• Keine Ergebnisse gefunden

Determination of PbS Quantum Dot Concentration

7. Experimental Section

7.5 Nanoparticle Syntheses and Functionalization

7.5.7 Determination of PbS Quantum Dot Concentration

The concentration of the PbS nanocrystals synthesized according to Moreels et al. was estimated as following: A conversion of 70% of the limiting precursor was assumed. From the particle diameter derived from TEM images, the volume of a single particle was calculated (assuming spherical particles). With the density of PbS and the amount of PbS that can be formed, the number of particles and their concentration was estimated to be 5 × 10-5 mol/L.

7.5 Nanoparticle Syntheses and Functionalization

7.5.8 Functionalization of PbS Quantum Dots for Surface Initiated Suzuki-Miyaura Coupling Polymerization

PbS quantum dots (2.5 mL) were precipitated by the addition of 5.5 mL of ethanol. After centrifugation and removal of the supernatant, the precipitate was redispersed in 4 mL of toluene.

After a second precipitation by addition of ethanol and a subsequent centrifugation step, the particles were dispersed in 1 mL of THF. 10 mg (0.03 mmol) of the respective carboxylate ligand were added and the mixture was stirred at 50 °C overnight.

7.5.9 Synthesis of Surface-Immobilized Initiator Complexes

1 mL of a QD dispersion functionalized with the respective halo-aryl ligand in toluene or in THF was degassed by applying three freeze-pump-thaw cycles. Afterwards, [Pd(PtBu3)2] or [Pd(dba)2] with 1.5 equiv. of PtBu3,were added and the mixture was stirred at room temperature or heated to the desired temperature.

7.5.10 Surface Initiated Suzuki-Miyaura Coupling Polymerization Procedure

In a 100 mL Schlenk tube, 100 mg (0.17 mmol, 1 equiv.) of monomer, 102 mg (0.17 mmol, 4 equiv.) of CsF and 355 mg (1.346 mmol, 8 equiv.) of 18 crown 6 were dissolved in 25 mL of THF and 1 mL of water. After degassing the solution by 3 freeze-pump-thaw cycles, the QD/initiator dispersion was quickly injected. After 1 hour at a temperature between -20 °C and room temperature, the polymerization was quenched by the addition of 15-25 mL of methanol. The hybrid particles were collected by centrifugation (typically at 2400 g for 7 min) and were redispersed in 10 mL of toluene. For end-capping experiments, the polymerization was quenched after 1 hour polymerization time by the addition of 20 equiv. of 2-[3,5-bis(trifluoromethyl)phenyl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (vs. 1 equiv. of [Pd(PtBu3)2]), stirred for another 30 minutes at 0 °C, followed by the addition of methanol to precipitate the hybrid particles.

7.5.11 Polymer Isolation after Surface Initiated Suzuki-Miyaura Coupling Polymerization

reduced pressure. The resulting polymer was dissolved in 2 mL of hot toluene and filtered through a syringe filter directly into 4 mL of MeOH to precipitate the polymer. After centrifugation, the supernatant solution was discarded and the isolated polymer dried under reduced pressure.

7.6 Nanoparticle-Ligand Syntheses

7.6.1 Synthesis of Benzo[c][2,1,3]thiadiazole218

In a round bottom flask, 8.3 g (76.9 mmol) of 1,2-diaminobenzene were dissolved in 140 mL of dichloromethane and 33.2 mL of triethyl amine. Through a dropping funnel, 10 g (84.4 mmol) of SOCl2 were added over a time period of 2 hours. After heating overnight to 60 °C, the solvent was removed under reduced pressure and the residue was isolated by steam distillation. The product was obtained as colorless crystals in nearly quantitative yield.

1H-NMR (400 MHz, CDCl3, 25 °C) δ = 8.02 (m, 2H), 7.59 (m, 2H) ppm.

7.6.2 Synthesis of 4-Bromobenzo[c][2,1,3]thiadiazole219

In a 3-neck round bottom flask, 3.012 g (22.2 mmol) of benzo[c][2,1,3]thiadiazole were dispersed in 22.2 mL of HBr (47 wt% aq.) and heated to 100 °C. 1.04 mL (22.2 mmol) of bromine were slowly added through a dropping funnel and the mixture was refluxed overnight. After addition of 30 mL of water, the mixture was neutralized with K2CO3 and the aqueous phase was extracted with chloroform. After removal of the solvent, the product was purified by column chromatography (dichloromethane) and crystallized from ethanol resulting in 34% yield.

1H-NMR (400 MHz, CDCl3, 25 °C)

δ = 7.98 (dd, 3JHH = 8.8, 4JHH = 0.9 Hz, 1H), 7.85 (dd, 3JHH = 7.2, 4JHH = 0.9 Hz, 1H), 7.48 (dd, 3JHH = 8.8, 3JHH = 7.2 Hz, 1H) ppm.

7.6 Nanoparticle-Ligand Syntheses

7.6.3 Synthesis of Methyl benzo[c][2,1,3]thiadiazole-4-carboxylate220

In a 50 mL Schlenk tube under inert gas atmosphere, 173 mg (0.232 mmol) of [Pd(dppf)Cl2] were dissolved in 8 mL of methanol and 0.64 mL of NEt3. A 22 mL stainless steel pressure reactor with glass inlet was charged with 509.5 mg (2.36 mmol) of 4-bromobenzo[c][2,1,3]thiadiazole and was set under inert gas atmosphere. After addition of the content of the Schlenk tube, the reactor was pressurized with CO (20 bar). The mixture was stirred at 120 °C for 16 h. The resulting red-brown solid was dissolved in methanol and filtrated over silica. The solvent was removed under reduced pressure and the product was crystallized from ethanol (crystallization at -30 °C), yielding 330 mg (73%) of the desired product as red-brown crystals.

