• Keine Ergebnisse gefunden

Deletion of the Plau gene in mice affects the frenquency of Foxp3+ cells in the

6.2 Functional analyses of one candidate gene in human Tregs and in knockout mice

6.2.4 Deletion of the Plau gene in mice affects the frenquency of Foxp3+ cells in the

Since knockdown experiments and functional assay suggested that the PLAU gene in human Tregs may play an important role in Treg function, we studied Plau-deficient knockout mice (Carmeliet et al., 1994). Plau knockout (KO) mice had similar body weights at birth compared to wild type mice. However, at the age of 22 to 26 weeks, 5% of homozygote KO mice developed rectal prolapse of a non-infectious origin and severe non-healing ulcerations at the ears around the ear tag and the face (Carmeliet et al., 1994). Upon infection with C. neoformans, Plau mutant mice showed an impaired T cell proliferation in regional lymph nodes and failed to produce high levels of Th1 cytokines (IFN-gamma and IL-12) in the lung. Instead, they exhibited increased levels of IL-5, a Th2 cytokine (Gyetko et al., 2002). However, no studies were performed so far to investigate CD4+CD25+Foxp3+ Tregs in Plau KO mice.

Here, I first examined the frequency of Foxp3+CD4+ Treg cells in different lymphatic organs, including mesenteric lymph nodes (mLN), peripheral lymph nodes (pLN), spleen and thymus. I found that the percentage of Foxp3+ cells among CD4+ cells was significantly higher in wild type compared to KO mice in the thymus. This finding demonstrated the importance of Plau expression for Tregs development in thymus. However, no difference of Foxp3+ Tregs

92

percentage among CD4+ cells was observed in mLN, pLN and spleen of WT compared to KO mice. This could be explained in several ways. The candidate regulatory gene PLAU was identified during human Treg activation process. Thus PLAU may play a more important role during the process of Treg activation. However, the murine Tregs which I studied here represent naive Tregs. Thus, a difference of Foxp3 expression may be observed after activation in mLN, pLN and spleen of WT and KO. Therefore, further studies will be required to determine the relationship of Plau and Foxp3 in mice for the activation of Treg cells in mLN, pLN and spleen.

93

7 Publication which resulted from this thesis work

A manuscript is in preparation to publish the results described here. The latest version of this manuscript is provided as a separate document.

94

8 References

Abraham E, Gyetko MR, Kuhn K, Arcaroli J, Strassheim D, Park JS, Shetty S and Idell S (2003): Urokinase-type plasminogen activator potentiates lipopolysaccharide-induced neutrophil activation. J Immunol,170(11): 5644-51.

Aizawa S, Nakano H, Ishida T, Horie R, Nagai M, Ito K, Yagita H, Okumura K, Inoue J and Watanabe T (1997): Tumor necrosis factor receptor-associated factor (TRAF) 5 and TRAF2 are involved in CD30-mediated NFkappaB activation. J Biol Chem,272(4): 2042-5.

Bacchetta R, Gambineri E and Roncarolo MG (2007): Role of regulatory T cells and FOXP3 in human diseases. J Allergy Clin Immunol,120(2): 227-35; quiz 236-7.

Bachmann MF, Kohler G, Ecabert B, Mak TW and Kopf M (1999): Cutting edge: Saulsbury FT, Chance PF and Ochs HD (2001): The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet,27(1): 20-1.

Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL and Kuchroo VK (2006): Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature,441(7090): 235-8.

Bianchi E, Ferrero E, Fazioli F, Mangili F, Wang J, Bender JR, Blasi F and Pardi R (1996):

Integrin-dependent induction of functional urokinase receptors in primary T lymphocytes. J Clin Invest,98(5): 1133-41.

95

Blasi F (1999): The urokinase receptor. A cell surface, regulated chemokine.

APMIS,107(1): 96-101.

Brem RB, Yvert G, Clinton R and Kruglyak L (2002): Genetic dissection of transcriptional regulation in budding yeast. Science,296(5568): 752-5.

Brooks AR, Harkins RN, Wang P, Qian HS, Liu P and Rubanyi GM (2004):

Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J Gene Med,6(4): 395-404.

Bruder D, Probst-Kepper M, Westendorf AM, Geffers R, Beissert S, Loser K, von Boehmer H, Buer J and Hansen W (2004): Neuropilin-1: a surface marker of regulatory T cells.

Eur J Immunol,34(3): 623-30.

