of 3-ketocholate and ∆1,4-3-ketocholate in the culture supernatant during growth with cholate.

By analyzing the culture supernatant of these experiments, we found that Dietzia sp. strain 2 did not grow with THSATD, because the concentration of THSATD remained at the end of the growth experiment while ∆1,4-3-ketocholate was completely utilized by Dietzia sp. strain 2 (Fig. 6-36a).

In the presence of THSATD, Dietzia sp. strain 2 is able to grow with cholate and degraded it completely. Compounds X1 and X2 were transiently accumulating in the culture supernatant.

Apparently, THSATD is not toxic to Dietzia sp. strain 2 and it has no influence on cholate degradation of Dietzia sp. strain 2.

It is confirmed that Dietzia sp. strain 2 is not releasing DHADD and THSATD in the culture supernatant and it could not degrade these compounds. Dietzia sp. strain 2 is transiently releasing two unknown compounds during cholate degradation, which are to be further analyzed structurally. It is possible that DHADD and DHOPDC are potentially interfering with the biochemical pathway of cholate degradation in Dietzia sp. strain 2.

The activity of cholyl-CoA ligase was determined in the cell extracts of Dietzia sp. strain 2, and further oxidation of cholyl-CoA is yielding a new compound, which did not co-elute with 3-ketocholyl-CoA despite the fact that its UV-spectrum was similar to 3-ketocholyl-CoA.

However, we could not detect the activity of cholate oxidizing enzymes in the cell extracts of Dietzia sp. strain 2, but we did monitor the formation of an unknown product (D:P9; Fig. 6-27a), produced by the action of an enzyme involved in oxidizing CoA-activated cholate.

Discussion

134

Although enzymes oxidizing cholate are prevalent in many actinobacteria, such as Streptomyces lividans (Choi et al., 1995), Nocardia opaca (Drobnic et al., 1993), Nocardia corallina (Hatta et al., 1991) and Rhodococcus rhodochrous (Morii et al., 1998). These enzyme(s) could not be detected in Dietzia sp. strain 2.

It might be that oxidation of cholate is only possible if it is first activated with CoA and this CoA activation might be a prerequisite essential reaction for cholate oxidation in Dietzia sp. strain 2.

All these results strongly suggest that Dietzia sp. strain 2 is degrading cholate completely through a novel degradation pathway, which has so far not been proved in any other steroid-degrading bacteria. Few other genera of actinobacteria, Arthrobacter sp. (Dutta et al., 1992), Mycobacterium sp. (Hu et al., 2010), Nocardia sp. (Strijewski, 1982) and Rhodococcus sp. (Yam et al., 2011) are using the 9,10-seco pathway for degrading steroids. Nevertheless, Dietzia sp.

strain 2 is not using the 9,10-seco pathway for cholate degradation. The pathway for degrading cholate in Dietzia sp. strain 2 might be diverged after the formation of 1,4-3-ketocholate in comparing to the pathway of cholate degradation strain Chol1.

Taken all together, we were successful in isolating different strains of bacteria capable of degrading cholate. We were able to show that the abundance of bacteria capable for degrading cholate in the littoral sediment of Lake Constance. Among the cultivable bacteria present in the littoral zone of Lake Constance, approximately more than 1 % of bacteria are being capable of degrading cholate. The capability of bacteria degrading cholate is prevalent in the bacterial communities living in the littoral zone of Lake Constance. These strains of bacteria, which were investigated, all belong to different phylogenetic groups and approximately, they did not show any unity in their biochemical pathways for degrading cholate. Dietzia sp. strain 2 degrades cholate via an unexplored pathway and investigating the biochemistry, physiology and genetics of Dietzia sp. strain 2 will provide more insights of steroid degradation.

---The end

---Appendix

135

8 A

PPEN DIX

Blast analysis of 16S rDNA sequence of strain 1

Zoogloea caeni strain EMB 43 16S ribosomal RNA gene, partial sequence Length=1460 Score = 2364 bits (1280)

Query 1 ATCGGAACGTACCCAGTCGTGGGGGATAACGTAGCGAAAGTTACGCTAATACCGCATACG 60 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 91 ATCGGAACGTACCCAGTCGTGGGGGATAACGTAGCGAAAGTTACGCTAATACCGCATACG 150 Query 61 TCCTGAGGGAGAAAGCGGGGGACCGTAAGGCCTCGCGCGATTGGAGCGGCCGATGTCGGA 120 |||||||||||||||||||||||||||||||| |||||||||||||||||||||||||||