1H-NMR (400 MHz, CD3OD, 25 °C)

δ = 8.41 (dd, 4JHH = 7.0, 5JHH = 1.1 Hz, 1H, H1), 8.31 (dd, 3JHH = 8.8, 4JHH = 1.1 Hz, 1H, H3), 7.81 (dd, 3JHH = 8.8, 3JHH = 7.0 Hz, 1H, H2), 4.05 (s, 3H, H4) ppm.

7.6.4 Synthesis of Methyl 7-bromobenzo[c][2,1,3]thiadiazole-4-carboxylate

In an 8 mL vial, 220 mg (1.13 mmol) of methyl benzo[c][2,1,3]thiadiazole-4-carboxylate were dissolved in 0.5 mL of H2SO4 (97% aq.). The mixture was heated to 60 °C and 120 mg (0.67 mmol) of N-bromosuccinimide were added. After 1 h, another 120 mg (0.67 mmol) of N-bromosuccinimide

7.6.5 Synthesis of 7-Bromobenzo[c][2,1,3]thiadiazole-4-carboxylic acid

In a 25 mL Schlenk tube, 204 mg (0.74 mmol) of methyl 7-bromobenzo[c][2,1,3]thiadiazole-4-carboxylate were dissolved in 9 mL of THF and 1 mL of water. After the addition of 100 mg of KOH, the mixture was stirred at 50 °C for 2 hours. After neutralizing with 2 M aqueous HCl solution, the desired product was extracted from the aqueous solution with chloroform. The solvent of the combined organic phases was removed under reduced pressure, yielding 120 mg (62%) of the desired product as red-brown crystals.

1H-NMR (400 MHz, CD3OD, 25 °C)

δ = 8.24 (d, 3JHH = 7.6 Hz, 1H, H2), 8.02 (d, 3JHH = 7.6 Hz, 1H, H3) ppm.

13C-NMR (101 MHz, CD3OD, 25 °C)

δ = 166.9 (C7), 155.3 (C6), 152.9 (C5), 135.1 (C3), 132.8 (C2), 124.1 (C4), 120.8 (C1) ppm.

7.7 Embedding Experiments

7.7.1 Encapsulation of Quantum Dots and Organic/Inorganic Semiconductor Hybrid Particles into Polymer Nanoparticles by Miniemulsion Polymerization

A 100 mL Schlenk tube was charged with 20 to 200 mg of sodium dodecyl sulfate and 80 mL of degassed water. In an 8 mL vial, 5 to 20 mg of azobisisobutyronitrile, the respective volume of a quantum dot or hybrid particle dispersion in toluene, 0.1 mL to 1 mL of monomer, 0.1 mL of hexadecane and 0.01 to 0.5 mL of ethylene glycol dimethacrylate were mixed. The mixture was added to the aqueous sodium dodecyl sulfate solution under vigorous stirring and a miniemulsion was generated by ultrasonication (Bandelin GM3200 ultrasonotrode with KE76 tip, operated at 120 W) with an intensity of 60% for 2 to 3 minutes while the Schlenk tube was placed in an ice bath. For polymerization, the miniemulsion was stirred at 76 °C for 5 hours under a nitrogen atmosphere followed by stirring overnight at room temperature in an open vessel.

7.8 Force Spectroscopy on Poly(Methyl Methacrylate) Particles with Atomic Force Microscopy

7.7.2 Synthesis of Polymer Nanoparticles and Embedding of Quantum Dots by Multi-Inlet Vortex Mixing

A THF/polymer solution was generated by dissolving the respective polymer in THF under ultrasonication followed by stirring the solution for 30 minutes at 50 °C. In the case of QD-embedding experiments, the QDs were precipitated from toluene by the addition of methanol and redispersed in the THF/polymer mixture by ultrasonication. The polymer solution or polymer/QD dispersion was filtrated through a syringe filter before being used in vortex experiments.

7.7.3 Encapsulation of Quantum Dots and Organic/Inorganic Semiconductor Hybrid Particles into Silica Nanoparticles

For the embedding into silica, the respective quantum dots or hybrid particles were precipitated from toluene with ethanol. After centrifugation, the supernatant was removed and the particles were redispersed in 1 mL of cyclohexane. In an 8 mL vial, 225 mg of Igepal CO-520 were dissolved in 4.4 mL of cyclohexane, added to the quantum dot dispersion, followed by stirring the mixture for 30 minutes. 60 µL of NH3 in water (25 wt%) were added and the inhomogeneous mixture was stirred for another 60 minutes. After addition of 20 to 400 µL of tetraethyl orthosilicate the reaction mixture was vigorously stirred for 24 hours at room temperature. The resulting particles were isolated by precipitation with 2 mL of ethanol followed by centrifugation. After removal of the supernatant, the particles were redispersed in 4 mL of water.

7.8 Force Spectroscopy on Poly(Methyl Methacrylate) Particles with Atomic Force Microscopy

For the recording of force-distance curves, the polymer dispersions were diluted by a factor of 200 and spin coated onto a plasma cleaned silica substrate. For analysis of the data, the JPK data processing software was used. The spring constant of the Bruker OTESPA-R3 cantilever was 26 N/m while the sensitivity was set to 25 nm/V. Before applying the Hertz model, first the baseline

8. References

(1) O'Regan, B.; Grätzel, M. Nature 1991, 353, 737-740.

(2) Greenham, N. C.; Peng, X.; Alivisatos, A. P. Phys. Rev. B 1996, 54, 17628-17637.

(3) Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425-2427.

