• Keine Ergebnisse gefunden

5.3 Diels Alder based ligation

5.3.8 Diels Alder reactions on DNA

5.3.8.1 Labelling of ODN DA1 with N-methylmaleimide (MMI)

In 10µl overall reaction volume ODN DA1 (5µM) was combined with MMI (1µl, 100 mM in methanol) leading to a final concentration of 10 mM MMI in 10 % methanol in water.

After 1 h at r.t. the reaction was analyzed by ESI-MS.

MS-ESIcalculated for [M-H] 6557.3, found 6556.1.

5.3.8.2 Labelling of ODN DA1 with maleimide linked fluorescein (66)

In 1 ml overall reaction volume ODN DA1 (10µM) was combined with maleimide linked fluorescein 66 (8µl or 100µl, 5 mM in DMSO) leading to a final concentration of either 40µM or 0.5 mM of 66 in 0.8 % or 10 % DMSO in sodium phosphate buffer (10 mM, pH 7.0) at r.t. 100µl were subjected to HPLC (gradient water - acetonitrile, 0-5 min 5-35 %, 5-10 min 5-35-39 %, 10-15 min 39-75 % acetonitrile) from time to time to monitor the reaction. With 40µM of 66 after 24 h 23 % of labelled DNA were detected, employing 0.5 mM of 66 after 24 h 56 % were labelled. The extent of labelling was quantified by HPLC peak integration at 260 nm. Conversion was determined using the ratio of labelled and unlabelled DNA. The product peak was identified by comparing the extinction ratio at 260 nm and 500 nm of the UV/VIS spectrum recorded by the pda-detector to be consistent with calculated results.

5.3.8.3 Labelling of 420mer PCR product with maleimide linked fluorescein (66) The PCR reaction product as obtained after PCR as described in 5.3.2.2 (10µl) was in-cubated with maleimide linked fluorescein 66 (1µl, 5 mM in DMSO) for 20 min at 0C.

After addition of agarose load solution (2µl) samples were analyzed by agarose gel elec-trophoresis.

Abbreviations

AA amino acid

APS ammonium peroxodisulfate ATP adenosine triphosphate Boc tert.-butyloxycarbonyl

bp base pairs

br broad

CDI carbonyl diimidazole conc. concentrated

CuAAC copper catalyzed azide alkyne cycloaddition

d doublet

DA Diels Alder cycloaddition dA 2’-deoxyadenosine

dATP 2’-deoxyadenosine triphosphate DEAE diethylaminoethyl

dG 2’-deoxyguanosine DIPEA diisopropylethylamine DMAP 4-dimethylaminopyridine DMF N,N-dimethyl formamide DMTr 4,4’-dimethoxytrityl DNA deoxyribonucleic acid

dNTP deoxynucleotide triphosphate DPPA diphenoxyl phosphoryl azide

dsDNA double stranded deoxyribonucleic acid dT 2’-deoxythymidine

dTTP thymidine triphosphate

EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide EDTA ethylenediamine tetraacetic acid

ESI electron spray ionization ESI-IT ESI ion trap

EVE ethyl vinyl ether

FITC fluorescein isothiocyanate

HPLC high pressure liquid chromatography HR high resolution

IdU 5-iodo-2’deoxyuridine

ind. indole

LG leaving group

LNA locked nucleic acid

m multiplet

MMI N-methyl maleimide

MOM methoxymethyl

MPLC middle pressure liquid chromatography MS mass spectrometry

NMR nucleic magnetic resonance

nt nucleotides

ODN oligodeoxynucleotide

PAGE polyacrylamide gel electrophoresis PAMAM polyamidoamine

PCR polymerase chain reaction PNK polynucleotide kinase

PPTS pyridiniumpara-toluenesulfonate

q quartet

qn quintet

r.t. room temperature

RP reverse phase

s singlet

sat. saturated

STV streptavidin

t triplet

TBE Tris, borat, EDTA buffer

TBTA tris-(benzyltriazolyl-methyl)amine TDA-1 tris[2-(2-methoxyethoxy)ethyl]amine TEAA triethylammonium acetate