Busso N, Peclat V, Van Ness K, Kolodziesczyk E, Degen J, Bugge T and So A (1998):

Exacerbation of antigen-induced arthritis in urokinase-deficient mice. J Clin Invest,102(1): 41-50.

Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, Wiltshire T, Su AI, Vellenga E, Wang J, Manly KF, Lu L, Chesler EJ, Alberts R, Jansen RC, Williams RW, Cooke MP and de Haan G (2005): Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'. Nat Genet,37(3): 225-32.

Cai S, Lee CC and Kohwi-Shigematsu T (2006): SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet,38(11): 1278-88.

Cao D, Mizukami IF, Garni-Wagner BA, Kindzelskii AL, Todd RF, 3rd, Boxer LA and Petty HR (1995): Human urokinase-type plasminogen activator primes neutrophils for superoxide anion release. Possible roles of complement receptor type 3 and calcium. J Immunol,154(4):

1817-29.

96

Carmeliet P, Schoonjans L, Kieckens L, Ream B, Degen J, Bronson R, De Vos R, van den Oord JJ, Collen D and Mulligan RC (1994): Physiological consequences of loss of plasminogen activator gene function in mice. Nature,368(6470): 419-24.

Chai JG, Coe D, Chen D, Simpson E, Dyson J and Scott D (2008): In vitro expansion improves in vivo regulation by CD4+CD25+ regulatory T cells. J Immunol,180(2): 858-69.

Chang YK, Yang W, Zhao M, Mok CC, Chan TM, Wong RW, Lee KW, Mok MY, Wong SN, Ng IO, Lee TL, Ho MH, Lee PP, Wong WH, Lau CS, Sham PC and Lau YL (2009):

Association of BANK1 and TNFSF4 with systemic lupus erythematosus in Hong Kong Chinese.

Genes Immun,10(5): 414-20. gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nat Genet,37(3): 233-42.

Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J, Beavis WD, Belknap JK, Bennett B, Berrettini W, Bleich A, Bogue M, Broman KW, Buck KJ, Buckler E, Burmeister M, Chesler EJ, Cheverud JM, Clapcote S, Cook MN, Cox RD, Crabbe JC, Crusio WE, Darvasi A, Deschepper CF, Doerge RW, Farber CR, Forejt J, Gaile D, Garlow SJ, Geiger H, Gershenfeld H, Gordon T, Gu J, Gu W, de Haan G, Hayes NL, Heller C, Himmelbauer H, Hitzemann R, Hunter K, Hsu HC, Iraqi FA, Ivandic B, Jacob HJ, Jansen RC, Jepsen KJ, Johnson DK, Johnson TE, Kempermann G, Kendziorski C, Kotb M, Kooy RF, Llamas B, Lammert F, Lassalle JM, Lowenstein PR, Lu L, Lusis A, Manly KF, Marcucio R, Matthews D, Medrano JF, Miller DR,

97

Mittleman G, Mock BA, Mogil JS, Montagutelli X, Morahan G, Morris DG, Mott R, Nadeau JH, Nagase H, Nowakowski RS, O'Hara BF, Osadchuk AV, Page GP, Paigen B, Paigen K, Palmer AA, Pan HJ, Peltonen-Palotie L, Peirce J, Pomp D, Pravenec M, Prows DR, Qi Z, Reeves RH, Roder J, Rosen GD, Schadt EE, Schalkwyk LC, Seltzer Z, Shimomura K, Shou S, Sillanpaa MJ, Siracusa LD, Snoeck HW, Spearow JL, Svenson K, Tarantino LM, Threadgill D, Toth LA, Valdar W, de Villena FP, Warden C, Whatley S, Williams RW, Wiltshire T, Yi N, Zhang D, Zhang M and Zou F (2004): The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet,36(11): 1133-7.

Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, Cross R, Sehy D, Blumberg RS and Vignali DA (2007): The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature,450(7169): 566-9.

Cools N, Ponsaerts P, Van Tendeloo VF and Berneman ZN (2007): Regulatory T cells and human disease. Clin Dev Immunol,2007: 89195.

Couper KN, Blount DG and Riley EM (2008): IL-10: the master regulator of immunity to infection. J Immunol,180(9): 5771-7.

Cunninghame Graham DS, Graham RR, Manku H, Wong AK, Whittaker JC, Gaffney PM, Moser KL, Rioux JD, Altshuler D, Behrens TW and Vyse TJ (2008): Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus. Nat Genet,40(1): 83-9.

