• Keine Ergebnisse gefunden

D5 Selektive Informationskodierung in der Hörbahn der Grille

der dynamische Bereich. Eine solche divisive Kennlinienänderung kann die mathema-tische Operation der Division für das Nervensystem bereitstellen. Obwohl Division sehr wichtig für die neuronale Informationsverarbeitung ist, wurden bisher sehr wenig Mechanismen gefunden , die für einen divisiven Effekt (auch ‘gain control’ genannt) verantwortlich sein können. Deshalb wurde durch verschieden Kreuzadaptationsver-suche und durch pharmakologische Eingriffe nach dem verantwortlichen Mechanis-mus gesucht. Es konnte gezeigt werden, dass präsynaptisch Hemmung für die divisive Operation verantwortlich ist. Durch Strominjektionen ausgelöste intrinsische Adapta-tion im AN2 selbst hatte dagegen einen rein subtraktiven Effekt.

D5 Selektive Informationskodierung in der Hörbahn der Grille

Das Kapitel 6 beschäftig sich nochmals mit dem AN2 der Grille. Auch hier werden die Ergebnisse elektrophysiologischer Untersuchungen beschrieben. Der Fokus bei diesen Experimenten lag dabei allerdings auf Adaptation auf einer längeren Zeitskala, die mit Zeitkonstanten im Bereich von 1-2 Sekunden beschrieben werden kann.

Die Experimente in Kapitel 6 stellen einerseits diese langsam verlaufende Adap-tation dar und hatten andererseits das Ziel, die Frage zu beantworten, wozu diese

‘langsame’ Adaptation dient. Dabei wurden zwei alternative Hypothesen getestet:

(1) die Adaptation verändert die Kennlinie so, dass möglichst die gesamte akustis-che Umgebung des Tieres abgebildet werden kann (Infomax-Theorie), (2) die Kennlin-ien werden durch Adaptation so verändert, dass nur das lauteste Signal von mehreren gleichzeitig vorhandenen dargestellt wird, wobei der ‘Hintergrund’ unterdrückt wird (selektive Kodierung).

Um diese beiden Hypothesen zu testen, wurde eine Umgebung mit mehreren gle-ichzeitig vorhandenen, akustischen Signalen simuliert. Die Hörbahn wurde jeweils für längere Zeit entsprechenden Stimuli ausgesetzt, um im Anschluss die durch Adap-tation veränderten Kennlinien zu messen. Die beiden Hypothesen liefern dabei un-terschiedliche Voraussagen. Weder die Vorhersagen für die Infomax-Theorie, noch diejenigen, die sich aus der selektiven Kodierung ergab, trafen genau zu. Eine an-schließende Analyse der Transinformation (‘mutual information’) zeigte aber, dass Ad-aptation dazu führte, selektiv die Information über den Hintergrund zu unterdrücken, während die Information für das jeweils lauteste ‘Signal’ konstant blieb. Diese Anal-yse lieferte also Hinweise dafür, dass langsame Adaptation im AN2 der Grille selektive Kodierung des lautesten Signals ermöglicht.

D6 Schlussbetrachtung

In Kapitel 7 werden die Ergebnisse der einzelnen Studien zusammengefasst und un-ter dem Gesichtspunkt allgemeiner Konstruktionsprinzipien für Adaptation in sen-sorischen Bahnen betrachtet. Drei größere Themenkomplexe werden dabei in funk-tioneller Hinsicht diskutiert: (1) das Verhältnis des zeitlichen Verlaufes der Adaptation zu der Zeitskala, auf der sich relevante Aspekte des sensorischen Eingangs verändern, (2) wie sich widersprüchliche Ansprüche bei der Prozessierung von Signalen auf die Konstruktion der Adaptation auswirken, und (3) wo Adaptationsmechanismen inner-halb der sensorischen Bahn platziert sein sollten, unter besonderer Berücksichtigung von Divergenz, Konvergenz und von Nichtlinearitäten in der Sinnesbahn.