(4) Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Nature 1994, 370, 354-357.

(5) Lee, J.; Sundar, V. C.; Heine, J. R.; Bawendi, M. G.; Jensen, K. F. Adv. Mater. 2000, 12, 1102-1105.

(6) Mashford, B. S.; Stevenson, M.; Popovic, Z.; Hamilton, C.; Zhou, Z.; Breen, C.; Steckel, J.;

Bulovic, V.; Bawendi, M.; Coe-Sullivan, S.; Kazlas, P. T. Nat. Photon. 2013, 7, 407-412.

(7) Holder, E.; Tessler, N.; Rogach, A. L. J. Mater. Chem. 2008, 18, 1064-1078.

(8) Zhao, L. H.; Zhou, Z. L.; Guo, Z. S.; Gibson, G.; Brug, J. A.; Lam, S.; Pei, J.; Mao, S. S. J. Mater.

Res. 2012, 27, 639-652.

(9) Park, Y.; Advincula, R. C. Chem. Mater. 2011, 23, 4273-4294.

(10) Early, K. T.; Sudeep, P. K.; Emrick, T.; Barnes, M. D. Nano Lett. 2010, 10, 1754-1758.

(11) Negele, C.; Haase, J.; Budweg, A.; Leitenstorfer, A.; Mecking, S. Macromol. Rapid Commun.

2013, 34, 1145-1150.

(12) Negele, C.; Haase, J.; Leitenstorfer, A.; Mecking, S. ACS Macro Lett. 2012, 1, 1343-1346.

(13) Purcell, E. M. Phys. Rev. 1946, 69, 674-674.

(14) Akimov, A. V.; Mukherjee, A.; Yu, C. L.; Chang, D. E.; Zibrov, A. S.; Hemmer, P. R.; Park, H.;

Lukin, M. D. Nature 2007, 450, 402-406.

(15) Curto, A. G.; Volpe, G.; Taminiau, T. H.; Kreuzer, M. P.; Quidant, R.; van Hulst, N. F. Science 2010, 329, 930-933.

(16) Mansur, H. S. Wiley Interdiscip. Rev. Nanomed. and Nanobiotechnol. 2010, 2, 113-129.

(17) Reiss, P.; Protiàre, M.; Li, L. Small 2009, 5, 154-168.

(18) Smith, A. M.; Nie, S. Acc. Chem. Res. 2009, 43, 190-200.

(25) Kwon, S. G.; Hyeon, T. Small 2011, 7, 2685-2702.

(26) Wang, Y.; Herron, N. J. Phys. Chem. 1991, 95, 525-532.

(27) Lee, S. F.; Osborne, M. A. ChemPhysChem 2009, 10, 2174-2191.

(28) Bera, D.; Qian, L.; Tseng, T. K.; Holloway, P. H. Materials 2010, 3, 2260-2345.

(29) Hines, M. A.; Guyot-Sionnest, P. J. Phys. Chem. 1996, 100, 468-471.

(30) Peng, X.; Schlamp, M. C.; Kadavanich, A. V.; Alivisatos, A. P. J. Am. Chem. Soc. 1997, 119, 7019-7029.

(31) Wu, C.; Chiu, D. T. Angew. Chem., Int. Ed. 2013, 52, 3086-3109.

(32) Shirakawa, H.; Louis, E. J.; Macdiarmid, A. G.; Chiang, C. K.; Heeger, A. J. J. Chem. Soc., Chem.

Comm. 1977, 578-580.

(33) Braun, D. Mater. Today 2002, 5, 32-39.

(34) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.;

Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539-541.

(35) Grimsdale, A. C.; Leok Chan, K.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Chem. Rev. 2009, 109, 897-1091.

(36) Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992, 258, 1474-1476.

(37) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789-1791.

(38) Hains, A. W.; Liang, Z.; Woodhouse, M. A.; Gregg, B. A. Chem. Rev. 2010, 110, 6689-6735.

(39) Thomas, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339-1386.

(40) Pecher, J.; Mecking, S. Chem. Rev. 2010, 110, 6260-6279.

(41) Teetsov, J.; Anne Fox, M. J. Mater. Chem. 1999, 9, 2117-2122.

(42) Lee, J.-I.; Klaemer, G.; Miller, R. D. Synth. Met. 1999, 101, 126.

(43) Bright, D. W.; Dias, F. B.; Galbrecht, F.; Scherf, U.; Monkman, A. P. Adv. Funct. Mater. 2009, 19, 67-73.

(44) Scherf, U.; List, E. J. W. Adv. Mater. 2002, 14, 477-487.

(45) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359-1470.

(46) Yokoyama, A.; Miyakoshi, R.; Yokozawa, T. Macromolecules 2004, 37, 1169-1171.

(47) Sheina, E. E.; Liu, J.; Iovu, M. C.; Laird, D. W.; McCullough, R. D. Macromolecules 2004, 37, 3526-3528.

(48) Yokoyama, A.; Suzuki, H.; Kubota, Y.; Ohuchi, K.; Higashimura, H.; Yokozawa, T. J. Am. Chem.

Soc. 2007, 129, 7236-7237.

(49) Stambuli, J. P.; Incarvito, C. D.; Buhl, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 1184-1194.

(50) Yokozawa, T.; Ohta, Y. Chem. Rev. 2016, 116, 1950-1968.

(51) Sui, A.; Shi, X.; Tian, H.; Geng, Y.; Wang, F. Polym. Chem. 2014, 5, 7072-7080.

References

(53) Zhang, H.-H.; Xing, C.-H.; Hu, Q.-S. J. Am. Chem. Soc. 2012, 134, 13156-13159.

