• Keine Ergebnisse gefunden

Chapter VI. Conclusions and recommendations

2. Recommendations

Biological wastewater treatment recently started to be used in many developing regions.

Wastewater treatment plants constructed today aim to reduce the concentration of pollutants to an acceptable level but usually require high investment costs, skilled labour and consume a lot of energy.

Biological wastewater treatment offers major advantages over alternative treatment strategies:

low operation and maintenance costs, efficient removal of organic compounds, easy operation and improved flexibility. However, the method requires large set up space and long residence times, which additionally often changes due to changes in physical conditions such as temperature, pH, etc. To reach good removal efficiency and maintain a stable state, the biological wastewater treatment needs to include other options such as growth rate, light intensity and aeration surface.

Firstly, the results proved that temperature and light conditions are the most important factors to keep algae growing and to maintain their removal capacities, especially for ammonia nitrogen. Therefore in future experiments, a variation of these factors should be examined in more details.

Secondly, it appears that the results of the algal ammonia removal efficiency in the light/dark phases do not show an unequivocal difference. Further research must be considered to get wider data about its effects.

Thirdly, the results show that a large amount of organic nitrogen accumulated in the algal sludge. Methods to store the algal sludge are necessary to recycle nutrients as well as for producing biogas and fertilizer. Future research may be needed to measure the amount of biogas producible from the algal sludge.

Fourthly, the application of a recycling line in the baffled algal reactors has proven to provide a high removal efficiency by recycling the residual degraded substances. Further researches should focus on the ratio of the recycle flow and its effects.

Fifthly, application of baffles in algal wastewater stabilisation ponds can improve its treatment effects. To obtain highest removal efficiency by the use of algae in the pre-settled wastewater, pond designers should consider a depth of the pond around 60-100cm. Use of algae as a promising biofuel should be taken in to account.

Sixthly, the transform matrix model must be based on many biological process-chains and variables to properly model the algal development. In this study, those parameters have been mostly taken from the literature. Therefore, the output of the model does not completely represent the reality of the examined algal system.

To better understand the biological processes in the reactors, those parameters should be collected from the practical results, such as the autotrophic growth, autotrophic biomass, decay rate and growth of algae on nitrates. In addition, the algal model to predict the nitrogen removal via biological processes still requires some modifications to properly model algal nitrogen removal with ASM1 and 3. Therefore, further studies focusing on this issue should be considered.

REFERENCES

Acien Fernandez, F.G., Fernandez Sevilla, J.M., Sanchez Perez, J.A., Molina Grima E. and Chisti Y. (2001). Airlift driven external loop tubular photobioreactors for outdoor production of microalgae: Assessment of design and performance. Chemical Engineering Science, vol. 56, pp. 2721-2732.

Acien Fernandez, F.G., Garcıa Camacho, F., Sanchez Perez, J.A., Fernandez Sevilla, J.M. and Molina Grima, E. (1998). Modelling of biomass productivity in tubular photobioreactors for microalgal cultures: effects of dilution rate, tube diameter and solar irradiance.

Biotechnol. Bioeng., vol. 58, pp. 605-616.

Ahlgren, G. (1987). Temperature functions in biology and their application to algal growth constants. Oikos., vol. 49, pp. 177-190.

Ahmed, M., IDRIS, A., ADAM, A. (2007). Combined anaerobic-aerobic system for treatment of textile wastewater. Journal of Engineering Science and Technology, vol. 2, no. 1, pp: 55-69.

Ahn, Y.H. (2006). Sustainable nitrogen elimination biotechnologies: A review. Process Biochemistry, vol. 41, no. 8, pp. 1709-1721.

Akunna, J.C., Bizeau, C. and Moletta, R. (1993). Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: glucose, glycerol, acetic acid, lactic acid and methanol. Water Research, vol. 27, pp. 1303-1312.

Alaerts, G.J, Mahbubar, M.R. and Kelderman, P. (1996). Performance of a full-scale duckweed covered sewage lagoon. Water Res., vol. 30, no. 4, pp. 843-852.

Ali Zafarzadeh, Bijan Bina, Mahnaz Nikaeen, Hossein Movahedian Attar, Mehdi Haji Khiadani (2011). Effect of dissolved oxygen and chemical oxygen demand to nitrogen ratios on the partial nitrification/denitrification process in moving bed biofilm reactors. Irania Journal of Biotechnology, vol. 9, no. 3, pp. 197-205.