TEAB triethylammonium bicarbonate TEMED N,N,N’,N’-tetramethylethylenediamine TFA trifluoroacetic acid

TIPS triisopropylsilyl

TLC thin layer chromatography

TMEDA N,N,N’,N’-tetramethylethylendiamine TMS trimethylsilyl

UV ultraviolet

VIS visual light

References

[1] N. C. Seeman,Mol. Biotechnol.2007,37,246–257.

[2] U. Feldkamp, C. M. Niemeyer,Angew. Chem. Int. Ed. Engl.2006,45,1856–1876.

[3] P. W. K. Rothemund,Nature 2006,440,297–302.

[4] S. M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf, W. M. Shih,Nature 2009,459, 414–418.

[5] H. Dietz, S. M. Douglas, W. M. Shih,Science 2009,325,725–730.

[6] E. S. Andersen, M. Dong, M. M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, M. M.

Golas, B. Sander, H. Stark, C. L. P. Oliveira, J. S. Pedersen, V. Birkedal, F. Besenbacher, K. V. Gothelf, J. Kjems,Nature2009,459,73–76.

[7] M. Strerath, A. Marx,Angew. Chem. Int. Ed. Engl.2005,44,7842–7849.

[8] S. K. Silverman,Nucleic acid switches and sensors,Springer (New York): 2006.

[9] Z. J. Gartner, R. Grubina, C. T. Calderone, D. R. Liu,Angew. Chem. Int. Ed. Engl.2003, 42,1370–1375.

[10] D. Summerer, A. Marx,Angew. Chem. Int. Ed. Engl.2002,41,89–90.

[11] Z. J. Gartner, D. R. Liu,J. Am. Chem. Soc.2001,123,6961–6963.

[12] Q. Gu, C. Cheng, R. Gonela, S. Suryanarayanan, S. Anabathula, K. Dai, D. Haynie, Nanotechnology 2006,17,R14–R25.

[13] K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, E. Braun,Science2002,297, 72–75.

[14] J. M. Kinsella, A. Ivanisevic,Langmuir 2007,23,3886–3890.

[15] M. Heilemann, R. Kasper, P. Tinnefeld, M. Sauer,J. Am. Chem. Soc.2006,128,16864–

16875.

[16] C. M. Niemeyer,J. Biotechnol.2001,82,47–66.

[17] C. M. Niemeyer,Chem.–Eur. J.2001,7,3188–3195.

[18] R. T. Ranasinghe, T. Brown,Chem. Commun. 2005, 5487–5502.

[19] U. Asseline,Curr. Org. Chem.2006,10,491–518.

[20] T. S. Zatsepin, T. S. Oretskaya,Chem. Biodivers. 2004,1,1401–1417.

[21] E. M. Southern,Methods Mol. Biol. 2001,170,1–15.

[22] Y. Huang, J. M. Coull,J. Am. Chem. Soc.2008,130,3238–3239.

[23] M. W. Kanan, M. M. Rozenman, K. Sakurai, T. M. Snyder, D. R. Liu,Nature2004,431, 545–549.

[24] D. Y. Zhang, A. J. Turberfield, B. Yurke, E. Winfree,Science 2007,318,1121–1125.

[25] Z. Tang, A. Marx,Angew. Chem. Int. Ed. Engl. 2007,46,7297–7300.

[26] S. Jäger, G. Rasched, H. Kornreich-Leshem, M. Engeser, O. Thum, M. Famulok,J. Am.

Chem. Soc.2005,127,15071–15082.

[27] R. Ting, J. M. Thomas, L. Lermer, D. M. Perrin,Nucleic Acids Res.2004,32,6660–6672.

[28] S. H. Weisbrod, A. Marx,Chem. Commun.2008, 5675–5685.