(54) Zhang, H.-H.; Xing, C.-H.; Hu, Q.-S.; Hong, K. Macromolecules 2015, 48, 967-978.

(55) Zhang, T.-X.; Li, Z. Comput. Theor. Chem. 2013, 1016, 28-35.

(56) Fischer, C. S.; Jenewein, C.; Mecking, S. Macromolecules 2015, 48, 483-491.

(57) Kosaka, K.; Ohta, Y.; Yokozawa, T. Macromol. Rapid Commun. 2015, 36, 373-377.

(58) Webber, D. H.; Brutchey, R. L. J. Am. Chem. Soc. 2011, 134, 1085-1092.

(59) Habas, S. E.; Platt, H. A. S.; van Hest, M. F. A. M.; Ginley, D. S. Chem. Rev. 2010, 110, 6571-6594.

(60) Talapin, D. V.; Lee, J.-S.; Kovalenko, M. V.; Shevchenko, E. V. Chem. Rev. 2010, 110, 389-458.

(61) Odoi, M. Y.; Hammer, N. I.; Sill, K.; Emrick, T.; Barnes, M. D. J. Am. Chem. Soc. 2006, 128, 3506-3507.

(62) Giansante, C.; Infante, I.; Fabiano, E.; Grisorio, R.; Suranna, G. P.; Gigli, G. J. Am. Chem. Soc.

2015, 137, 1875-1886.

(63) Bousquet, A.; Awada, H.; Hiorns, R. C.; Dagron-Lartigau, C.; Billon, L. Prog. Polym. Sci. 2014, 39, 1847-1877.

(64) de Roo, T.; Haase, J.; Keller, J.; Hinz, C.; Schmid, M.; Seletskiy, D. V.; Cölfen, H.; Leitenstorfer, A.; Mecking, S. Adv. Funct. Mater. 2014, 24, 2714-2719.

(65) Guo, Z.-S.; Zhao, L.; Pei, J.; Zhou, Z.-L.; Gibson, G.; Brug, J.; Lam, S.; Mao, S. S. Macromolecules 2010, 43, 1860-1866.

(66) Sih, B. C.; Wolf, M. O. J. Phys. Chem. C 2007, 111, 17184-17192.

(67) Locklin, J.; Patton, D.; Deng, S.; Baba, A.; Millan, M.; Advincula, R. C. Chem. Mater. 2004, 16, 5187-5193.

(68) Milliron, D. J.; Alivisatos, A. P.; Pitois, C.; Edder, C.; Fréchet, J. M. J. Adv. Mater. 2003, 15, 58-61.

(69) Kanelidis, I.; Vaneski, A.; Lenkeit, D.; Pelz, S.; Elsner, V.; Stewart, R. M.; Rodriguez-Fernandez, J.; Lutich, A. A.; Susha, A. S.; Theissmann, R.; Adamczyk, S.; Rogach, A. L.; Holder, E. J. Mater.

Chem. 2011, 21, 2656-2662.

(70) Chan, Y.-H.; Ye, F.; Gallina, M. E.; Zhang, X.; Jin, Y.; Wu, I. C.; Chiu, D. T. J. Am. Chem. Soc.

2012, 134, 7309-7312.

(75) Khanduyeva, N.; Senkovskyy, V.; Beryozkina, T.; Bocharova, V.; Simon, F.; Nitschke, M.;

Stamm, M.; Grötzschel, R.; Kiriy, A. Macromolecules 2008, 41, 7383-7389.

(76) Khanduyeva, N.; Senkovskyy, V.; Beryozkina, T.; Horecha, M.; Stamm, M.; Uhrich, C.; Riede, M.; Leo, K.; Kiriy, A. J. Am. Chem. Soc. 2009, 131, 153-161.

(77) Sontag, S. K.; Sheppard, G. R.; Usselman, N. M.; Marshall, N.; Locklin, J. Langmuir 2011, 27, 12033-12041.

(78) Marshall, N.; Sontag, S. K.; Locklin, J. Macromolecules 2010, 43, 2137-2144.

(79) Beryozkina, T.; Boyko, K.; Khanduyeva, N.; Senkovskyy, V.; Horecha, M.; Oertel, U.; Simon, F.; Stamm, M.; Kiriy, A. Angew. Chem., Int. Ed. 2009, 48, 2695-2698.

(80) Sontag, S. K.; Marshall, N.; Locklin, J. Chem. Commun. 2009, 23, 3354-3356.

(81) Huddleston, N. E.; Sontag, S. K.; Bilbrey, J. A.; Sheppard, G. R.; Locklin, J. Macromol. Rapid Commun. 2012, 33, 2115-2120.

(82) Yang, L.; Sontag, S. K.; LaJoie, T. W.; Li, W.; Huddleston, N. E.; Locklin, J.; You, W. ACS Appl.

Mater. Interfaces 2012, 4, 5069-5073.

(83) Doubina, N.; Jenkins, J. L.; Paniagua, S. A.; Mazzio, K. A.; MacDonald, G. A.; Jen, A. K. Y.;

Armstrong, N. R.; Marder, S. R.; Luscombe, C. K. Langmuir 2011, 28, 1900-1908.

(84) Senkovskyy, V.; Tkachov, R.; Beryozkina, T.; Komber, H.; Oertel, U.; Horecha, M.; Bocharova, V.; Stamm, M.; Gevorgyan, S. A.; Krebs, F. C.; Kiriy, A. J. Am. Chem. Soc. 2009, 131, 16445-16453.

(85) Tkachov, R.; Senkovskyy, V.; Horecha, M.; Oertel, U.; Stamm, M.; Kiriy, A. Chem. Commun.

2010, 46, 1425-1427.