Allen, M.B. and Arnon, D.I. (1955). Studies on nitrogen-fixing Blue-Green algae. I. growth and nitrogen fixation by Anabaena Cylindrica lemm. Amer. Jour. Bot., vol. 42, pp. 282-297.

Alley, W.M., Healy, R.W., LaBaugh, J.W. and Reilly, T.E. (2002). Flow and storage in groundwater systems. Science, no. 296, pp. 1985-1990.

Al-Nozaily (2001) Performance and process analysis of duckweed-covered sewage lagoon for high strength sewage. The case of Sana’a, Yemen. PHD dissertation, IHE-Unesco, Institute for water Education. The Netherland, Rotterdam A.A. Balkema printed 2001.

ISBN 9054104252

Al-Nozaily, F., Alaerts, G. and Veenstra, S. (2000). Performance of duckweed-covered sewage lagoons: II. Nitrogen and phosphorus balance and plant productivity. Water Res., vol. 34, no. 10, pp. 2734-2741.

Am Jang and Kim, I.S. (2004). Effect of high oxygen concentrations on nitrification and

performance of high-purity oxygen A/O biofilm process.

Environmental engineering Science, vol. 21, no. 3, pp. 273-281.

Ammann, E.C.B. and Fraser-Smith, A. (1968). Gas exchange of algae. Applied Microbiology, vol. 16, no. 1968, pp. 669-72.

Anthonisen, A.C., Loehr, R.C., Prakasam, T.B.S. and Srinath, E.G. (1976). Inhibition of nitrification by ammonia and nitrous acid. Journal of Water Pollution Control Federation, vol. 48, no. 5, pp. 835-852.

APHA (2005). Standard methods for the examination of water and wastewater. American Public Health Association (APHA: 2005). Washington D.C.

Arciero, D.M. and Hooper A.B. (1993). Hydroxylamine oxidoreductase from nitrosomonas europaea is a multimer of an octaheme subunit. Journal of Biological Chemistry, vol. 268, no. 20, pp. 14645-14654.

Arciero, D.M., Hooper, A.B., Cai, M. and Timkovich, R. (1993). Evidence for the structure of the active site heme P460 in hydroxylamine oxidoreductase of Nitrosomonas. Biochemistry, vol. 32, no. 36, pp. 9370-9380.

Arvin, E. and Kristensen G.H. (1982). Effect of denitrification on the pH in biofilms. Water Sci.

Technol., vol. 14, no. 8, pp. 833-848.

Asadi, M.E., Clemente, R.S., Gupta, A.D., Loof, R., Hansen, G.K. (2002). Impacts of fertigation via sprinkler irrigation on nitrate leaching and corn yield in an acid-sulphate soil in Thailand. Agric. Water Manage., vol. 52, no. 2002, pp. 197-213.

Aslan, S. and Kapdan, I.K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater. Ecological Eng., vol. 28, no. 1, pp. 64-70.

ATV A131P (2001). Dimension of biological activated treatment plant. Wyd. Seidel-Przywecki, Warsawa (in Polish).

Azov, Y., Goldman, J.C. (1982). Free ammonia inhibition of algal photosynthesis in intensive cultures. Applied and Environmental Microbiology, vol. 43, no. 4, pp. 735-739.

Bae, W., Baek, S., Chung, J., Lee Y. (2001). Optimal operational factors for nitrite accumulation in batch reactors. Biodegradation, vol. 12, pp. 359-366.

Barnes, D. and Bliss, P.J. (1983). Biological control of nitrogen in wastewater treatment. London:

E&F. NSpon, 1983. ISBN 0419123504.

Barnes, D., Wilson, F. (1978). Chemistry and unit operations in sewage treatment. Applied Science, London.

Barton, L., Colmer, T.D. (2006). Irrigation and fertilizer strategies for minimizing nitrogen leaching from turfgrass. Agric. Water Manage., vol. 80, no. 1-3, pp. 160-175.

Becker, E.W. (1994). Microalgae: Biotechnology and Microbiology. UK: Cambridge University Press, 1994. ISBN 0521350204.

Benemann, J.R. (1989). The future of microalgal biotechnology, pp.317–333. in Algal and cyanobacterial biotechnology. R.C Cresswell, T.A.V Rees, and N. Shah (eds.). England, Essex, Harlow: Longman scientific & technical.