Zusammenfassend lässt sich sagen, dass sowohl die Adaptationsmechanismen, als auch deren genaue Platzierung innerhalb der sensorischen Bahn wesentlich für Sin-nesleistungen sind. Ein umfassendes Verständnis neuronaler Adaptation ist nur unter Berücksichtigung dieser Konstruktionsprinzipien, sowie der für das Tier jeweils rele-vanten Signale möglich.

Bibliography

L. Abbott, J. Varela, K. Sen, and S. Nelson. Synaptic depression and cortical gain con-trol. Science, 275(5297):221–224, 1997.

P. Adorján, C. Piepenbrock, and K. Obermayer. Contrast adaptation and infomax in visual cortical neurons. Rev Neurosci, 10(3-4):181–200, 1999.

J. T. Albert, B. Nadrowski, and M. C. Göpfert. Mechanical signatures of transducer gating in the drosophila ear. Curr Biol, 17(11):1000–6, 2007.

J. J. Atick. Could information theory provide an ecological theory of sensory process-ing? Network-Comp Neural, 3(2):231–251, 1992.

M. Avissar, A. Furman, J. Saunders, and T. Parsons. Adaptation reduces spike-count reliability, but not spike-timing precision, of auditory nerve responses. J Neurosci, 27 (24):6461–6472, 2007.

A. Ayaz and F. S. Chance. Gain modulation of neuronal responses by subtractive and divisive mechanisms of inhibition. J Neurophysiol, 101(2):958–68, 2009.

S. M. Baca, A. Marin-Burgin, D. A. Wagenaar, and W. B. Kristan. Widespread inhibition proportional to excitation controls the gain of a leech behavioral circuit. Neuron, 57 (2):276–89, 2008.

S. A. Baccus. From a whisper to a roar: adaptation to the mean and variance of natu-ralistic sounds. Neuron, 51(6):682–4, 2006.

S. A. Baccus and M. Meister. Fast and slow contrast adaptation in retinal circuitry.

Neuron, 36(5):909–19, 2002.

S. A. Baccus and M. Meister. Retina versus cortex; contrast adaptation in parallel visual pathways. Neuron, 42(1):5–7, 2004.

T. Baden and B. Hedwig. Neurite-specificCa2+dynamics underlying sound processing in an auditory interneurone. Dev Neurobiol, 67(1):68–80, 2007.

F. Baldissera and B. Gustafsson. Firing behaviour of a neurone model based on the afterhyperpolarization conductance time course and algebraical summation. Adap-tation and steady state firing. Acta Physiol Scand, 92(1):27–47, 1974.

F. Baldissera, B. Gustafsson, and F. Parmiggiani. Adaptation in a simple neurone model compared to that of spinal motoneurones. Brain Res, 52:382–4, 1973.

H. B. Barlow. Possible principles underlying the transformation of sensory messages.

InSensory Communication, pages 217—234. MIT Press, 1961.

H. B. Barlow and W. R. Levick. The mechanism of directionally selective units in rab-bit’s retina. J Physiol (Lond), 178(3):477–504, 1965.

A. J. Bell and T. J. Sejnowski. An information-maximization approach to blind separa-tion and blind deconvolusepara-tion. Neural Comput, 7(6):1129–1159, 1995.

J. Benda. Single Neuron Dynamics — Models Linking Theory and Experiment. PhD thesis, Humboldt-Universität zu Berlin, 2002.

J. Benda and R. M. Hennig. Spike-frequency adaptation generates intensity invariance in a primary auditory interneuron. J Comput Neurosci, 2007.

J. Benda and A. V. M. Herz. A universal model for spike-frequency adaptation. Neural Comput, 15(11):2523–2564, 2003.

J. Benda, A. Longtin, and L. Maler. Spike-frequency adaptation separates transient communication signals from background oscillations.J Neurosci, 25(9):2312–21, 2005.

G. Boyan. Presynaptic inhibition of identified wind-sensitive afferents in the cercal system of the locust. J Neurosci, 8(8):2748, 1988.

G. S. Boyan. Common synaptic drive to segmentally homologous interneurons in the locust. J Comp Neurol, 321(4):544–554, 1992.

G. S. Boyan. Presynaptic contributions to response shape in an auditory neuron of the grasshopper. J Comp Physiol A, 184(3):279–294, 1999.