(86) Tkachov, R.; Senkovskyy, V.; Oertel, U.; Synytska, A.; Horecha, M.; Kiriy, A. Macromol. Rapid Commun. 2010, 31, 2146-2150.

(87) Kang, S.; Ono, R. J.; Bielawski, C. W. J. Am. Chem. Soc. 2013, 135, 4984-4987.

(88) Boon, F.; Moerman, D.; Laurencin, D.; Richeter, S.; Guari, Y.; Mehdi, A.; Dubois, P.; Lazzaroni, R.; Clement, S. Langmuir 2014, 30, 11340-11347.

(89) Islam, M. A.; Purkait, T. K.; Mobarok, M. H.; Hoehlein, I. M. D.; Sinelnikov, R.; Iqbal, M.;

Azulay, D.; Balberg, I.; Millo, O.; Rieger, B.; Veinot, J. G. C. Angew. Chem., Int. Ed. 2016, 55, 1-6.

(90) Jung, J.; Pang, X.; Feng, C.; Lin, Z. Langmuir 2013, 29, 8086-8092.

(91) Zhao, L.; Pang, X.; Adhikary, R.; Petrich, J. W.; Jeffries-El, M.; Lin, Z. Adv. Mater. 2011, 23, 2844-2849.

(92) Xu, J.; Wang, J.; Mitchell, M.; Mukherjee, P.; Jeffries-El, M.; Petrich, J. W.; Lin, Z. J. Am. Chem.

Soc. 2007, 129, 12828-12833.

(93) Fleischhaker, F.; Zentel, R. Chem. Mater. 2005, 17, 1346-1351.

(94) Gao, Y.; Reischmann, S.; Huber, J.; Hanke, T.; Bratschitsch, R.; Leitenstorfer, A.; Mecking, S.

References

(95) Joumaa, N.; Lansalot, M.; Théretz, A.; Elaissari, A.; Sukhanova, A.; Artemyev, M.; Nabiev, I.;

Cohen, J. H. M. Langmuir 2006, 22, 1810-1816.

(96) Yu, W. W.; Chang, E.; Drezek, R.; Colvin, V. L. Biochem. Biophys. Res. Commun. 2006, 348, 781-786.

(97) Badley, R. D.; Ford, W. T.; McEnroe, F. J.; Assink, R. A. Langmuir 1990, 6, 792-801.

(98) de Roo, T., Hybrid Particles of Functionalized Monodisperse Conjugated Polymers and Semiconductor Quantum Dots, Master's Thesis, University of Konstanz, 2012.

(99) Mohamed, M. B.; Tonti, D.; Al-Salman, A.; Chemseddine, A.; Chergui, M. J. Phys. Chem. B 2005, 109, 10533-10537.

(100) Mahler, B.; Spinicelli, P.; Buil, S.; Quelin, X.; Hermier, J.-P.; Dubertret, B. Nat. Mater. 2008, 7, 659-664.

(101) Verswyvel, M.; Verstappen, P.; De Cremer, L.; Verbiest, T.; Koeckelberghs, G. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 5339-5349.

(102) Bryan, Z. J.; Smith, M. L.; McNeil, A. J. Macromol. Rapid Commun. 2012, 33, 842-847.

(103) Nojima, M.; Ohta, Y.; Yokozawa, T. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 2643-2653.

(104) Tkachov, R.; Senkovskyy, V.; Beryozkina, T.; Boyko, K.; Bakulev, V.; Lederer, A.; Sahre, K.;

Voit, B.; Kiriy, A. Angew. Chem., Int. Ed. 2014, 53, 1-7.

(105) Urien, M.; Wantz, G.; Cloutet, E.; Hirsch, L.; Tardy, P.; Vignau, L.; Cramail, H.; Parneix, J.-P.

Org. Electron. 2007, 8, 727-734.

(106) Dupuis, A.; Wong-Wah-Chung, P.; Rivaton, A.; Gardette, J.-L. Polym. Degrad. Stab. 2012, 97, 366-374.

(107) Elmalem, E.; Biedermann, F.; Johnson, K.; Friend, R. H.; Huck, W. T. S. J. Am. Chem. Soc.

2012, 134, 17769-17777.

(108) Lee, J. K.; Ko, S.; Bao, Z. Macromol. Rapid Commun. 2012, 33, 938-942.

(109) Zhang, Z.; Hu, P.; Li, X.; Zhan, H.; Cheng, Y. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 1457-1463.

(110) Verswyvel, M.; Hoebers, C.; De Winter, J.; Gerbaux, P.; Koeckelberghs, G. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 5067-5074.

(117) Briseno, A. L.; Holcombe, T. W.; Boukai, A. I.; Garnett, E. C.; Shelton, S. W.; Frechet, J. J.;

Yang, P. Nano Lett. 2010, 10, 334-340.

(118) Lohwasser, R. H.; Thelakkat, M. Macromolecules 2010, 43, 7611-7616.

(119) Grell, M.; Bradley, D. D. C.; Long, X.; Chamberlain, T.; Inbasekaran, M.; Woo, E. P.; Soliman, M. Acta Polym. 1998, 49, 439-444.

(120) McKenna, C. E.; Higa, M. T.; Cheung, N. H.; McKenna, M.-C. Tetrahedron Lett. 1977, 18, 155-158.

(121) Blazewska, K. M. J. Org. Chem. 2014, 79, 408-412.

(122) Dorokhin, D.; Tomczak, N.; Han, M.; Reinhoudt, D. N.; Velders, A. H.; Vancso, G. J. ACS Nano 2009, 3, 661-667.

(123) Chan, W. C. W.; Nie, S. Science 1998, 281, 2016-2018.