[29] S. L. Beaucage,Comprehensive Natural Products Chemistry 1999,7,153–249.

[30] S. M. Waybright, C. P. Singleton, K. Wachter, C. J. Murphy, U. H. Bunz,J. Am. Chem.

Soc.2001,123,1828–1833.

[31] T. L. Sheppard, C. H. Wong, G. F. Joyce,Angew. Chem. Int. Ed. Engl.2000,39,3660–3663.

[32] P. Grünefeld, C. Richert,J. Org. Chem.2004,69,7543–7551.

[33] P. Capek, H. Cahová, R. Pohl, M. Hocek, C. Gloeckner, A. Marx,Chem.–Eur. J. 2007, 13,6196–6203.

[34] F. Seela, M. Zulauf,Chem.–Eur. J.1998,4,1781–1790.

[35] G. F. Kaufmann, M. M. Meijler, C. Sun, D.-W. Chen, D. P. Kujawa, J. M. Mee, T. Z.

Hoffman, P. Wirsching, R. A. Lerner, K. D. Janda, Angew. Chem. Int. Ed. Engl. 2005, 44,2144–2148.

[36] K. Yamana, H. Zako, K. Asazuma, R. Iwase, H. Nakano, A. Murakami,Angew. Chem.

Int. Ed. Engl.2001,40,1104–1106.

[37] M. Nakamura, Y. Fukunaga, K. Sasa, Y. Ohtoshi, K. Kanaori, H. Hayashi, H. Nakano, K. Yamana,Nucleic Acids Res.2005,33,5887–5895.

[38] V. A. Korshun, D. A. Stetsenko, M. J. Gait, J. Chem. Soc., Perkin Trans. 1 2002, 8, 1092–1104.

[39] A. Misra, S. Mishra, K. Misra,Bioconjugate Chem. 2004,15,638–646.

[40] N. N. Dioubankova, A. D. Malakhov, Z. O. Shenkarev, V. A. Korshun,Tetrahedron 2004, 60,4617–4626.

[41] M. Printz, C. Richert,J. Comb. Chem.2007,9,306–320.

References

[42] K. Kawai, K. Kawabata, S. Tojo, T. Majima,Bioorg. Med. Chem. Lett. 2002, 12, 2363–

2366.

[43] K. Kawai, H. Yoshida, T. Takada, S. Tojo, T. Majima, J. Phys. Chem. B 2004, 108, 13547–13550.

[44] S. Sitaula, S. M. Reed,Bioorg. Med. Chem. Lett.2008,18,850–855.

[45] S. K. Singh, P. Nielsen, A. A. Koshkina, J. Wengel,Chem. Commun. 1998, 455–456.

[46] A. A. Koshkin, S. K. Singh, P. Nielsen, V. K. Rajwanshi, R. Kumar, M. Meldgaard, C. E.

Olsen, J. Wengel,Tetrahedron 1998,54,3607–3630.

[47] N. Kalra, M. C. Parlato, V. S. Parmar, J. Wengel, Bioorg. Med. Chem. Lett. 2006, 16, 3166–3169.

[48] M. D. Sørensen, M. Petersen, J. Wengel,Chem. Commun.2003, 2130–2131.

[49] D. Lindegaard, A. S. Madsen, I. V. Astakhova, A. D. Malakhov, B. R. Babu, J. Korshun, Vladimir A.and WengelBioorg. Med. Chem.2008,16,94–99.

[50] P. J. Hrdlicka, B. R. Babu, M. D. S. rensen, J. Wengel,Chem. Commun.2004, 1478–1479.

[51] D. Honcharenko, C. Zhou, J. Chattopadhyaya,J. Org. Chem.2008,73, 2829–2842.

[52] J. Hunziker,Bioorg. Med. Chem. Lett.1999,9,201–204.

[53] K. Matsuura, M. Hibino, T. Ikeda, Y. Yamada, K. Kobayashi,Chem.–Eur. J.2004,10, 352–359.