Sbjct 151 TCCTGAGGGAGAAAGCGGGGGACCGTAAGGCCCCGCGCGATTGGAGCGGCCGATGTCGGA 210 Query 121 TTAGCTAGTTGGTAGGGTAAAGGCCTACCAAGGCGACGATCCGTAGCGGGTCTGAGAGGA 180 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 211 TTAGCTAGTTGGTAGGGTAAAGGCCTACCAAGGCGACGATCCGTAGCGGGTCTGAGAGGA 270 Query 181 TGATCCGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGA 240 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 271 TGATCCGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGA 330 Query 241 ATTTTGGACAATGGGCGAAAGCCTGATCCAGCCATGCCGCGTGAGTGAAGAAGGCCTTCG 300 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 331 ATTTTGGACAATGGGCGAAAGCCTGATCCAGCCATGCCGCGTGAGTGAAGAAGGCCTTCG 390 Query 301 GGTTGTAAAGCTCTTTCAGCCGGAAAGAAATCGCGCAGGATAATACTCTGCGTGGATGAC 360 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 391 GGTTGTAAAGCTCTTTCAGCCGGAAAGAAATCGCGCAGGATAATACTCTGCGTGGATGAC 450 Query 361 GGTACCGGAAGAAGAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGT 420 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 451 GGTACCGGAAGAAGAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGT 510 Query 421 GCGAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCGGTTATGTAAGACAGAT 480 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 511 GCGAGCGTTAATCGGAATTACTGGGCGTAAAGCGTGCGCAGGCGGTTATGTAAGACAGAT 570 Query 481 GTGAAATCCCCGGGCTCAACCTGGGAACTGCGTTTGTGACTGCATAACTAGAGTACGGCA 540 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 571 GTGAAATCCCCGGGCTCAACCTGGGAACTGCGTTTGTGACTGCATAACTAGAGTACGGCA 630 Query 541 GAGGGAGGTGGAATTCCGCGTGTAGCAGTGAAATGCGTAGATATGCGGAGGAACACCGAT 600 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 631 GAGGGAGGTGGAATTCCGCGTGTAGCAGTGAAATGCGTAGATATGCGGAGGAACACCGAT 690 Query 601 GGCGAAGGCAGCCTCCTGGGCCAGTACTGACGCTCATGCACGAAAGCGTGGGGAGCAAAC 660 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 691 GGCGAAGGCAGCCTCCTGGGCCAGTACTGACGCTCATGCACGAAAGCGTGGGGAGCAAAC 750 Query 661 AGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTCAACTAGTTGTTCGGTGAGGA 720 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 751 AGGATTAGATACCCTGGTAGTCCACGCCCTAAACGATGTCAACTAGTTGTTCGGTGAGGA 810

Continued on next page

Appendix

136 Query 721 GACTCATTGAGTAACGCAGCTAACGCGTGAAGTTGACCGCCTGGGGAGTACGGCCGCAAG 780

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 811 GACTCATTGAGTAACGCAGCTAACGCGTGAAGTTGACCGCCTGGGGAGTACGGCCGCAAG 870 Query 781 GTTAAAACTCAAAGGAATTGACGGGGACCCGCACAAGCGGTGGATGATGTGGATTAATTC 840 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 871 GTTAAAACTCAAAGGAATTGACGGGGACCCGCACAAGCGGTGGATGATGTGGATTAATTC 930 Query 841 GATGCAACGCGAAAAACCTTACCTACCCTTGACATGCCAGGAACTTGCCAGAGATGGCTT 900 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 931 GATGCAACGCGAAAAACCTTACCTACCCTTGACATGCCAGGAACTTGCCAGAGATGGCTT 990 Query 901 GGTGCTCGAAAGAGAGCCTGGACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGA 960 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 991 GGTGCTCGAAAGAGAGCCTGGACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGA 1050 Query 961 GATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCGTTAATTGCCATCATTAAGTT 1020 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 1051 GATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTTGTCGTTAATTGCCATCATTAAGTT 1110 Query 1021 GGGCACTTTAGCGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCC 1080 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 1111 GGGCACTTTAGCGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCAAGTCC 1170 Query 1081 TCATGGCCCTTATGGGTAGGGCTTCACACGTCATACAATGGTCGGTACAGAGGGTTGCCA 1140 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 1171 TCATGGCCCTTATGGGTAGGGCTTCACACGTCATACAATGGTCGGTACAGAGGGTTGCCA 1230 Query 1141 AGCCGCGAGGTGGAGCCAATCCCAGAAAGCCGATCGTAGTCCGGATTGGAGTCTGCAACT 1200 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 1231 AGCCGCGAGGTGGAGCCAATCCCAGAAAGCCGATCGTAGTCCGGATTGGAGTCTGCAACT 1290 Query 1201 CGACTCCATGAAGTCGGAATCGCTAGTAATCGCAGATCAGCATGCTGCGGTGAATACGTT 1260 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 1291 CGACTCCATGAAGTCGGAATCGCTAGTAATCGCAGATCAGCATGCTGCGGTGAATACGTT 1350 Query 1261 CCCGGGTCTTGTACACACCGCCC 1283

|||||||||||||||||||||||

Sbjct 1351 CCCGGGTCTTGTACACACCGCCC 1373

Table 8-1: BLAST analysis of partial 16S rDNA of strain 1 No of nucleotides used for analysis: 1283