Berg, J.M., Tymoczko, J.L., Stryer, L. (1958). Biochemistry (5th edn). New York, NY [u.a.]: Freeman, 2003. ISBN 0716746840.

Bernet, N., Dangcong, P., Delgènes, J-P. and Moletta, R. (2001). Nitrification at low oxygen concentration in biofilm reactor. Journal of Environmental Engineering, vol. 127, no. 3, pp. 266-271.

Bever, J. and Teichmann, H. (1990). Weitergehende Abwasserreinigung – Stickstoff und Phosphorelimination, Sedimentation und Filtration. Germany: R. Oldenbourg Verlag GmbH, München, 1990. ISBN 3486261991.

Biggs, B. and Kilroy, C. (2000). Stream periphyton monitoring manual. Prepared by NIWA for the New Zealand Ministry for the Environment, Christchurch, NZ. ISBN 0478090994.

Bishop, D.F., Heidman, J.A., Stamberg, J.A. (1976). Single-stage nitrification-denitrification.

Journal of the Water Pollution Control Federation, vol. 48, no. 3, part I (March, 1976), pp. 520-532.

Bornemann, C., Londong, J., Freund, M., Nowak, O., Otterpolh, R. and Rolfs, T. (1998).

Hinweise zur dynamischen Simulation von Belebungsanlagen mit dem Belebtschlammodell Nr.1 der IAWQ. Korrespondenz Abwasser KA, vol. 45, no. 3, pp. 455-462. (in German).

Bouterfas, R., Belkoura, M., Dauta, A. (2002). Light and temperature effects on the growth rate of three freshwater algae isolated from a eutrophic lake. Hydrobiologia, vol. 489, no. 1-3, pp. 207-217.

Brazil, B.L. (2006). Performance and operation of a rotating biological contactor in a tilapia recirculating aquaculture system. Aquac. Eng., vol. 34, no. 2006, pp. 261-274.

Breisha, G.Z. (2010). Bio-removal of nitrogen from wastewaters - A review. Nature and Science, vol. 8, no. 12, pp. 210-228.

Brindley, C., Acien, F.G., Fenandez-Sevilla, J.M. (2010). The oxygen evolution methodology affects photosynthetic rate measurement of microalgae in well-defined light regimes.

Biotechnology and Bioengineering, vol. 106, no. 2, pp. 228-237.

Buchanan, R.E. and Gibbons, N.E. (eds.) (1974). Bergey's manual of determinative bacteriology (8th edn). Baltimore: Williams & Wilkins Co., 1974. ISBN 9780683011173.

Caicedo, J.R. (2005). Comparison of performance of full-scale duckweed and algae stabilization ponds. In: Effect of operational variables on nitrogen transformations in duckweed stabilization ponds. The Netherlands: PhD Dissertation, UNESCO - IHE institute for water education and Wageningen University.

Caicedo, J.R., van der Steen, N.P., Arce, O. and Gijzen, H.J. (2000). Effect of total nitrogen concentration and pH on growth rates of duckweed (Spirodela polyrrhiza). Water Res., vol. 3, no. 15, pp. 3829-3835.

Camargo Valero, M.A., Mara, D.D. and Newton, R.J. (2010). Nitrogen removal in maturation waste stabilization ponds via biological uptake and sedimentation of dead biomass.

Water Sci. Technol., vol. 61, no. 4, pp. 1027-1034.

Carrera, J., Baeza, J.A., Vincent, T. and Lafuente, F.J. (2003). Biological nitrogen removal of high-strength ammonium industrial wastewater with two-sludge system. Water Res., vol. 37, no. 17, pp. 4211-4221.

Carvalho, A.P., Meireles, L.A., Malcata, X. (2006). Microalgal reactors: a review of enclosed system designs and performances. Biotechnol. Prog., vol. 22, no. 6, pp. 1490-506.

Carvalho, A.P., Monteiro, C.M. and Malcata, F.X. (2009). Simultaneous effect of irradiance and temperature on biochemical composition of the microalgae Pavlova lutheri. Journal of Applied Phycology, vol. 21, no. 5, pp. 543-552.

Carvalho, A.P., Silva, S.O., Baptista, J.M. and Malcata, F.X. (2011). Light requirements in microalgal photobioreactors. Appl Microbiol Biotechnol., vol. 89, no. 5, pp. 1275-1288.