[54] T. A. Walton, M. H. Lyttle, D. J. Dick, R. M. Cook, Bioconjugate Chem. 2002, 13, 1155–1158.

[55] M. V. Skorobogatyi, A. D. Malakhov, A. A. Pchelintseva, A. A. Turban, S. L. Bondarev, V. A. Korshun,ChemBioChem 2006,7,810–816.

[56] L. Clima, W. Bannwarth,Helv. Chim. Acta2008,91,165-175.

[57] K. Tainaka, K. Tanaka, S. Ikeda, K. ichiro Nishiza, T. Unzai, Y. Fujiwara, I. Saito, A.

Okamoto,J. Am. Chem. Soc.2007,129,4776–4784.

[58] L.-A. Fendt, I. Bouamaied, S. Thöni, N. Amiot, E. Stulz,J. Am. Chem. Soc.2007,129, 15319–15329.

[59] J. D. Kahl, D. L. McMinn, M. M. Greenberg,J. Org. Chem.1998,63,4870–4871.

[60] J. T. Hwang, M. M. Greenberg,Org. Lett.1999,1,2021–2024.

[61] J. D. Kahl, M. M. Greenberg,J. Am. Chem. Soc.1999,121,597–604.

[62] S. I. Khan, M. W. Grinstaff,J. Am. Chem. Soc.1999,121,4704–4705.

[63] E. Mayer, L. Valis, C. Wagner, M. Rist, N. Amann, H.-A. Wagenknecht,ChemBioChem 2004,5,865–868.

[64] O. Schiemann, N. Piton, Y. Mu, G. Stock, J. W. Engels, T. F. Prisner,J. Am. Chem.

Soc.2004,126,5722–5729.

[65] T. Kottysch, C. Ahlborn, F. Brotzel, C. Richert,Chem.–Eur. J.2004,10,4017–4028.

[66] A. Fegan, P. S. Shirude, S. Balasubramanian,Chem. Commun. 2008, 2004–2006.

[67] D. M. Perrin, T. Garestier, C. Hélène,J. Am. Chem. Soc.2001,123,1556–1563.

[68] L. H. Thoresen, G.-S. Jiao, W. C. Haaland, M. L. Metzker, K. Burgess,Chem.–Eur. J.

2003,9,4603–4610.

[69] K. J. Livak, F. W. Hobbs, R. J. Zagursky,Nucleic Acids Res.1992,20, 4831–4837.

[70] M. A. Augustin, W. Ankenbauer, B. Angerer,J. Biotechnol.2001,86,289–301.

[71] G. Giller, T. Tasara, B. Angerer, K. Mühlegger, M. Amacker, H. Winter,Nucleic Acids Res.2003,31,2630–2635.

[72] T. Tasara, B. Angerer, M. Damond, H. Winter, S. Dörhöfer, U. Hübscher, M. Amacker, Nucleic Acids Res.2003,31,2636–2646.

[73] A. Ortiz, E. Ritter,Nucleic Acids Res.1996,24,3280–3281.

[74] K. Sakthivel, C. F. Barbas,Angew. Chem. Int. Ed. Engl.1998,37,2872-2875.

[75] M. Kuwahara, J. ichi Nagashima, M. Hasegawa, T. Tamura, R. Kitagata, K. Hanawa, S.

ichi Hososhima, T. Kasamatsu, H. Ozaki, H. Sawai,Nucleic Acids Res.2006,34,5383–5394.

[76] T. Gourlain, A. Sidorov, N. Mignet, S. J. Thorpe, S. E. Lee, J. A. Grasby, D. M. Williams, Nucleic Acids Res.2001,29,1898–1905.

[77] T. Ohbayashi, M. Kuwahara, M. Hasegawa, T. Kasamatsu, T. Tamura, H. Sawai,Org.

Biomol. Chem.2005,3,2463–2468.