(124) Knauf, R. R.; Lennox, J. C.; Dempsey, J. L. Chem. Mater. 2016, 28, 4762-4770.

(125) Kosugi, M.; Shimizu, T.; Migita, T. Chem. Lett. 1978, 7, 13-14.

(126) Okamoto, K.; Luscombe, C. K. Chem. Commun. 2014, 50, 5310-5312.

(127) Mizuno, T.; Takahashi, J.; Ogawa, A. Tetrahedron 2003, 59, 1327-1331.

(128) Okamoto, K.; Housekeeper, J. B.; Luscombe, C. K. Appl. Organomet. Chem. 2013, 27, 639-643.

(129) Overman, L. E.; Matzinger, D.; O'Connor, E. M.; Overman, J. D. J. Am. Chem. Soc. 1974, 96, 6081-6089.

(130) Jiang, Y.; Qin, Y.; Xie, S.; Zhang, X.; Dong, J.; Ma, D. Org. Lett. 2009, 11, 5250-5253.

(131) Yokozawa, T.; Suzuki, R.; Nojima, M.; Ohta, Y.; Yokoyama, A. Macromol. Rapid Commun. 2011, 32, 801-806.

(132) Mehmood, U.; Al-Ahmed, A.; Hussein, I. A. Renewable and Sustainable Energy Rev. 2016, 57, 550-561.

(133) Mishra, A.; Ma, C.-Q.; Bäuerle, P. Chem. Rev. 2009, 109, 1141-1276.

(134) Liu, J.; Loewe, R. S.; McCullough, R. D. Macromolecules 1999, 32, 5777-5785.

(135) Alvaro, E.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 7858-7868.

(136) Chen, K. B.; Chen, M. H.; Yang, S. H.; Hsieh, C. H.; Hsu, C. S.; Chen, C. C.; Chien, H. J. J.

Polym. Sci., Part A: Polym. Chem. 2006, 44, 5378-5390.

(137) Kopping, J. T.; Patten, T. E. J. Am. Chem. Soc. 2008, 130, 5689-5698.

(138) Gomes, R.; Hassinen, A.; Szczygiel, A.; Zhao, Q.; Vantomme, A.; Martins, J. C.; Hens, Z. J.

Phys. Chem. Lett. 2011, 2, 145-152.

(139) Hassinen, A.; Moreels, I.; de Mello Donegá, C.; Martins, J. C.; Hens, Z. J. Phys. Chem. Lett.

2010, 1, 2577-2581.

(140) Morris-Cohen, A. J.; Donakowski, M. D.; Knowles, K. E.; Weiss, E. A. J. Phys. Chem. C 2010,

References

(141) Haase, J., Hybrid-Nanostrukturen mit einzelnen Halbleiter-Quantenpunkten für die Ultrakurzzeitphysik, Doctoral Thesis, University of Konstanz, 2014.

(142) Keller, J., Einzelne kolloidale Quantenpunkte mit Polymer-Hüllen: Optische Charakterisierung und Funktionalisierung, Master's Thesis, University of Konstanz, 2013.

(143) Kroupa, D. M.; Anderson, N. C.; Castaneda, C. V.; Nozik, A. J.; Beard, M. C. Chem. Commun.

2016, 52, 13893-13896.

(144) Boles, M. A.; Ling, D.; Hyeon, T.; Talapin, D. V. Nat. Mater. 2016, 15, 141-153.

(145) Fritzinger, B.; Capek, R. K.; Lambert, K.; Martins, J. C.; Hens, Z. J. Am. Chem. Soc. 2010, 132, 10195-10201.

(146) Qu, L.; Peng, X. J. Am. Chem. Soc. 2002, 124, 2049-2055.

(147) Li, J. J.; Wang, Y. A.; Guo, W.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. J. Am.

Chem. Soc. 2003, 125, 12567-12575.

(148) Tan, R.; Blom, D. A.; Ma, S. G.; Greytak, A. B. Chem. Mater. 2013, 25, 3724-3736.

(149) Garcia-Rodriguez, R.; Liu, H. J. Am. Chem. Soc. 2014, 136, 1968-1975.

(150) Olson, E. Journal of GXP compliance 2011, 15, 85-96.

(151) Zylstra, J.; Amey, J.; Miska, N. J.; Pang, L.; Hine, C. R.; Langer, J.; Doyle, R. P.; Maye, M. M.

Langmuir 2011, 27, 4371-4379.

(152) Yu, M.; Yang, Y.; Han, R.; Zheng, Q.; Wang, L.; Hong, Y.; Li, Z.; Sha, Y. Langmuir 2010, 26, 8534-8539.

(153) de Roo, T.; Huber, S.; Mecking, S. ACS Macro Lett. 2016, 5, 786-789.

(154) Grell, M.; Bradley, D. D. C.; Ungar, G.; Hill, J.; Whitehead, K. S. Macromolecules 1999, 32, 5810-5817.

(155) Groh, A., Phosphonate-terminated Polythiophenes by Controlled Suzuki Miyaura Coupling Polymerization for Interface Modification, Master's Thesis, University of Konstanz, 2014.

(156) Bakueva, L.; Musikhin, S.; Hines, M. A.; Chang, T.-W. F.; Tzolov, M.; Scholes, G. D.; Sargent, E. H. Appl. Phys. Lett. 2003, 82, 2895-2897.

(157) Konstantatos, G.; Huang, C.; Levina, L.; Lu, Z.; Sargent, E. H. Adv. Funct. Mater. 2005, 15, 1865-1869.

(161) Moreels, I.; Justo, Y.; De Geyter, B.; Haustraete, K.; Martins, J. C.; Hens, Z. ACS Nano 2011, 5, 2004-2012.