Charley, R.C., Hooper, D.G. and McLee, A.G. (1980). Nitrification kinetics in activated sludge at various temperatures and dissolved oxygen concentrations. Water Res., vol. 14, no. 10, pp. 1387-1396.

Chen, C.Y. and Durbin, E.G. (1994). Effects of pH on the growth and carbon uptake of marine phytoplankton. Mar. Ecol. Prog. Ser., vol. 89, no. 83-84, pp. 83-94.

Chen, R.L., Keeney, D.R., Graetz, D.A. and Holding, A.J. (1972). Denitrification and nitrate reduction in Wisconsin lake sediments. J. Environ. Qual., vol. 1, no. 2, pp. 158-162.

Chevalier, P., de la Noüe, J. (1985). Wastewater nutrient removal with microalgae immobilized in carrageenan. Enzyme Microbial. Technol., vol. 7, no. 12, pp. 621-624.

Chinnasamy, S., Balasubramanian Ramakrishnan, Ashish Bhatnagar and Keshav C. Das (2009).

Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. Int. J. Mol. Sci., vol. 10, no.2, pp. 518-532.

Available from: 10.3390/ijms10020518.

Christensen, S., Simkins, S. and Tiedje, M.J. (1990). Spatial variation in denitrificafion:

dependency of activity centres on the soil environment. Soil Sci. Soc. Am. J., vol.54, no. 6, pp. 1608-1613.

Churchwell, R.L., Kachtick, J.W. and Ford, D.L. (1980). Comprehensive analysis of nitrification of chemical processing wastewaters. Journal WPCF., vol. 52, no. 11, pp. 2726-2746.

Clement, B. and Merlin, G. (1995). The contribution of ammonia and alkalinity to landfill leachate toxicity to duckweed. Sci. Total Environ., vol. 170, pp. 71-79.

Codd, G.A. (1984). Toxic of freshwater cyanobacteria. Microbiological Science, vol. 1, no. 2, pp. 48-52.

Cohen, D. and Parnas, H. (1976). An optimal policy for the metabolism of storage material in unicellular algae. J. Theoret. Biol., vol. 56, no. 1, pp. 1-18.

Cole, G.A. (1983). Chapters 11-14. In: Textbook of limnology (3rd edn.). IL: Waveland Press, Prospect Hts, 1988. ISBN 0881333786.

Constable, J.D., Conor, M.A., Scott, P.H. (1989). The comparative importance of different nitrogen removal mechanisms in 5 west lagoon, Werribee treatment complex. 13th Australian Water and Wastewater Association Conference, Canberra.

Constantine, T. (2008). An overview of ammonia and nitrogen removal in wastewater treatment.

Canada: CH2M HILL. Available from: http://www.weao.org/assets/docs/new-professionals/timconstantine-nitrification_and_removal.pdf.

Copelli, M., Guetti, P.F. and Corradi, M. (1982). Rimozione di azoto e fosforo da acque retlue.

Diallevamentisuinicole mediante fitodepurazione. Rimozione di azoto e fosfore seminario I.R.A.A. 22-23 October 1987, Rome, 34.

Costa, C., Dijkema, C., Fredrich, M., Garcia-Encina, P., Fernandez-Polanco, F. and Tams, A.J.M.

(2000). Denitrification with methane as electron donor in oxygen limited bioreactors.

Applied Microbiology and Biotechnology, vol. 53, no. 6, pp. 754-762.

Cuaresma, M., Janssen, M., Vilchez, C., Wijffels, R.H. (2009). Productivity of Chlorella Sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance.

Biotechnol. Bioeng., vol. 104, no. 2, pp. 352-359.

Danilov, R.A., Ekelund, N.G.A. (2001). Effects of pH on the growth rate, motility and photosynthesis in Euglena gracilis. Folia Microbiol., vol. 46, no. 6, pp.549-554.

Davies, T.R. (1973). Isolation of bacteria capable of utilizing methane as a hydrogen donor in the process of denitrification. Water Res., vol. 7 no. 4, pp. 575-579.