[78] M. Kuwahara, K. Hanawa, K. Ohsawa, R. Kitagata, H. Ozaki, H. Sawai,Bioorg. Med.

Chem.2006,14, 2518–2526.

[79] M. Matsui, Y. Nishiyama, S. ichi Ueji, Y. Ebara, Bioorg. Med. Chem. Lett. 2007, 17, 456–460.

[80] A. Shoji, T. Hasegawa, M. Kuwahara, H. Ozaki, H. Sawai,Bioorg. Med. Chem. Lett.2007, 17,776–779.

[81] S. Jäger, M. Famulok,Angew. Chem. Int. Ed. Engl. 2004,43,3337–3340.

[82] V. Roig, U. Asseline,J. Am. Chem. Soc.2003,125,4416–4417.

[83] H. C. Kolb, M. G. Finn, K. B. Sharpless,Angew. Chem. Int. Ed. Engl.2001,40,2004–2021.

References

[84] E. M. Sletten, C. R. Bertozzi,Angew. Chem. Int. Ed. Engl.2009,48,6974–6998.

[85] E. W. Voss,J. Mol. Recognit.1993,6,51–58.

[86] F. L. Lin, H. M. Hoyt, H. Van Halbeek, R. G. Bergman, C. R. Bertozzi, J. Am. Chem.

Soc.2005,127,2686–2695.

[87] R. A. Jones, M. T. P. Marriott, W. P. Rosenthal, J. S. Arques,J. Org. Chem. 1980, 45, 4515–4519.

[88] D. S. Jones, P. A. Barstad, M. J. Feild, J. P. Hachmann, M. S. Hayag, K. W. Hill, G. M. Iverson, D. A. Livingston, M. S. Palanki, A. R. Tibbetts,J. Med. Chem.1995,38, 2138–2144.

[89] S. S. Ghosh, P. M. Kao, A. W. McCue, H. L. Chappelle, Bioconjugate Chem. 1990, 1, 71–76.

[90] S. B. Rajur, C. M. Roth, J. R. Morgan, M. L. Yarmush, Bioconjugate Chem. 1997, 8, 935–940.

[91] B. Bornemann, S.-P. Liu, A. Erbe, E. Scheer, A. Marx,Chemphyschem 2008,9,1241–1244.

[92] V. Raindlová, R. Pohl, M. Sanda, M. Hocek, Angew. Chem. Int. Ed. Engl. 2010, 49, 1064–1066.

[93] R. Huisgen,Angew. Chem. Int. Ed. Engl.1963,2,565–598.

[94] V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless,Angew. Chem. Int. Ed. Engl.

2002,41,2596–2599.

[95] C. W. Tornøe, C. Christensen, M. Meldal,J. Org. Chem.2002,67,3057–3064.

[96] J. E. Moses, A. D. Moorhouse,Chem. Soc. Rev.2007,36,1249–1262.

[97] R. Breinbauer, M. Köhn,Chembiochem 2003,4,1147–1149.

[98] T. S. Seo, Z. Li, H. Ruparel, J. Ju,J. Org. Chem.2003,68,609–612.

[99] C. J. Burrows, J. G. Muller, Chem. Rev.1998,98,1109–1152.

[100] R. L. Weller, S. R. Rajski,Org. Lett.2005,7,2141–2144.

[101] J. Gierlich, G. A. Burley, P. M. E. Gramlich, D. M. Hammond, T. Carell,Org. Lett.2006, 8,3639–3642.

[102] F. Seela, V. R. Sirivolu,Chem. Biodiversity 2006,3,509–514.

[103] P. Kocalka, N. K. Andersen, F. Jensen, P. Nielsen,Chembiochem 2007,8,2106–2116.

[104] P. M. E. Gramlich, S. Warncke, J. Gierlich, T. Carell,Angew. Chem. Int. Ed. Engl.2008, 47,3442–3444.

[105] P. M. E. Gramlich, C. T. Wirges, J. Gierlich, T. Carell,Org. Lett.2008,10,249–251.