Differences in the query nucleotides are highlighted red in color

Appendix

137 Blast names color map

bacteria b-proteobacteria unknown unclassified

Table 8-2: Distance tree map of strain 1

Appendix

138

BLAST analysis of 16S rDNA sequences of strain 2

Dietzia natronolimnaea strain W5044 16S ribosomal RNA gene, partial sequence Length=1439 Score = 2481 bits (1343)

Query 6 ATGC-AGTCG-ACGGT-AGGCCCTTTCGGGGGTACACGAGTGGCGAACGGGTGAGTAACA 62 |||| ||||| ||||| |||||||||||||||||||||||||||||||||||||||||||

Sbjct 28 ATGCAAGTCGAACGGTAAGGCCCTTTCGGGGGTACACGAGTGGCGAACGGGTGAGTAACA 87 Query 63 CCTGGGTAATCTGCCCTGCACTTCGGGATAAGCCTGGGAAACCGGGTCTAATACCGGATA 122 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 88 CGTGGGTAATCTGCCCTGCACTTCGGGATAAGCCTGGGAAACCGGGTCTAATACCGGATA 147

Query 123 TGAGCTCCTGCCGCATGGTGGGGGTTGGAAAGTTTTTCGGTGCAGGATGAGTCCGCGGCC 182 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 148 TGAGCTCCTGCCGCATGGTGGGGGTTGGAAAGTTTTTCGGTGCAGGATGAGTCCGCGGCC 207 Query 183 TATCAGCTTGTTGGTGGGGTAATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAG 242 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 208 TATCAGCTTGTTGGTGGGGTAATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAG 267 Query 243 GGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGG 302 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 268 GGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGG 327 Query 303 GAATATTGCACAATGGGCGAAAGCCTGATGCAGCGACGCCGCGTGGGGGATGACGGTCTT 362 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 328 GAATATTGCACAATGGGCGAAAGCCTGATGCAGCGACGCCGCGTGGGGGATGACGGTCTT 387 Query 363 CGGATTGTAAACTCCTTTCAGTAGGGACGAAGCGAAAGTGACGGTACCTGCAGAAGAAGC 422 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 388 CGGATTGTAAACTCCTTTCAGTAGGGACGAAGCGAAAGTGACGGTACCTGCAGAAGAAGC 447 Query 423 ACCGGCCAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTGTCCGGAAT 482 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 448 ACCGGCCAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTGTCCGGAAT 507 Query 483 TACTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCACGTCGTCTGTGAAATCCTCCAGCTCA 542 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 508 TACTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCACGTCGTCTGTGAAATCCTCCAGCTCA 567 Query 543 ACTGGGGGCGTGCAGGCGATACGGGCAGACTTGAGTACTACAGGGGAGACTGGAATTCCT 602 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 568 ACTGGGGGCGTGCAGGCGATACGGGCAGACTTGAGTACTACAGGGGAGACTGGAATTCCT 627 Query 603 GGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGGTCTCTG 662 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 628 GGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGGTCTCTG 687 Query 663 GGTAGTAACTGACGCTGAGGAGCGAAAGCATGGGGAGCAAACAGGATTAGATACCCTGGT 722 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 688 GGTAGTAACTGACGCTGAGGAGCGAAAGCATGGGGAGCAAACAGGATTAGATACCCTGGT 747 Query 723 AGTCCATGCCGTAAACGGTGGGCGCTAGGTGTGGGGTCCTTCCACGGATTCCGTGCCGTA 782 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 748 AGTCCATGCCGTAAACGGTGGGCGCTAGGTGTGGGGTCCTTCCACGGATTCCGTGCCGTA 807