D'Acquisto F, Maione F and Pederzoli-Ribeil M (2010): From IL-15 to IL-33: the never-ending list of new players in inflammation. Is it time to forget the humble aspirin and move ahead? Biochem Pharmacol,79(4): 525-34.

Delenda C (2004): Lentiviral vectors: optimization of packaging, transduction and gene expression. J Gene Med,6 Suppl 1: S125-38.

98

Delgado-Dominguez J, Gonzalez-Aguilar H, Aguirre-Garcia M, Gutierrez-Kobeh L, Berzunza-Cruz M, Ruiz-Remigio A, Robles-Flores M and Becker I (2010): Leishmania mexicana lipophosphoglycan differentially regulates PKCalpha-induced oxidative burst in macrophages of BALB/c and C57BL/6 mice. Parasite Immunol,32(6): 440-9.

Delgado-Vega AM, Abelson AK, Sanchez E, Witte T, D'Alfonso S, Galeazzi M, Jimenez-Alonso J, Pons-Estel BA, Martin J and Alarcon-Riquelme ME (2009): Replication of the TNFSF4 (OX40L) promoter region association with systemic lupus erythematosus. Genes Immun,10(3): 248-53.

Earle KE, Tang Q, Zhou X, Liu W, Zhu S, Bonyhadi ML and Bluestone JA (2005): In vitro expanded human CD4+CD25+ regulatory T cells suppress effector T cell proliferation. Clin Immunol,115(1): 3-9.

Eaves IA, Wicker LS, Ghandour G, Lyons PA, Peterson LB, Todd JA and Glynne RJ (2002): Combining mouse congenic strains and microarray gene expression analyses to study a complex trait: the NOD model of type 1 diabetes. Genome Res,12(2): 232-43.

Feuerer M, Benoist C and Mathis D (2005): Green T(R) cells. Immunity,22(3): 271-2.

Fontenot JD, Gavin MA and Rudensky AY (2003): Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol,4(4): 330-6.

Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG and Rudensky AY (2005):

Regulatory T cell lineage specification by the forkhead transcription factor foxp3.

Immunity,22(3): 329-41.

Fontenot JD and Rudensky AY (2005): A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol,6(4): 331-7.

Garin MI, Chu CC, Golshayan D, Cernuda-Morollon E, Wait R and Lechler RI (2007):

Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood,109(5): 2058-65.

99

Germain RN (2008): Special regulatory T-cell review: A rose by any other name: from suppressor T cells to Tregs, approbation to unbridled enthusiasm. Immunology,123(1): 20-7.

Ghirelli C, Zollinger R and Soumelis V (2010): Systematic cytokine receptor profiling reveals GM-CSF as a novel TLR-independent activator of human plasmacytoid predendritic cells. Blood,115(24): 5037-40.

Gondek DC, Lu LF, Quezada SA, Sakaguchi S and Noelle RJ (2005): Cutting edge:

contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol,174(4): 1783-6.

Gondek DC, Roan NR and Starnbach MN (2009): T cell responses in the absence of IFN-gamma exacerbate uterine infection with Chlamydia trachomatis. J Immunol,183(2): 1313-9.

Gourh P, Arnett FC, Tan FK, Assassi S, Divecha D, Paz G, McNearney T, Draeger H, Reveille JD, Mayes MD and Agarwal SK (2010): Association of TNFSF4 (OX40L) polymorphisms with susceptibility to systemic sclerosis. Ann Rheum Dis,69(3): 550-5.

Graham IR and Chambers A (1997): Constitutive expression vectors: PGK. Methods Mol Biol,62: 159-69.

Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP and Ley TJ (2004):

Human T regulatory cells can use the perforin pathway to cause autologous target cell death.

Immunity,21(4): 589-601.

Gyetko MR, Libre EA, Fuller JA, Chen GH and Toews G (1999): Urokinase is required for T lymphocyte proliferation and activation in vitro. J Lab Clin Med,133(3): 274-88.

Gyetko MR, Sitrin RG, Fuller JA, Todd RF, 3rd, Petty H and Standiford TJ (1995):

Function of the urokinase receptor (CD87) in neutrophil chemotaxis. J Leukoc Biol,58(5): 533-8.

100

Gyetko MR, Sud S, Chen GH, Fuller JA, Chensue SW and Toews GB (2002): Urokinase-type plasminogen activator is required for the generation of a Urokinase-type 1 immune response to pulmonary Cryptococcus neoformans infection. J Immunol,168(2): 801-9.