[106] M. Fischler, A. Sologubenko, J. Mayer, G. Clever, G. Burley, J. Gierlich, T. Carell, U.

Simon,Chem. Commun.2008, 169–171.

[107] M. Fischler, U. Simon, H. Nir, Y. Eichen, G. A. Burley, J. Gierlich, P. M. E. Gramlich, T. Carell,Small 2007,3,1049–1055.

[108] K. Gogoi, M. V. Mane, S. S. Kunte, V. A. Kumar,Nucleic Acids Res.2007,35,e139.

[109] J. Lietard, A. Meyer, J.-J. Vasseur, F. Morvan,J. Org. Chem.2008,73,191–200.

[110] R. Kumar, A. El-Sagheer, J. Tumpane, P. Lincoln, L. M. Wilhelmsson, T. Brown,J. Am.

Chem. Soc.2007,129,6859–6864.

[111] M. Nakane, S. Ichikawa, A. Matsuda,J. Org. Chem.2008,73,1842–1851.

[112] D. I. Rozkiewicz, J. Gierlich, G. A. Burley, K. Gutsmiedl, T. Carell, B. J. Ravoo, D. N.

Reinhoudt,Chembiochem 2007,8,1997–2002.

[113] I. Géci, V. V. Filichev, E. B. Pedersen,Chem.–Eur. J.2007,13,6379–6386.

[114] A. Salic, T. J. Mitchison,Proc. Natl. Acad. Sci. U. S. A.2008,105,2415–2420.

[115] J. C. Jewett, E. M. Sletten, C. R. Bertozzi,J. Am. Chem. Soc.2010,132,3688–3690.

[116] O. Diels, K. Alder,Justus Liebig’s Ann. Chem.1928,460,98–122.

[117] W. R. Roush,Comprehensive Organic Synthesis,Band 5, Pergamon Press: Oxford: 1991.

[118] D. C. Rideout, R. Breslow,J. Am. Chem. Soc 1980,102,7816–7817.

[119] D. Graham, A. Enright,Curr. Org. Synth.2006,3,9-17.

[120] R. Breslow, U. Maitra, D. Rideout,Tetrahedron Lett.1983,24,1901–1904.

[121] R. Breslow, U. Maitra,Tetrahedron Lett.1984,25,1239–1240.

[122] G. T. Hermanson, Bioconjugate Techniques, Academic Press/Elsevier: London, 2nd Aufl., 2008.

[123] T. M. Tarasow, S. L. Tarasow, B. E. Eaton,Nature 1997,389,54–57.

[124] B. Seelig, A. Jäschke,Chem. Biol. 1999,6,167–176.

[125] K. W. Hill, J. Taunton-Rigby, J. D. Carter, E. Kropp, K. Vagle, W. Pieken, D. P. McGee, G. M. Husar, M. Leuck, D. J. Anziano, D. P. Sebesta,J. Org. Chem.2001,66,5352–5358.

[126] G. M. Husar, D. J. Anziano, M. Leuck, D. P. Sebesta, Nucleosides, Nucleotides, Nucleic Acids 2001,20, 559–566.

[127] H. A. Latham-Timmons, A. Wolter, J. S. Roach, R. Giare, M. Leuck, Nucleosides, Nu-cleotides, Nucleic Acids2003,22,1495–1497.

[128] L. Fruk, A. Grondin, W. E. Smith, D. Graham,Chem. Commun. 2002, 2100–2101.

References

[129] D. Graham, L. Fruk, W. E. Smith,Analyst2003,128,692–699.

[130] A. Okamoto, T. Taiji, K. Tainaka, I. Saito,Bioorg. Med. Chem. Lett.2002,12,1895–1896.

[131] V. Marchán, S. Ortega, D. Pulido, E. Pedroso, A. Grandas,Nucleic. Acids. Res.2006, 34,e24.