Continued on next page

Appendix

139 Query 783 GCTAACGCATTAAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAAT 842

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 808 GCTAACGCATTAAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAAT 867 Query 843 TGACGGGGGCCCGCACAAGCGGCGGAGCATGTGGATTAATTCGATGCAACGCGAAGAACC 902 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 868 TGACGGGGGCCCGCACAAGCGGCGGAGCATGTGGATTAATTCGATGCAACGCGAAGAACC 927 Query 903 TTACCTAGGCTTGACATATACAGGACGACGGCAGAGATGTCGTTTCCCTTGTGGCTTGTA 962 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 928 TTACCTAGGCTTGACATATACAGGACGACGGCAGAGATGTCGTTTCCCTTGTGGCTTGTA 987 Query 963 TACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAA 1022 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 988 TACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAA 1047 Query 1023 CGAGCGCAACCCCTGTCTCATGTTGCCAGCACGTTATGGTGGGGACTCGTGAGAGACTGC 1082 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 1048 CGAGCGCAACCCCTGTCTCATGTTGCCAGCACGTTATGGTGGGGACTCGTGAGAGACTGC 1107 Query 1083 CGGGGTCAACTCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGTCTAGG 1142 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 1108 CGGGGTCAACTCGGAGGAAGGTGGGGATGACGTCAAATCATCATGCCCCTTATGTCTAGG 1167 Query 1143 GCTTCACACATGCTACAATGGCTAGTACAGAGGGCTGCGAGACCGCGAGGTGGAGCGAAT 1202 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 1168 GCTTCACACATGCTACAATGGCTAGTACAGAGGGCTGCGAGACCGCGAGGTGGAGCGAAT 1227 Query 1203 CCCTTAAAGCTAGTCTCAGTTCGGATTGGGGTCTGCAACTCGACCCCATGAAGTCGGAGT 1262 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 1228 CCCTTAAAGCTAGTCTCAGTTCGGATTGGGGTCTGCAACTCGACCCCATGAAGTCGGAGT 1287 Query 1263 CGCTAGTAATCGCAGATCAGCATTGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACC 1322 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 1288 CGCTAGTAATCGCAGATCAGCATTGCTGCGGTGAATACGTTCCCGGGCCTTGTACACACC 1347 Query 1323 GCCCGGCGCGTCATGAAAGTCGGTAACACCCGAAGCCGGTG-CCTA 1367

||||| | ||||||||||||||||||||||||||||||||| ||||

Sbjct 1348 GCCCGTCACGTCATGAAAGTCGGTAACACCCGAAGCCGGTGGCCTA 1393

Table 8-3: BLAST analysis of partial 16S rDNA of strain 2 No. of nucleotides used for analysis: 1367

Differences in the query nucleotides are highlighted red in color

Appendix

140

Table 8-4: Distance tree map of strain 2

Blast names color map bacteria

b-proteobacteria unknown unclassified

Appendix

141

BLAST analysis of 16S rDNA sequences of strain 9

Pseudomonas putida strain c84 16S ribosomal RNA gene, partial sequence Length=1443 Score = 2333 bits (1263), Identities = 1346/1383 (98%)

Query 11 AACATGC-AGTCGAGCGGATGACGGGAGCTTGCTCCTTGATTCAGCGGCGGACGGGTGAG 69 ||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 18 AACATGCGAGTCGAGCGGATGACGGGAGCTTGCTCCTTGATTCAGCGGCGGACGGGTGAG 77 Query 70 TAATACCTAGGAATCTGCCTGATAGTGGGGGACAACGTTTCGAAAGGAACGCTAATACCG 129 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 78 TAATACCTAGGAATCTGCCTGATAGTGGGGGACAACGTTTCGAAAGGAACGCTAATACCG 137 Query 130 CATACGTCCTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCGCTATCAGATGAGCCTAG 189 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 138 CATACGTCCTACGGGAGAAAGCAGGGGACCTTCGGGCCTTGCGCTATCAGATGAGCCTAG 197 Query 190 GTCGGATTAGCTAGTTGGTGAGGTAATGGCTCACCAAGGCGACGATCCGTAACTGGTCTG 249 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 198 GTCGGATTAGCTAGTTGGTGAGGTAATGGCTCACCAAGGCGACGATCCGTAACTGGTCTG 257 Query 250 AGAGGATGATCAGTCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAG 309 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 258 AGAGGATGATCAGTCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAG 317 Query 310 TGGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGG 369 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 318 TGGGGAATATTGGACAATGGGCGAAAGCCTGATCCAGCCATGCCGCGTGTGTGAAGAAGG 377 Query 370 TCTTCGGATTGTAAAGCACTTTAAGTTGGGAGGAAGGGCAGTAAGCTAATACCTTGCTGT 429 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 378 TCTTCGGATTGTAAAGCACTTTAAGTTGGGAGGAAGGGCAGTAAGCTAATACCTTGCTGT 437 Query 430 TTTGACGTTACCGACAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACA 489 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 438 TTTGACGTTACCGACAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACA 497 Query 490 GAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTCGTTAAG 549 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 498 GAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCGCGTAGGTGGTTCGTTAAG 557 Query 550 TTGAATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCCAAAACTGGCGAGCTAGAGT 609 ||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 558 TTGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCCAAAACTGGCGAGCTAGAGT 617 Query 610 AGGGCAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGGAAGGAAC 669 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 618 AGGGCAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGATATAGGAAGGAAC 677 Query 670 ACCAGTGGCGAAGGCGACCACCTGGGCTCATACTGACACTGAGGTGCGAAAGCGTGGGGA 729 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 678 ACCAGTGGCGAAGGCGACCACCTGGGCTCATACTGACACTGAGGTGCGAAAGCGTGGGGA 737