(162) Cademartiri, L.; von Freymann, G.; Arsenault, A. C.; Bertolotti, J.; Wiersma, D. S.; Kitaev, V.;

Ozin, G. A. Small 2005, 1, 1184-1187.

(163) Cass, L. C.; Malicki, M.; Weiss, E. A. Anal. Chem. 2013, 85, 6974-6979.

(164) Hassinen, A.; Moreels, I.; De Nolf, K.; Smet, P. F.; Martins, J. C.; Hens, Z. J. Am. Chem. Soc.

2012, 134, 20705-20712.

(165) Shestha, A.; Yin, Y.; Andersson, G. G.; Spooner, N. A.; Qiao, S.; Dai, S. Small 2016, 10.1002/smll.201602956.

(166) Schork, F. J.; Luo, Y.; Smulders, W.; Russum, J. P.; Butté, A.; Fontenot, K. In Polymer Particles;

Okubo, M., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2005, p 129-255.

(167) Gupta, A.; Eral, H. B.; Hatton, T. A.; Doyle, P. S. Soft Matter 2016, 12, 2826-2841.

(168) Santos, J. L.; Herrera-Alonso, M. Macromolecules 2014, 47, 137-145.

(169) Gindy, M. E.; Panagiotopoulos, A. Z.; Prud'homme, R. K. Langmuir 2008, 24, 83-90.

(170) Jung, C.; de Roo, T.; Mecking, S. Macromol. Rapid Commun. 2014, 35, 2038-2042.

(171) Yin, W.; Liu, H.; Yates, M. Z.; Du, H.; Jiang, F.; Guo, L.; Krauss, T. D. Chem. Mater. 2007, 19, 2930-2936.

(172) Stöber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62-69.

(173) Koole, R.; van Schooneveld, M. M.; Hilhorst, J.; de Mello Donegá, C.; Hart, D. C. ʼ.; van Blaaderen, A.; Vanmaekelbergh, D.; Meijerink, A. Chem. Mater. 2008, 20, 2503-2512.

(174) Nann, T.; Mulvaney, P. Angew. Chem., Int. Ed. 2004, 43, 5393-5396.

(175) Zhang, C.; Guo, Y.; Priestley, R. D. Macromolecules 2011, 44, 4001-4006.

(176) Müller, J.; Lupton, J. M.; Rogach, A. L.; Feldmann, J.; Talapin, D. V.; Weller, H. Appl. Phys.

Lett. 2004, 85, 381-383.

(177) Nazzal, A. Y.; Wang, X.; Qu, L.; Yu, W.; Wang, Y.; Peng, X.; Xiao, M. J. Phys. Chem. B 2004, 108, 5507-5515.

(178) Cordero, S. R.; Carson, P. J.; Estabrook, R. A.; Strouse, G. F.; Buratto, S. K. J. Phys. Chem. B 2000, 104, 12137-12142.

(179) George, S. C.; Thomas, S. Prog. Polym. Sci. 2001, 26, 985-1017.

(180) Blackman, G. S.; Mate, C. M.; Philpott, M. R. Phys. Rev. Lett. 1990, 65, 2270-2273.

(181) Chen, S. H.; Su, A. C.; Chen, S. A. J. Phys. Chem. B 2005, 109, 10067-10072.

(182) Chen, S. H.; Su, A. C.; Su, C. H.; Chen, S. A. Macromolecules 2005, 38, 379-385.

(183) Wu, C.; McNeill, J. Langmuir 2008, 24, 5855-5861.

(184) Johnson, B. K.; Prud'homme, R. K. Aust. J. Chem. 2003, 56, 1021-1024.

References

(185) Jung, C., Hybrid Nanoparticles of Conjugated Polymers with Multiple Incorporated Inorganic Semiconductor Particles, Doctoral Thesis, University of Konstanz, 2016.

(186) Kuo, C. T.; Thompson, A. M.; Gallina, M. E.; Ye, F.; Johnson, E. S.; Sun, W.; Zhao, M.; Yu, J.;

Wu, I. C.; Fujimoto, B.; DuFort, C. C.; Carlson, M. A.; Hingorani, S. R.; Paguirigan, A. L.; Radich, J. P.; Chiu, D. T. Nat. Commun. 2016, 7, 11468.

(191) Massey, M.; Wu, M.; Conroy, E. M.; Algar, W. R. Curr. Opin. Biotechnol. 2015, 34, 30-40.

(192) Qian, J.; Li, X.; Wei, M.; Gao, X.; Xu, Z.; He, S. Opt. Express 2008, 16, 19568-19578.

(193) Fu, X.; Huang, K.; Liu, S. Anal. Bioanal. Chem. 2009, 396, 1397-1404.

(194) Benezra, M.; Penate-Medina, O.; Zanzonico, P. B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.; Longo, V.; Herz, E.; Iyer, S.; Wolchok, J.; Larson, S. M.; Wiesner, U.; Bradbury, M. S. J. Clin.

Invest. 2011, 121, 2768-2780.

(195) Selvan, S. T.; Tan, T. T.; Ying, J. Y. Adv. Mater. 2005, 17, 1620-1625.

(196) Darbandi, M.; Thomann, R.; Nann, T. Chem. Mater. 2005, 17, 5720-5725.

(197) Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. J.

Phys. Chem. B 2001, 105, 8861-8871.

(198) Efros, A. L.; Rosen, M.; Kuno, M.; Nirmal, M.; Norris, D. J.; Bawendi, M. Phys. Rev. B Condens Matter 1996, 54, 4843-4856.

(199) Werschler, F.; Hinz, C.; Froning, F.; Gumbsheimer, P.; Haase, J.; Negele, C.; de Roo, T.;

Mecking, S.; Leitenstorfer, A.; Seletskiy, D. V. Nano Lett. 2016, 16, 5861-5865.