[132] D. Graham, A. Grondin, C. McHugh, L. Fruk, W. Smith, Tetrahedron Lett. 2002, 43, 4785–4788.

[133] K. Stevens, A. Madder,Nucleosides, Nucleotides, Nucleic Acids 2007,26,1359–1362.

[134] R. Tona, R. Häner,Mol. Biosyst. 2005,1,93–98.

[135] R. Tona, R. Häner,Bioconjug. Chem. 2005,16, 837–842.

[136] R. Tona, R. Häner,Chem. Commun. 2004, 1908–1909.

[137] V. Borsenberger, S. Howorka,Nucleic. Acids. Res.2009,37,1477–1485.

[138] E. Saxon, C. R. Bertozzi,Science 2000,287,2007–2010.

[139] H. Staudinger, J. Meyer,Helv. Chim. Acta1919,2,635–646.

[140] S. T. Laughlin, C. R. Bertozzi,Nat. Protoc.2007,2,2930–2944.

[141] K. G. Reddie, Y. H. Seo, W. B. Muse Iii, S. E. Leonard, K. S. Carroll,Mol. Biosyst.2008, 4,521–531.

[142] C. L. Stabler, X.-L. Sun, W. Cui, J. T. Wilson, C. A. Haller, E. L. Chaikof,Bioconjug.

Chem.2007,18,1713–1715.

[143] M. Verdoes, B. I. Florea, U. Hillaert, L. I. Willems, W. A. van der Linden, M. Sae-Heng, D. V. Filippov, A. F. Kisselev, G. A. van der Marel, H. S. Overkleeft,Chembiochem2008, 9,1735–1738.

[144] T. Yanagisawa, R. Ishii, R. Fukunaga, T. Kobayashi, K. Sakamoto, S. Yokoyama,Chem.

Biol.2008,15,1187–1197.

[145] L. R. Comstock, S. R. Rajski,J. Am. Chem. Soc.2005,127,14136–14137 file://Z:file://Z:

[146] C. C. Y. Wang, T. S. Seo, Z. Li, H. Ruparel, J. Ju,Bioconjugate Chem.2003,14,697–701.

[147] L. R. Comstock, S. R. Rajski,Nucleic Acids Res.2005,33, 1644–1652 file://Z:file://Z:

[148] E. Saxon, J. I. Armstrong, C. R. Bertozzi,Org. Lett.2000,2,2141–2143.

[149] B. L. Nilsson, L. L. Kiessling, R. T. Raines,Org. Lett.2000,2,1939–1941.

[150] L. Liu, Z.-Y. Hong, C.-H. Wong,Chembiochem 2006,7,429–432.

[151] A. Tam, M. B. Soellner, R. T. Raines,J. Am. Chem. Soc.2007,129,11421–11430.

[152] R. Kleineweischede, C. P. R. Hackenberger, Angew. Chem. Int. Ed. Engl.2008,47, 5984–

5988.

[153] R. Merkx, D. T. S. Rijkers, J. Kemmink, R. M. J. Liskamp,Tetrahedron Lett. 2003, 44, 4515–4518.

[154] C. Grandjean, A. Boutonnier, C. Guerreiro, J.-M. Fournier, L. A. Mulard,J. Org. Chem.

2005,70, 7123–7132.

[155] B. L. Nilsson, L. L. Kiessling, R. T. Raines,Org. Lett.2001,3,9–12.

[156] S. Han, R. E. Viola,Protein Pept. Lett.2004,11,107–114.

[157] M. B. Soellner, B. L. Nilsson, R. T. Raines,J. Am. Chem. Soc.2006,128,8820–8828.

[158] A. Tam, M. B. Soellner, R. T. Raines,Org. Biomol. Chem.2008,6,1173–1175.

[159] A. Tam, R. T. Raines,Bioorg. Med. Chem.2009,17,1055–1063.