Continued on next page

Appendix

142 Query 730 GCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCAACTAGCCGTTGGA 789

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 738 GCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCAACTAGCCGTTGGA 797 Query 790 ATCCTTGAGATTTTAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTGGGGAGTACGGCC 849 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 798 ATCCTTGAGATTTTAGTGGCGCAGCTAACGCATTAAGTTGACCGCCTGGGGAGTACGGCC 857 Query 850 GCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTT 909 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 858 GCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTT 917 Query 910 AATTCGAAGCAACGCGAAGAACCTTACCAGGCCTTGACATCCAATGAACTTTCCAGAGAT 969 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 918 AATTCGAAGCAACGCGAAGAACCTTACCAGGCCTTGACATCCAATGAACTTTCCAGAGAT 977 Query 970 GGATTGGTGCCTTCGGGAACATTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCG 1029 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 978 GGATTGGTGCCTTCGGGAACATTGAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCG 1037 Query 1030 TGAGATGTTGGGTTAAGTCCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCAGCACGTT 1089 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 1038 TGAGATGTTGGGTTAAGTCCCGTAACGAGCGCAACCCTTGTCCTTAGTTACCAGCACGTT 1097 Query 1090 ATGGTGGGCACTCTAAGGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCA 1149 ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Sbjct 1098 ATGGTGGGCACTCTAAGGAGACTGCCGGTGACAAACCGGAGGAAGGTGGGGATGACGTCA 1157 Query 1150 AGTCATCATGGCCCTTACGGCCTGGGCTACCCACGTGCTACAATGGTCCGGTACAAAGGG 1209 |||||||||||||||||||||||||||||| ||||||||||||||||| |||||| ||||

Sbjct 1158 AGTCATCATGGCCCTTACGGCCTGGGCTACACACGTGCTACAATGGTC-GGTACAGAGGG 1216 Query 1210 TTGCCAAGCCGCGAGGTGGAACTAATCTCAAAAAACCGATCGGATTCCGGAACCGCATTC 1269 |||||||||||||||||||| ||||||||| ||||||||||| | |||||| | ||| ||

Sbjct 1217 TTGCCAAGCCGCGAGGTGGAGCTAATCTCACAAAACCGATCGTAGTCCGGATC-GCAGTC 1275 Query 1270 TGCAACTCGAATGGCTTGATGTCGGAATCCCTAATAATCCCGAAATCCAAAATTGCTC-C 1328 |||||||||| || | ||| ||||||||| ||| ||||| |||| || | ||| | || | Sbjct 1276 TGCAACTCGACTG-CGTGAAGTCGGAATCGCTAGTAATCGCGAA-TC-AGAAT-G-TCGC 1330 Query 1329 GGTGAATAACTTTCCCGGAGCCTTTGTA-ACCCGCGCCCGTCACCACT-TGGGGAATGGG 1386 |||||||| | ||||||| ||||| ||| || | |||||||||| || |||| | ||||

Sbjct 1331 GGTGAATA-CGTTCCCGG-GCCTT-GTACACAC-CGCCCGTCAC-ACCATGGG-AGTGGG 1384 Query 1387 TTG 1389

|||

Sbjct 1385 TTG 1387

Table 8-5: BLAST analysis of partial 16S rDNA of strain 9 No. of nucleotides used for analysis: 1389

Differences in the query nucleotides are highlighted red in color

Appendix

143

Table 8-6: Distance tree map of strain 9

Blast names color map

bacteria b-proteobacteria unknown unclassified

Appendix

144

8.1 NAME O F CO M PO UN DS AND T H E IR RE S PE CT IVE PE AK S; IDE NT I FIE D AND DE RIVE D FRO M DIFFE RE NT B ACT E RIAL S T RAINS DE SCRIB E D IN T H IS T H ES IS

Pseudomonas sp. strain Chol1 Zoogloea sp. strain 1 Dietzia sp. strain 2 Pseudomonas sp. strain 9 Name of

peaks Name of compounds Name of

peaks Name of compounds Name of

peaks Name of compounds Name of

peaks Name of compounds

C:P1 DHOPDC Z:P1 DHOPDC D:P1 New compound P:P1 New compound

C:P2 1/∆4 monoene of

DHOPDC Z:P2 1/∆4 monoene of

DHOPDC D:P2 New compound P:P2 New compound

C:P3 DHADD Z:P3a DHADD D:P3 New compound P:P a DHOPDC

C:P4 1,4-3-ketocholate Z:P4b 1,4-3-ketocholate D:P4c 1,4-3-ketocholate P:P4b 1/∆4 monoene of DHOPDC C:P5 1/∆4 monoene of