Gyetko MR, Sud S, Sonstein J, Polak T, Sud A and Curtis JL (2001): Antigen-driven lymphocyte recruitment to the lung is diminished in the absence of urokinase-type plasminogen activator (uPA) receptor, but is independent of uPA. J Immunol,167(10): 5539-42.

Gyetko MR, Todd RF, 3rd, Wilkinson CC and Sitrin RG (1994): The urokinase receptor is required for human monocyte chemotaxis in vitro. J Clin Invest,93(4): 1380-7.

Hansen W, Loser K, Westendorf AM, Bruder D, Pfoertner S, Siewert C, Huehn J, Beissert S and Buer J (2006): G protein-coupled receptor 83 overexpression in naive CD4+CD25- T cells leads to the induction of Foxp3+ regulatory T cells in vivo. J Immunol,177(1): 209-15.

He F, Balling R and Zeng AP (2009): Reverse engineering and verification of gene networks: principles, assumptions, and limitations of present methods and future perspectives. J Biotechnol,144(3): 190-203.

He F and Zeng AP (2006): In search of functional association from time-series microarray data based on the change trend and level of gene expression. BMC Bioinformatics,7: 69.

Hori S, Nomura T and Sakaguchi S (2003): Control of regulatory T cell development by the transcription factor Foxp3. Science,299(5609): 1057-61.

Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, Hipkiss EL, Ravi S, Kowalski J, Levitsky HI, Powell JD, Pardoll DM, Drake CG and Vignali DA (2004): Role of LAG-3 in regulatory T cells. Immunity,21(4): 503-13.

Huehn J, Polansky JK and Hamann A (2009): Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol,9(2): 83-9.

101

Huehn J, Siegmund K, Lehmann JC, Siewert C, Haubold U, Feuerer M, Debes GF, Lauber J, Frey O, Przybylski GK, Niesner U, de la Rosa M, Schmidt CA, Brauer R, Buer J, Scheffold A and Hamann A (2004): Developmental stage, phenotype, and migration distinguish naive- and effector/memory-like CD4+ regulatory T cells. J Exp Med,199(3): 303-13.

Jansen RC and Nap JP (2001): Genetical genomics: the added value from segregation.

Trends Genet,17(7): 388-91.

Jones BC, Reed CL, Hitzemann R, Wiesinger JA, McCarthy KA, Buwen JP and Beard JL (2003): Quantitative genetic analysis of ventral midbrain and liver iron in BXD recombinant inbred mice. Nutr Neurosci,6(6): 369-77.

Kang JH, Asai D, Toita R, Kitazaki H and Katayama Y (2009): Plasma protein kinase C (PKC)alpha as a biomarker for the diagnosis of cancers. Carcinogenesis,30(11): 1927-31.

Katze MG, He Y and Gale M, Jr. (2002): Viruses and interferon: a fight for supremacy. Nat Rev Immunol,2(9): 675-87.

Kieff E (1997): Tumor necrosis factor receptor-associated factor (TRAF)-1, TRAF-2, and TRAF-3 interact in vivo with the CD30 cytoplasmic domain; TRAF-2 mediates CD30-induced nuclear factor kappa B activation. Proc Natl Acad Sci U S A,94(23): 12732.

Knutson KL, Disis ML and Salazar LG (2007): CD4 regulatory T cells in human cancer pathogenesis. Cancer Immunol Immunother,56(3): 271-85.

Kouro T and Takatsu K (2009): IL-5- and eosinophil-mediated inflammation: from discovery to therapy. Int Immunol,21(12): 1303-9.

Lee SK, Dykxhoorn DM, Kumar P, Ranjbar S, Song E, Maliszewski LE, Francois-Bongarcon V, Goldfeld A, Swamy NM, Lieberman J and Shankar P (2005): Lentiviral delivery of short hairpin RNAs protects CD4 T cells from multiple clades and primary isolates of HIV.

Blood,106(3): 818-26.

102

Lehmann J, Huehn J, de la Rosa M, Maszyna F, Kretschmer U, Krenn V, Brunner M, Scheffold A and Hamann A (2002): Expression of the integrin alpha Ebeta 7 identifies unique subsets of CD25+ as well as CD25- regulatory T cells. Proc Natl Acad Sci U S A,99(20): 13031-6.

Leipe J, Skapenko A, Lipsky PE and Schulze-Koops H (2005): Regulatory T cells in rheumatoid arthritis. Arthritis Res Ther,7(3): 93.

Li H, Lu L, Manly KF, Chesler EJ, Bao L, Wang J, Zhou M, Williams RW and Cui Y (2005): Inferring gene transcriptional modulatory relations: a genetical genomics approach. Hum Mol Genet,14(9): 1119-25.