Davis, M.L. and Masten, S.J. (2004). Principles of environmental engineering and science (2nd edn.). New York: McGraw-Hill Companies, 2004. ISBN 9780073122359.

de la Noüe, J., Laliberté, G. and Proulx, D. (1992). Algae and wastewater. J. Appl. Phycol., vol. 4 no. 3, pp. 247-254.

de Morais, M.G., Costa, J.A.V. (2007a). Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide. Energy Con. Manage., vol. 48, no. 7, pp. 2169-2173.

de Morais, M.G., Costa, J.A.V. (2007b). Carbon dioxide fixation by Chlorella Kessleri, C.

vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors. Biotechnol. Lett., vol. 29, no. 9, pp. 1349-1352.

Debabrata, M. (2004). Hybrid reactor system for wastewater treatment application and approache of modelling. International journal of environment and pollution (India), vol. 21, no. 2, pp. 105-131.

Debabrata, M. (2010). Simultaneous COD and ammonium nitrogen removal from a high-strength wastewater in a shaft-type Aerobic Hybrid Bioreactor. International Journal of Environmental Science and Development, vol. 1, no. 4, pp. 327-333.

de-Bashan, L.E., Hernandez, J.P., Morey, T., Bashan, Y. (2004). Microalgae growth-Promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res., vol. 38, no. 2, pp. 466-474.

Devos, N., Ingouff, M., Loppes, R., Matagne, R. (1998). RUBISCO adaptation to low temperatures: a comparative study in psychrophilic and mesophilic unicellular algae.

J. Phycol., vol. 34, no. 4, pp. 665-660.

DIN EN ISO/IEC 17025: 2005-08; Allgemeine Anforderungen an die Kompetenz von Prüf- und Kalibrierlaboratorien (ISO/IEC 17025:2005); Deutsche und Englische Fassung EN ISO/IEC 17025:2005.

Dochain, D. and Vanrolleghem, P.A. (2001). Dynamical modelling and estimation in wastewater treatment processes. London: IWA Publishing, 2001. ISBN 9781900222501.

Dochain, D., Gregoire, S., Pauss, A., Schaegger, M.S. (2003). Dynamic modelling of a waste stabilization pond. Bioprocess Biosyst. Eng., vol. 26, no. 1, pp. 19-26.

Doran, M.D. and Boyle, W.C. (1979). Phosphorus removal by activated algae. Water Res., vol. 13, no. 8, pp. 805-812.

Duarte, P. (1994). A mechanistic model of the effects of light and temperature on algal primary productivity. Ecological Modelling, vol. 82, no. 1995, pp.151-160.

Eding, E.H., Kamstra, A., Verreth, J.A.J., Huisman, E.A., Klapwijk, A (2006). Design and operation of nitrifying trickling filters in recirculating aquaculture: a review. Aquac. Eng., vol. 34, no. 2006, pp. 234–260.

Egli, K., Fanger, U., Alvarez, P.J.J., Siegrist, H., van der Meer, J.R., Zehnder, A.J.B. (2001).

Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch. Microbiol., vol. 175, no. 3, pp. 198-207.

Eppley, R.W. (1972). Temperature and phytoplankton growth in the sea. Fishery Bulletin, vol. 70, no. 4, pp. 1063-1085.

Erisman, J.W., van Grinsven, H., Grizzetti, B., Bouraoui, F., Powlson, D., Sutton, M.A., Bleeker, A., Reis, S. (2011). The European nitrogen problem in a global perspective. In: The European nitrogen assessment: sources, effects and policy perspectives. Edited by M.A.

Sutton, C.M. Howard, J.W. Erisman, G. Billen, A. Bleeker, P. Grennfelt, H. van Grinsven, B.Grizzetti. UK: Cambridge University Press, 2011. ISBN 9781107006126.

Etienne Paul, Liu, Y. (eds.) (2012). Biological sludge minimization and biomaterials/bioenergy recovery technologies. Canada: John Wiley & Sons, Inc., 2012. ISBN 9780470768822.

F.A.O (2011). Interactions between Livestock Production Systems and the Environment - Impact Domain: concentrate feed demand . Food and Argriculture Organisation of the United

Nations - FAO: 2011. Available from:

http://www.fao.org/wairdocs/lead/x6123e/x6123e04.htm.

Ferrara, R.A. and Avci, C.B. (1982). Nitrogen dynamics in waste stabilisation ponds. Jour. Wat.

Poll. Contr. Fed., vol. 54, no. 4, pp. 361-369.

Finney, B.A and Middlebrooks, E. (1980). Facultative waste stabilization ponds. Journal of the Environmental Engineering Division. ASCE, vol. 107, no. EE4, pp. 817-830.