3-ketocholate Z:P5b 1/∆4 monoene of

3-ketocholate D:P5b 1/∆4 monoene of

3-ketocholate P:P5b 1/∆4 monoene of 3-ketocholate

C:P6 THSATD Z:P6 a THSATD D:P6 Compound X1 P:P6 New compound

C:P7 1,4-3-ketocholyl-CoA D:P7 Compound X2

C:P8 1/∆4 monoene of

3-ketocholyl-CoA D:P9 New compound

C:P9 3-ketocholyl-CoA D:P10a Cholyl-CoA

C:P10 Cholyl-CoA

‡ Standards compounds

a Compounds confirmed by co-elution and UV-spectral analysis

b Compounds confirmed by co-elution and UV-spectra analysis, but their UV-spectra are not shown c Compounds confirmed by co-elution, UV-spectra and LC/MS analysis

References

145

9 R

EFER ENC ES

1) Amann, R.I., Ludwig, W., and Schleifer, K.H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 143-169.

2) Amin, P.M., and Ganapati, S.V. (1967). Occurrence of Zoogloea colonies and protozoans at different stages of sewage purification. Appl Microbiol 15, 17-21.

3) Aries, V., and Hill, M.J. (1970). Degradation of steroids by intestinal bacteria. II. Enzymes catalysing the oxidoreduction of the 3 alpha-, 7 alpha- and 12 alpha-hydroxyl groups in cholic acid, and the dehydroxylation of the 7-hydroxyl group. Biochim Biophys Acta 202, 535-543.

4) Barel-Cohen, K., Shore, L.S., Shemesh, M., Wenzel, A., Mueller, J., and Kronfeld-Schor, N. (2006).

Monitoring of natural and synthetic hormones in a polluted river. J Environ Manage 78, 16-23.

5) Bemer-Melchior, P., Haloun, A., Riegel, P., and Drugeon, H.B. (1999). Bacteremia due to Dietzia maris in an immunocompromised patient. Clin Infect Dis 29, 1338-1340.

6) Birkenmaier, A., Holert, J., Erdbrink, H., Moeller, H.M., Friemel, A., Schoenenberger, R., Suter, M.J., Klebensberger, J., and Philipp, B. (2007). Biochemical and genetic investigation of initial reactions in aerobic degradation of the bile acid cholate in Pseudomonas sp. strain Chol1.

J Bacteriol 189, 7165-7173.

7) Birkenmaier, A., Moller, H.M., and Philipp, B. (2011). Identification of a thiolase gene essential for beta-oxidation of the acyl side chain of the steroid compound cholate in Pseudomonas sp. strain Chol1.

FEMS Microbiol Lett 318, 123-130

8) Bode, H.B., Zeggel, B., Silakowski, B., Wenzel, S.C., Reichenbach, H., and Muller, R. (2003). Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol Microbiol 47, 471-481.

9) Bortolini, O., Medici, A., and Poli, S. (1997). Biotransformations on steroid nucleus of bile acids. Steroids 62, 564-577.

10) Brock, M., and Buckel, W. (2004). On the mechanism of action of the antifungal agent propionate. Eur J Biochem 271, 3227-3241.

11) Brune, A., and Schink, B. (1990). A complete citric acid cycle in assimilatory metabolism of Pelobacter acidigallici, a strictly anaerobic, fermenting bacterium. Archives of Microbiology 154, 394-399.

12) Bussmann, I., Philipp, B., and Schink, B. (2001). Factors influencing the cultivability of lake water bacteria. J Microbiol Methods 47, 41-50.

13) Casey, F.X.M., Larsen, G.L., Hakk, H., and Simunek, J. (2003). Fate and transport of 17 beta-estradiol in soil-water systems. Environmental Science & Technology 37, 2400-2409.

14) Casey, F.X., Hakk, H., Simunek, J., and Larsen, G.L. (2004). Fate and transport of testosterone in agricultural soils. Environ Sci Technol 38, 790-798.

15) Casey, F.X., Simunek, J., Lee, J., Larsen, G.L., and Hakk, H. (2005). Sorption, mobility, and transformation of estrogenic hormones in natural soil. J Environ Qual 34, 1372-1379.

16) Choi, K.P., Molnar, I., Yamashita, M., and Murooka, Y. (1995). Purification and characterization of the 3-Ketosteroid-Delta(1)-dehydrogenase of Arthrobacter simplex produced in Streptomyces lividans.