[160] S. H. Weisbrod, Ein azidfunktionalisiertes dATP-Analog zur Funktionalisierung von DNA mittels Staudinger Ligation,Diplomarbeit, Universität Konstanz,2006.

[161] J. Clark,Nucleic Acids Res.1988,16,9677–9686.

[162] A. Baccaro,Neue Ansätze zur DNA-Konjugation mittels der Staudinger-Ligation, Diplomar-beit, Universität Konstanz,2006.

[163] M. Braun, U. Hartnagel, E. Ravanelli, B. Schade, C. Böttcher, O. Vostrowsky, A. Hirsch, Eur. J. Org. Chem.2004,2004,1983–2001.

[164] K. L. Kiick, E. Saxon, D. A. Tirrell, C. R. Bertozzi,Proc. Natl. Acad. Sci. U. S. A.2002, 99,19–24.

[165] C. Müller, L. J. Ackerman, J. N. H. Reek, P. C. J. Kamer, P. W. N. M. van Leeuwen,J.

Am. Chem. Soc.2004,126,14960–14963.

[166] J. M. Dyke, G. Levita, A. Morris, J. S. Ogden, A. A. Dias, M. Algarra, J. P. Santos, M. L. Costa, P. Rodrigues, M. T. Barros,J. Phys. Chem. A2004,108,5299–5307.

[167] F. Seela, M. Zulauf, M. Sauer, M. Deimel,Helv. Chim. Acta2000,83,910–927.

[168] T. Kovács, L.Ötvös,Tetrahedron Lett.1988,29, 4525–4528.

[169] S. R. Banerjee, P. Schaffer, J. W. Babich, J. F. Valliant, J. Zubieta,Dalton Trans.2005, 3886–3897.

[170] J. Isaksson, S. Acharya, J. Barman, P. Cheruku, J. Chattopadhyaya,Biochemistry 2004, 43,15996–16010.

[171] R. S. Hosmane, S. P. Hiremath, S. W. Schneller, J. Chem. Soc., Perkin Trans. 1 1973, 2450–2453.

References

[172] M. S. Scott, A. C. Lucas, C. A. Luckhurst, J. C. Prodger, D. J. Dixon, Org. Biomol.

Chem.2006,4,1313–1327.

[173] C. M. McKeen, L. J. Brown, J. T. G. Nicol, J. M. Mellor, T. Brown,Org. Biomol. Chem.

2003,1,2267–2275.

[174] N. C. Chaudhuri, E. T. Kool,J. Am. Chem. Soc. 1995,117,10434–10442.

[175] H. E. Gottlieb, V. Kotlyar, A. Nudelman,J. Org. Chem.1997,62,7512–7515.

[176] W. A. Kibbe,Nucleic. Acids. Res.2007,35,W43–W46.

[177] D. R. Crist, G. J. Jordan, D. W. Moore, J. A. Hashmall, A. P. Borsetti, S. A. Turujman, J. Am. Chem. Soc.1983,105,4136–4142.

[178] J. Davoll,J. Chem. Soc.1960, 131–138.

[179] J. S. Pudlo, M. R. Nassiri, E. R. Kern, L. L. Wotring, J. C. Drach, L. B. Townsend, J.

Med. Chem.1990,33,1984–1992.

[180] F. Seela, M. Zulauf,Synthesis 1996, 726–730.

[181] M. Hoffer,Chem. Ber.1960,93,2777–2781.

[182] O. Thum, Synthese basenmodifizierter Nukleosidtriphosphate und ihre enzymatische Poly-merisation zu funktionalisierter DNA,Dissertation, University of Bonn,2002.

[183] C. Glöckner, Gerichtete Evolution und Charakterisierung einer thermostabilen DNA Poly-merase mit erhöhter Akzeptanz für geschädigte DNA,Dissertation, University of Konstanz, 2008.

[184] B. Wrackmeyer, B. Schwarze,J. Organomet. Chem. 1997,534,181–186.

[185] D. Orain, H. Mattes,Synlett 2005, 3008–3010.