Fitzgerald, G.P., Rohlich, G.A. (1964). Biological removal of nutrients from treated sewage:

Laboratory experiments. Verh. Int. Verein. Theor. Angew Limol., vol. XV, pp. 597-608.

Fleit, E., Melicz, Z., Sándor, D., Zrínyi, M., Filipcsei, G., László, K., Dékány, I., Király, Z.

(2008). IASON-Intelligent activated sludge operated by nanotechnology-Hydrogel microcarriers in wastewater treatment. Progr. Colloid. Polym. Sci., vol. 135, pp. 209-217.

Available from: 10.1007/2882_2008_092.

Focht, D.D., Chang, A.C. (1975). Nitrification and denitrification processes related to waste water treatment. Adv. Appl. Microbiol., vol. 19, pp. 153-186.

Fogg, G.E. (1975a). Algal cultures and phytoplankton ecology (3rd edn.). England, London: The University of Wisconsin Press, 1987. ISBN 0299105601.

Fogg, G.E. (1975b). Biochemical pathways in unicellular plants. In: photosynthesis and productivity in different environments. Int. Bio. Programme., vol. 3, pp. 437-457.

London-New York: Cambridge University press.

Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, S.F., Coe.

M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., Monfreda, C., Patz, J.A., Prentice, I.C, Ramankutty, N., Snyde, P.K. (2005). Global consequences of land use. Science, vol. 309, no. 5734, pp. 570-574. Available from:

http://www.sciencemag.org/content/309/5734/570.full.

Follett, R.F. and Hatfield, J.L. (eds.) (2001). Nitrogen in the environment: sources, problems and management. Elsevier B.V., 2001. ISBN 9780444504869.

Fontes, A.G., Vargas, M.A., Moreno, J., Guerrero, M.G., Losada, M. (1987). Factors affecting the production of biomass by a nitrogen-fixing blue-green alga in outdoor culture. Biomass, vol. 13, pp. 33-43.

Frizt, J.J., Middleton, A.C., Merredith, D.D. (1979). Dynamic process modelling of wastewater stabilization ponds. Journal Water Pollution Control Federation, vol. 51, no. 11, pp. 2724-2743.

Fu, Z., Yang, F., Wang, X and Liu, H. (2009). Organic carbon and nitrogen removal in anoxic/oxic membrane bioreactor treating high-strength wastewatergress and sustainable energy, vol. 28, no. 1, pp. 155-161. Available from: DOI 10.1002/ep.

Galloway, J.N., Dentener, F.J., Capone, D.G., Boyer, E.W., Howarth, R.W., Seitzinger, S.P., Asner, G.P., Cleveland, C.C., Green, P.A., Holland, E.A., Karl, D.M., Michaels, A.F., Porter, J.H., Townsend, A.R. and Vörösmarty, C.J. (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, vol. 70, no. 2, pp. 153-226.

Gálveza, J.M., Gómeza, M.A., Hontoria, E., González-Lópeza, J. (2000). Influence of hydraulic loading and air flow rate on urban wastewater nitrogen removal with a submerged fixed-film reactor. Journal of Hazardous Materials. vol. 101, no. 2003, pp. 219-229.

García, J., Green, B.F., Lundquist, T., Mujeriego, R., Hernández-Mariné, M., Oswald, W.J.

(2006). Long term diurnal variations in contaminant removal in high rate ponds treating urban wastewater. Bioresource Technology, vol. 97, no. 14, pp. 1709-1715.

García, J., Mujeriego, R. and Hernández-Mariné, M. (2000). High rate algal pond operating strategies for urban wastewater nitrogen removal. J. Appl. Phycol., vol. 12, no. 3-5, pp. 331- 339.

Geider, R.J. and Osbonrne, B.A. (1989). Respiration and microalgal growth: a review of the quantitative relationship between dark respiration and growth. New. Phytol., vol. 112, no. 3, pp. 327-341.

Gerardi, M.H. (2002). Nitrification and denitrification in the activated sludge process. New York:

John Wiley & Sons, Inc., 2002. ISBN 0471065080.

Goldman, J.C. (1979). Outdoor algal mass cultures - II. Photosynthetic yield limitations.

Water Res., vol. 13, no. 2, pp. 119-36.

Goldman, J.C., Carpenter, E.J. (1974). A kinetic approach to the effect of temperature in algal growth. Limnol Oceanogr., vol. 19, no. 5, pp. 756-766.