(200) Touloukian, Y. S.; Powell, R. W.; Ho, C. Y.; Klemens, P. G. Thermophysical Properties of Matter - The TPRC Data Series. Volume 2. Thermal Conductivity - Nonmetallic Solids; Defense

(205) Rettig, M. F.; Maitlis, P. M.; Cotton, F. A.; Webb, T. R. Inorg. Synth. 2007, 28, 110-113.

(206) He, Y.; Wang, X.; Zhang, J.; Li, Y. Macromol. Rapid Commun. 2009, 30, 45-51.

(207) Baskar, C.; Lai, Y.-H.; Valiyaveettil, S. Macromolecules 2001, 34, 6255-6260.

(208) Boller, T. M.; Murphy, J. M.; Hapke, M.; Ishiyama, T.; Miyaura, N.; Hartwig, J. F. J. Am. Chem.

Soc. 2005, 127, 14263-14278.

(209) Strauss, H.; Karabudak, E.; Bhattacharyya, S.; Kretzschmar, A.; Wohlleben, W.; Cölfen, H.

Colloid Polym. Sci. 2008, 286, 121-128.

(210) Kockritz, A.; Weigt, A.; Kant, M. Phosphorus Sulfur Rel. Elem. 1996, 117, 287-292.

(211) Brikh, A.; Morin, C. J. Organomet. Chem. 1999, 581, 82-86.

(212) Movassagh, B.; Soleiman-Beigi, M. Monatsh. Chem. 2008, 139, 137-140.

(213) Negele, C., Synthese von Dendronen zur Funktionalisierung von Quantenpunkten und deren Einbettung in Polymerpartikel, Diploma Thesis, University of Konstanz, 2009.

(214) Garcia Ruano, J. L.; Parra, A.; Aleman, J. Green Chem. 2008, 10, 706-711.

(215) Marsitzky, D.; Klapper, M.; Müllen, K. Macromolecules 1999, 32, 8685-8688.

(216) Huber, J., Konjugierte Polymere aus Wässriger Emulsionspolymerisation, Doctoral Thesis, University of Konstanz, 2014.

(217) Yu, W. W.; Qu, L.; Guo, W.; Peng, X. Chem. Mater. 2003, 15, 2854-2860.

(218) Wu, J.; Lai, G.; Li, Z.; Lu, Y.; Leng, T.; Shen, Y.; Wang, C. Dyes Pigm. 2016, 124, 268-276.

(219) Wasik, R.; Winska, P.; Poznanski, J.; Shugar, D. J. Phys. Chem. B 2012, 116, 7259-7268.

(220) Buckman, B., Nicholas, J. B., Serebryany, V. et al. World patent application 2011/075 607 A1, filed Dec. 16, 2010 and published Jun. 23 2011.

9. Appendix

Figure A 1. Typical 1H-NMR spectrum of BOC-aniline functionalized polyfluorene recorded at room temperature in C6D6.

Figure A 3. GPC trace of BOC-aniline functionalized polyfluorene after deprotection at 190 °C under reduced pressure.

A bimodal distribution is observed due to the reaction of aniline functionalized polymer with isocyanate functionalized polymer, resulting in urea coupled species.

Figure A 4. GPC trace of aniline functionalized polyfluorene after deprotection with trifluoroacetic acid.

Appendix

Figure A 5. Typical 1H-NMR spectrum of phenylphosphonic acid diethyl ester functionalized polyfluorene recorded at room temperature in C6D6.

Figure A 6. Typical GPC trace of phenylphosphonic acid diethyl ester functionalized polyfluorene.

Figure A 7. Typical GPC trace of phenylphosphonic acid functionalized polyfluorene.

Figure A 8. MALDI-TOF mass spectra of polyfluorene obtained after initiating the polymerization with [(bromo)(phenyl)(tri-tert-butylphosphine)Pd(II)] and quenching after 30 minutes with conc. HCl (top), with

1,2-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)diphenyl disulfide (center) and with 4-mercaptophenylboronic acid (bottom).

Appendix

Figure A 9. GPC traces of polymers isolated from polymerizations of 2-(7-bromo-9,9-dioctyl-9H-fluoren-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane initiated by [(bromo)(phenyl)(tri-tert-butylphosphine)Pd(II)] and quenched by the addition of concentrated HCl (left), 4-mercaptophenylboronic acid (center) and by the addition of

1,2-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)diphenyl disulfide (right).

Figure A 10. GPC trace of polymer obtained from a polymerization of 2-(7-bromo-9,9-dioctyl-9H-fluoren-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane initiated by [(bromo)(phenyl)(tri-tert-butylphosphine)Pd(II)] and quenched by the

addition of 4,4,5,5-tetramethyl-2-(4-(tritylthio)phenyl)-1,3,2-dioxaborolane.

Figure A 11. MALDI-TOF mass spectrum of polyfluorene obtained after initiating the polymerization with [(bromo)(phenyl)(tri-tert-butylphosphine)Pd(II)] and quenching the polymerization by the addition of sulfur dissolved in

THF. In the inset, the MALDI-TOF mass signal of the thiol-functionalized 6-mer is depicted, together with the calculated isotope pattern of this species (red line).

Figure A 12. GPC traces of polymers obtained from polymerizations of 2-(7-bromo-9,9-dioctyl-9H-fluoren-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (right) and of 2-(5-bromo-4-(2-ethylhexyl)thiophen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (left) initiated with [(bromo)(phenyl)(tri-tert-butylphosphine)Pd(II)] and quenched by the addition

of sulfur, respectively.