Liu G, Burns S, Huang G, Boyd K, Proia RL, Flavell RA and Chi H (2009): The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt-mTOR. Nat Immunol,10(7): 769-77.

Liu HC, Cheng HH, Tirunagaru V, Sofer L and Burnside J (2001): A strategy to identify positional candidate genes conferring Marek's disease resistance by integrating DNA microarrays and genetic mapping. Anim Genet,32(6): 351-9.

Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, Fazekas de St Groth B, Clayberger C, Soper DM, Ziegler SF and Bluestone JA (2006): CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med,203(7): 1701-11.

Malek TR, Yu A, Vincek V, Scibelli P and Kong L (2002): CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. Implications for the nonredundant function of IL-2. Immunity,17(2): 167-78.

Maloy KJ and Powrie F (2001): Regulatory T cells in the control of immune pathology. Nat Immunol,2(9): 816-22.

103

Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, Levine SS, Fraenkel E, von Boehmer H and Young RA (2007): Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature,445(7130): 931-5.

Mattes J and Foster PS (2003): Regulation of eosinophil migration and Th2 cell function by IL-5 and eotaxin. Curr Drug Targets Inflamm Allergy,2(2): 169-74.

May AE, Kanse SM, Lund LR, Gisler RH, Imhof BA and Preissner KT (1998): Urokinase receptor (CD87) regulates leukocyte recruitment via beta 2 integrins in vivo. J Exp Med,188(6):

1029-37.

Maynard CL, Harrington LE, Janowski KM, Oliver JR, Zindl CL, Rudensky AY and Weaver CT (2007): Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10. Nat Immunol,8(9): 931-41.

Minagawa S, Nakabayashi K, Fujii M, Scherer SW and Ayusawa D (2005): Early BrdU-responsive genes constitute a novel class of senescence-associated genes in human cells. Exp Cell Res,304(2): 552-8.

Mondino A and Blasi F (2004): uPA and uPAR in fibrinolysis, immunity and pathology.

Trends Immunol,25(8): 450-5.

Montes M, Sanchez C, Verdonck K, Lake JE, Gonzalez E, Lopez G, Terashima A, Nolan T, Lewis DE, Gotuzzo E and White AC, Jr. (2009): Regulatory T cell expansion in HTLV-1 and strongyloidiasis co-infection is associated with reduced IL-5 responses to Strongyloides stercoralis antigen. PLoS Negl Trop Dis,3(6): e456.

Moore KW, de Waal Malefyt R, Coffman RL and O'Garra A (2001): Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol,19: 683-765.

Morley M, Molony CM, Weber TM, Devlin JL, Ewens KG, Spielman RS and Cheung VG (2004): Genetic analysis of genome-wide variation in human gene expression. Nature,430(7001):

743-7.

104

Nelson BH (2004): IL-2, regulatory T cells, and tolerance. J Immunol,172(7): 3983-8.

Nie H, Maika SD, Tucker PW and Gottlieb PD (2005): A role for SATB1, a nuclear matrix association region-binding protein, in the development of CD8SP thymocytes and peripheral T lymphocytes. J Immunol,174(8): 4745-52.

Niedbala W, Wei X and Liew FY (2002): IL-15 induces type 1 and type 2 CD4+ and CD8+

T cells proliferation but is unable to drive cytokine production in the absence of TCR activation or IL-12 / IL-4 stimulation in vitro. Eur J Immunol,32(2): 341-7.

Nykjaer A, Moller B, Todd RF, 3rd, Christensen T, Andreasen PA, Gliemann J and Petersen CM (1994): Urokinase receptor. An activation antigen in human T lymphocytes. J Immunol,152(2): 505-16.

O'Garra A and Vieira P (2003): Twenty-first century Foxp3. Nat Immunol,4(4): 304-6.

Ochs HD, Ziegler SF and Torgerson TR (2005): FOXP3 acts as a rheostat of the immune response. Immunol Rev,203: 156-64.

Ohashi PS (2003): Negative selection and autoimmunity. Curr Opin Immunol,15(6): 668-76.

Oriente A, Fedarko NS, Pacocha SE, Huang SK, Lichtenstein LM and Essayan DM (2000):

Interleukin-13 modulates collagen homeostasis in human skin and keloid fibroblasts. J Pharmacol Exp Ther,292(3): 988-94.