Goldman, J.C., Graham, S.J. (1981). Inorganic carbon limitation and chemical composition of two freshwater green microalgae. Appl. Environ. Microbiol., vol. 41, no. 1, pp. 60-70.

Gómeza, M.A., Hontoria, E., González-López, J. (2002). Effect of dissolved oxygen concentration on nitrate removal from groundwater using denitrifying submerged filter.

Journal of Hazardous Materials, vol. 90, no. 3, pp. 267-278.

Gons, H.J. (1977). On the light-limited growth of Scenedesmus protuberans Fritsch. PhD thesis, Univ. of Amsterdam, 1977.

Grady, C.P.L.Jr., Daigger, G.T. and Lim, H.C. (eds.) (1999). Biological wastewater treatment, 2nd

edition Revised and expanded. New York, NY: Marcel Dekker, Inc., 1999.

ISBN 0824889199.

Graham, L.E. and Wilcox, L.W. (2000). Algae. In Freshwater algae of North America -Ecology and classification. Edited by J.D. Wehr and R.G. Sheath. USA: Elsevier, 2003.

ISBN 0127415505.

Grau, S.M., Sfinchez, A.G., Clavel, J.M., Aniorte, J.S., Grau, M.D.M. (1996). A mathematical model for waste water stabilization ponds with macrophytes and microphytes. Ecological Modelling, vol. 91, no. 1-3, pp. 77-103.

Gray, N.F. (2004). Biology of wastewater treatment (2nd edn.). Series on environmental science and management, volume 4. London: Imperial College Press, 2004. ISBN 1860943284.

Gray, N.F. (2005). Water Technology: An introduction for environmental scientists and engineers

(2nd edn.). Oxford, Burlington, Mass: Elsevier Butterworth-Heinemann, 2005.

ISBN 9780750666336.

Greenwood, N.N. and Earnshaw, A. (1997). Chemistry of the elements (2nd edn.). Elsevier Butterworth Heinemann 1997. ISBN 0750633654.

Grizzetti, B., Bouraoui, F. and De Marsily, G. (2008). Assessing nitrogen pressures on European surface water. Global Biogeochemical Cycles, 22: GB4023. In: the European nitrogen assessment: sources, effects and policy perspectives. M.A. Sutton, C.M. Howard, J.W.

Erisman, G. Billen, A. Bleeker, P. Grennfelt, H. van Grinsven, B. Grizzetti (eds.). UK:

Cambridge University Press, 2011. ISBN 9781107006126.

Grizzetti, B., Bouraoui, F., Billen, G. et al. (2011). Nitrogen as a threat to European water quality.

In: The European nitrogen assessment: sources, effects and policy perspectives. M.A.

Sutton, C.M. Howard, J.W. Erisman, G. Billen, A. Bleeker, P. Grennfelt, H. van Grinsven, B. Grizzetti (eds.). UK: Cambridge University Press, 2011. ISBN 9781107006126.

Grobbelaar, J.U. (1982). Potential of algal production. Water SA., vol. 8, no. 2, pp. 79-85.

Grobbelaar, J.U. (1991). The influence of light/dark cycles in mixed algal cultures on their productivity. Bioresource Technol., vol. 38, no. 2-3, pp. 189-194.

Groeneweg, J., Sellner, B. and Tappe, W. (1994). Ammonia oxidation in nitrosomonas at NH3

concentrations near Km: effects of pH and temperature. Water Res., vol. 28, no. 12, pp.

2561-2566.

Grönlund, E., (2004). Microalgae at wastewater pond treatment in cold climate - an ecological engineering approach. Doctoral Thesis, Luleå University of Technology, Luleå, Sweden.

Gross, A., Boyd, C.E., Wood, C.W. (1999). Ammonia volatilisation from freshwater fish ponds.

J. Environ. Qual., vol. 28, pp. 793-797.

Guillard, R.R.L. (1975). Culture of phytoplankton for feeding marine invertebrates. pp. 26-60.

In: Culture of marine invertebrate animals. W.L. Smith and M.H. Chanley (eds.). New York: Plenum Press, 1975. ISBN 0306308045.

Guillard, R.R.L. and Ryther, J.H. (1962). Studies of marine planktonic diatoms. I. Cyclotella

nana Hustedt and Detonula confervacea Cleve. Can.J. Microbiol., vol. 8, no. 2, pp. 229-239.