J Biochem 117, 1043-1049.

17) Coleman, H.M., Routledge, E.J., Sumpter, J.P., Eggins, B.R., and Byrne, J.A. (2004). Rapid loss of estrogenicity of steroid estrogens by UV-A photolysis and photocatalysis over an immobilised titanium dioxide catalyst. Water Res 38, 3233-3240.

18) Deghengh.R, Rakhit, S., Singh, K., Vezina, C., and Sih, C.J. (1967). A Microbiological Synthesis of Equilin from 19-Hydroxycholesta-4,7-Dien-3-One. Steroids 10, 313-316.

References

146

19) Drobnic, K., Krizaj, I., Gubensek, F., and Komel, R. (1993). Improved purification of steroid 1-2 dehydrogenase from Nocardia opaca and partial characterization of its cloned gene sequence.

Biochem Bioph Res Comm 190, 509-515.

20) Drzyzga, O., Navarro Llorens, J.M., Fernandez de Las Heras, L., Garcia Fernandez, E., and Perera, J.

(2009). Gordonia cholesterolivorans sp. nov., a cholesterol-degrading actinomycete isolated from sewage sludge. Int J Syst Evol Microbiol 59, 1011-1015.

21) Duckworth, A.W., Grant, S., Grant, W.D., Jones, B.E., and Meijer, D. (1998). Dietzia natronolimnaios sp.

nov., a new member of the genus Dietzia isolated from an east African soda lake. Extremophiles 2, 359-366.

22) Dutta, R.K., Roy, M.K., and Singh, H.D. (1992). Role of plasmid pJL1 of Arthrobacter oxydans 317 in the degradation of β-sitosterol. J Basic Microbiol 32, 317-324

23) Fahrbach, M., Kuever, J., Meinke, R., Kampfer, P., and Hollender, J. (2006). Denitratisoma oestradiolicum gen. nov., sp. nov., a 17 beta-oestradiol-degrading, denitrifying betaproteobacterium. Int J Syst Evol Microbiol 56, 1547-1552.

24) Fahrbach, M., Kuever, J., Remesch, M., Huber, B.E., Kampfer, P., Dott, W., and Hollender, J. (2008).

Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormone-degrading gammaproteobacterium. Int J Syst Evol Microbiol 58, 2215-2223.

25) Fahrbach, M., Krauss, M., Preiss, A., Kohler, H.P.E., and Hollendera, J. (2010). Anaerobic testosterone degradation in Steroidobacter denitrificans - Identification of transformation products.

Environmental Pollution 158, 2572-2581.

26) Farrah, S.R., and Unz, R.F. (1976). Isolation of exocellular polymer from Zoogloea strains MP6 and 106 and from activated sludge. Appl Environ Microbiol 32, 33-37.

27) Fernandez de Las Heras, L., Garcia Fernandez, E., Maria Navarro Llorens, J., Perera, J., and Drzyzga, O.

(2009). Morphological, physiological, and molecular characterization of a newly isolated steroid-degrading actinomycete, identified as Rhodococcus ruber strain Chol-4. Curr Microbiol 59, 548-553.

28) Ferrari, B.C., Winsley, T., Gillings, M., Binnerup, S. (2008). Cultivating previously uncultured soil bacteria using a soil substrate membrane system. Nature protocol 3, 1261-1269.

29) Fleck, C.B., and Brock, M. (2008). Characterization of an acyl-CoA: carboxylate CoA-transferase from Aspergillus nidulans involved in propionyl-CoA detoxification. Molecular Microbiology 68, 642-656.

30) Gadd, J.B., Tremblay, L.A., and Northcott, G.L. (2010). Steroid estrogens, conjugated estrogens and estrogenic activity in farm dairy shed effluents. Environ Pollut 158, 730-736.

31) Giachetti, E., Pinzauti, G., and Vanni, P. (1984). A new continuous optical assay for isocitrate lyase.

Experientia 40, 227-228.

32) Goddard, P., and Hill, M.J. (1972). Degradation of steroids by intestinal bacteria. IV. The aromatization of ring A. Biochim Biophys Acta 280, 336-342.

33) Gomes, R.L., Scrimshaw, M.D., and Lester, J.N. (2009). Fate of conjugated natural and synthetic steroid estrogens in crude sewage and activated sludge batch studies. Environ Sci Technol 43, 3612-3618.

34) Gould, T.A., de Langemheen, H.V., Munoz-Elias, E.J., McKinney, J.D., and Sacchettini, J.C. (2006). Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis.

Molecular Microbiology 61, 940-947.

35) Groh, H., Schade, K., and Horhold-Schubert, C. (1993). Steroid metabolism with intestinal microorganisms. J Basic Microbiol 33, 59-72.