Pan F, Yu H, Dang EV, Barbi J, Pan X, Grosso JF, Jinasena D, Sharma SM, McCadden EM, Getnet D, Drake CG, Liu JO, Ostrowski MC and Pardoll DM (2009): Eos mediates Foxp3-dependent gene silencing in CD4+ regulatory T cells. Science,325(5944): 1142-6.

Peirce JL, Lu L, Gu J, Silver LM and Williams RW (2004): A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet,5: 7.

105

Pfoertner S, Jeron A, Probst-Kepper M, Guzman CA, Hansen W, Westendorf AM, Toepfer T, Schrader AJ, Franzke A, Buer J and Geffers R (2006): Signatures of human regulatory T cells:

an encounter with old friends and new players. Genome Biol,7(7): R54.

Probst-Kepper M and Buer J (2010): FOXP3 and GARP (LRRC32): the master and its minion. Biol Direct,5: 8.

Probst-Kepper M, Geffers R, Kroger A, Viegas N, Erck C, Hecht HJ, Lunsdorf H, Roubin R, Moharregh-Khiabani D, Wagner K, Ocklenburg F, Jeron A, Garritsen H, Arstila TP, Kekalainen E, Balling R, Hauser H, Buer J and Weiss S (2009): GARP: a key receptor controlling FOXP3 in human regulatory T cells. J Cell Mol Med,13(9B): 3343-57.

Probst-Kepper M, Geffers R, Kroger A, Viegas N, Erck C, Hecht HJ, Lunsdorf H, Roubin R, Moharregh-Khiabani D, Wagner K, Ocklenburg F, Jeron A, Garritsen H, Arstila TP, Kekalainen E, Balling R, Hauser H, Buer J and Weiss S (2009): GARP: a key receptor controlling FOXP3 in human regulatory T cells. J Cell Mol Med.

Qian J, Dolled-Filhart M, Lin J, Yu H and Gerstein M (2001): Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. J Mol Biol,314(5): 1053-66.

Regis G, Pensa S, Boselli D, Novelli F and Poli V (2008): Ups and downs: the STAT1:STAT3 seesaw of Interferon and gp130 receptor signalling. Semin Cell Dev Biol,19(4):

351-9.

Sakaguchi S (2000): Regulatory T cells: key controllers of immunologic self-tolerance.

Cell,101(5): 455-8.

Sakaguchi S (2004): Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol,22: 531-62.

Sakaguchi S and Powrie F (2007): Emerging challenges in regulatory T cell function and biology. Science,317(5838): 627-9.

106

Sakaguchi S, Sakaguchi N, Asano M, Itoh M and Toda M (1995): Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25).

Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol,155(3): 1151-64.

Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, Kuniyasu Y, Nomura T, Toda M and Takahashi T (2001): Immunologic tolerance maintained by CD25+

CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev,182: 18-32.

Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A and Bluestone JA (2000): B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+

immunoregulatory T cells that control autoimmune diabetes. Immunity,12(4): 431-40.

Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB and Friend SH (2003): Genetics of gene expression surveyed in maize, mouse and man. Nature,422(6929): 297-302.

Schmolke M and Garcia-Sastre A (2010): Evasion of innate and adaptive immune responses by influenza A virus. Cell Microbiol,12(7): 873-80.

Setoguchi R, Hori S, Takahashi T and Sakaguchi S (2005): Homeostatic maintenance of natural Foxp3(+) CD25(+) CD4(+) regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J Exp Med,201(5): 723-35.

Shevach EM (2009): Mechanisms of foxp3+ T regulatory cell-mediated suppression.

Immunity,30(5): 636-45.

Shimizu J, Yamazaki S, Takahashi T, Ishida Y and Sakaguchi S (2002): Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol,3(2): 135-42.

107

So T, Lee SW and Croft M (2008): Immune regulation and control of regulatory T cells by OX40 and 4-1BB. Cytokine Growth Factor Rev,19(3-4): 253-62.

Staudt V, Bothur E, Klein M, Lingnau K, Reuter S, Grebe N, Gerlitzki B, Hoffmann M, Ulges A, Taube C, Dehzad N, Becker M, Stassen M, Steinborn A, Lohoff M, Schild H, Schmitt E and Bopp T (2010): Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity,33(2): 192-202.

Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, Mak TW and Sakaguchi S (2000): Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med,192(2):

303-10.

Teixeira LA, Fricke CH, Bonorino CB, Bogo MR and Nardi NB (2001): An efficient gene

Teixeira LA, Fricke CH, Bonorino CB, Bogo MR and Nardi NB (2001): An efficient gene