Gutzeit, G. (2006). Entwicklung und Modellierung eines neuartigen Abwasserreinigungsverfahrens mit symbiotischer Algen-Bakterien-Biomass. Dissertation.

Germany: Technical University of Hamburg, 2006 (in German). ISBN 3930400804.

Hall, D.O. (1986). The production of biomass: a challenge to our society, p.1-24. In: Handbook of microalgae mass culture. A. Richmond (ed.). Boca Raton, Florida: CRC Press.

Hammer, D.A. and Knight, R.L. (1994). Designing constructed wetlands for nitrogen removal.

Water Sci. Technol., vol. 29, no. 4, pp. 15-27.

Han, D.W., Yun H.J., Kim, D.J. (2001). Autotrophic nitrification and denitrification characteristics of an upflow biological aerated filter. J. Chem. Technol. Biot., vol. 76, no. 11, pp. 1112-1116.

Hanaki, K., Wantawin, C. and Ohgaki, S. (1990a). Nitrification at low level of DO with and

without organic loading in a suspended growth reactor. Water Res., vol. 2, no. 3, pp. 297-302.

Hanaki, K., Wantawin, C. and Ohgaki, S. (1990b). Effects of the activity of heterotrophs on nitritrification in suspended growth reactor. Water Res., vol. 24, no. 3, pp. 289-296.

Hannan, P.J. and Patouillet, C. (1963). Gas exchange with mass cultures of algae. I. Effects of light intensity and rate of carbon dioxide input on oxygen production. Appl. Microbiol.

vol. 11, no. 5, pp. 446-449.

Harrison, J.R., Daigger, G.T. (1997). A comparison of trickling filter media. Journal WPCF., vol. 59, no. 7, pp. 679-685.

Härtel, L. (1990). Modellansätze zur dynamischen Simulation des Belebtschlammverfahrens, Schriftenreihe WAR, Band 47, Darmstadt (in German).

Hazen and Sawyer Environmental Engineers and Scientists (2009). Literature review of nitrogen reduction technologies for onsite sewage treatment systems. Task A.2 Final Report prepared for the Florida Department of Health (2009). Accessed June 6, 2011. Available from: http://www.doh.state.fl.us/environment/ostds/research/Nitrogen/Task_A Lit_Review.pdf.

Hellinga, C., Schellen, A.A.J.C., Mulder, J.W., Van Loosdrecht, M.C.M. and Heijnen, J.J. (1998).

The SHARON process: an innovative method for nitrogen removal from ammonium rich wastewater. Water Sci. Technol., vol. 37, no. 9, pp. 135-142.

Helmer-Madhok, C., Schmid, M., Filipov, E., Gaul, T., Hippen, A., Rosenwinkel, K.H., Seyfried, C.F., Wagner, M., Kunst, S. (2002). Deammonification in biofilm systems: population, structure and function. Water Sci. Technol., vol. 46, no. 1-2, pp. 223-231.

Hemens, J. and and Mason, M.H. (1968). Sewage nutrient removal by shallow algal stream.

Water Res., vol. 2, no. 4, 277-287.

Henze, M., Grady, C.P.L., Gujer, W., Marais, G.V.R., Matsuo, T. (1987b). Activated sludge model No.1. IAWPRC Scientific and Technical Report 3. London, UK: IAWPRC.

Henze, M., Grady, C.P.L.Jr., Gujer, W., Marais, G.V.R. and Matsuo, T. (1987a). Activated sludge model No.1. IAWQ Scientific and Technical Report No. 1. UK: London.

Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M.C., Marais, G.V.R., van Loosdrecht, M.C.M. (1999). Activated sludge model No.2d. Water Sci. Technol., vol. 39, no. 1, pp. 165-182.

Henze, M., Gujer, W., Mino, T., van Loosdrecht, M. (2000a). Activated sludge models ASM1, ASM2, ASM2d AND ASM3. IWA Task group on Mathematical modelling for design and operator of biological wastewater treatment (eds.). Published by IWA Publishing in its Scientific and Technical Report series. IWA Publishing, 2000. ISBN 1900222248.

Henze, M., Gujer, W., Mino, T., van Loosdrecht, M. (2000b). Activated sludge model No.3.

Activated sludge models ASM1, ASM2, ASM2D and ASM3, in: IWA Scientific and