36) Gunn, J.S. (2000). Mechanisms of bacterial resistance and response to bile. Microbes Infect 2, 907-913.

37) Hanselman, T.A., Graetz, D.A., and Wilkie, A.C. (2003). Manure-borne estrogens as potential environmental contaminants: a review. Environ Sci Technol 37, 5471-5478.

38) Hatta, T., Wakabayashi, T., and Itagaki, E. (1991). 3-keto-5 alpha-steroid-delta 4-dehydrogenase from Nocardia corallina: purification and characterization. J Biochem 109, 581-586.

References

147

39) Hayakawa, S., Takata, T., Fujiwara, T., and Hashimoto, S. (1977). Microbiological degradation of bile acids. The preparation of hexahydroindane derivatives as substrates for studying cholic acid degradation. Biochem J 164, 709-714.

40) Hayakawa, S. (1982). Microbial transformation of bile acids. A unified scheme for bile acid degradation, and hydroxylation of bile acids. Z Allg Mikrobiol 22, 309-326.

41) Hill, M.J. (1975). The role of colon anaerobes in the metabolism of bile acids and steroids, and its relation to colon cancer. Cancer 36, 2387-2400.

42) Hӧfle, M.G., and Brettar, I. (1996). Genotyping of heterotrophic bacteria from the central Baltic sea by use of low-molecular-weight RNA profiles. Appl Environ Microb 62, 1383-1390.

43) Hofmann, A.F., and Eckmann, L. (2006). How bile acids confer gut mucosal protection against bacteria.

P Natl Acad Sci USA 103, 4333-4334.

44) Horinouchi, M., Yamamoto, T., Taguchi, K., Arai, H., and Kudo, T. (2001). Meta-cleavage enzyme gene tesB is necessary for testosterone degradation in Comamonas testosteroni TA441. Microbiology 147, 3367-3375.

45) Horinouchi, M., Hayashi, T., Koshino, H., Yamamoto, T., and Kudo, T. (2003a). Gene encoding the hydrolase for the product of the meta-cleavage reaction in testosterone degradation by Comamonas testosteroni. Appl Environ Microbiol 69, 2139-2152.

46) Horinouchi, M., Hayashi, T., Yamamoto, T., and Kudo, T. (2003b). A new bacterial steroid degradation gene cluster in Comamonas testosteroni TA441 which consists of aromatic-compound degradation genes for seco-steroids and 3-ketosteroid dehydrogenase genes. Appl Environ Microbiol 69, 4421-4430.

47) Horinouchi, M., Hayashi, T., and Kudo, T. (2004). The genes encoding the hydroxylase of 3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione in steroid degradation in Comamonas testosteroni TA441. J Steroid Biochem Mol Biol 92, 143-154.

48) Horinouchi, M., Hayashi, T., Koshino, H., and Kudo, T. (2006). ORF18-disrupted mutant of Comamonas testosteroni TA441 accumulates significant amounts of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid and its derivatives after incubation with steroids. J Steroid Biochem Mol Biol 101, 78-84.

49) Horinouchi, M., Hayashi, T., and Kudo, T. (2010). Steroid degradation in Comamonas testosteroni. J Steroid Biochem Mol Biol. in press.

50) Horswill, A.R., Dudding, A.R., and Escalante-Semerena, J.C. (2001). Studies of propionate toxicity in Salmonella enterica identify 2-methylcitrate as a potent inhibitor of cell growth. J Biol Chem 276, 19094-19101.

51) Hu, Y., Van der Geize, R., Besra, G.S., Gurcha, S.S., Liu, A., Roche, M., Singh, M., and Coates, A. (2010).

3-ketosteroid-9α-hdroxylase is an essential factor in the pathogenesis of Mycobacterium tuberculosis. Mol Microbiol 75, 107-121.

52) Hurst, C.J., Crawford, R.L., Garland, J.L., Lipson, D.A., Mills, A.L., Stetzenbach, L.D. (1997). Manual of environmental microbiology. 3rd Edition, ASM Press, Washington D.C.

53) Hylemon, P.B., and Harder, J. (1998). Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems. FEMS Microbiol Rev 22, 475-488.

54) Jagmann, N., Brachvogel, H.P., and Philipp, B. (2010). Parasitic growth of Pseudomonas aeruginosa in co-culture with the chitinolytic bacterium Aeromonas hydrophila. Environ Microbiol 12, 1787-1802.

54) Jagmann, N., Brachvogel, H.P., and Philipp, B. (2010). Parasitic growth of Pseudomonas aeruginosa in co-culture with the chitinolytic bacterium Aeromonas hydrophila. Environ Microbiol 12, 1787-1802.