N. Brenner, W. Bialek, and R. de Ruyter van Steveninck. Adaptive rescaling maximizes information transmission. Neuron, 26(0896-6273):695–702, 2000.

R. Brette and W. Gerstner. Adaptive exponential integrate-and-fire model as an effec-tive description of neuronal activity. J Neurophysiol, 94(5):3637, 2005.

D. A. Brown and P. R. Adams. Muscarinic suppression of a novel voltage-sensitiveK+ current in a vertebrate neurone. Nature, 283(5748):673–6, 1980.

M. Burrows and T. Matheson. A presynaptic gain control mechanism among sensory neurons of a locust leg proprioceptor. J Neurosci, 14(1):272–82, 1994.

D. A. Butts. How much information is associated with a particular stimulus? Network, 14:177–187, 2003.

D. A. Butts and M. S. Goldman. Tuning curves, neuronal variability, and sensory cod-ing. PLoS Biol, 4(4):e92, 2006.

M. Carandini. Visual cortex: Fatigue and adaptation. Curr Biol, 10(16):R605–7, 2000.

M. Carandini and D. J. Heeger. Summation and division by neurons in primate visual cortex. Science, 264(5163):1333–6, 1994.

D. Cattaert and A. E. Manira. Shunting versus inactivation: Analysis of presynaptic inhibitory mechanisms in primary afferents of the crayfish. J Neurosci, 19(14):6079, 1999.

Bibliography F. S. Chance, S. Nelson, and L. Abbott. Synaptic depression and the temporal response

characteristics of V1 cells. J Neurosci, 18(12):4785–4799, 1998.

F. S. Chance, L. Abbott, and A. D. Reyes. Gain modulation from background synaptic input. Neuron, 35(4):773–82, 2002.

G. Chechik, M. Anderson, O. Baryosef, E. Young, N. Tishby, and I. Nelken. Reduction of information redundancy in the ascending auditory pathway. Neuron, 51(3):359–

368, 2006.

F. Clarac and D. Cattaert. Invertebrate presynaptic inhibition and motor control. Exp Brain Res, 112(2):163–80, 1996.

T. M. Cover and J. A. Thomas.Elements of Information Theory. Wiley-Interscience, Hobo-ken, NJ, 1991.

P. Dayan and L. Abbott. Theoretical Neuroscience: Computational and Mathematical Mod-eling of Neural Systems. MIT Press, Cambridge, MA, 2001.

I. Dean, N. S. Harper, and D. McAlpine. Neural population coding of sound level adapts to stimulus statistics. Nat Neurosci, 8(12):1684–1689, 2005.

D. Derdikman, C. Yu, S. Haidarliu, K. Bagdasarian, A. Arieli, and E. Ahissar. Layer-specific touch-dependent facilitation and depression in the somatosensory cortex during active whisking. J Neurosci, 26(37):9538–47, 2006.

P. Drew and L. Abbott. Models and properties of power-law adaptation in neural systems. J Neurophysiol, 96(2):826–33, 2006.

F. A. Dunn, M. J. Lankheet, and F. Rieke. Light adaptation in cone vision involves switching between receptor and post-receptor sites. Nature, 449(7162):603–6, 2007.

J. Eccles, F. Magni, and W. Willis. Depolarization of central terminals of group I afferent fibres from muscle. J Physiol (Lond), 1962.

A. L. Fairhall, G. Lewen, W. Bialek, and R. de Ruyter van Steveninck. Efficiency and ambiguity in an adaptive neural code. Nature, 412(6849):787–792, 2001.

P. Finlayson and D. Caspary. Synaptic potentials of chinchilla lateral superior olivary neurons. Hear Res, 38(3):221–228, 1989.

P. G. Finlayson and T. J. Adam. Excitatory and inhibitory response adaptation in the superior olive complex affects binaural acoustic processing. Hear Res, 103(1-2):1–18, 1997.

I. A. Fleidervish, A. Friedman, and M. J. Gutnick. Slow inactivation ofNa+current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. J Physiol (Lond), 493 (Pt 1):83–97, 1996.

N. Fourcaud-Trocmé, D. Hansel, C. van Vreeswijk, and N. Brunel. How spike genera-tion mechanisms determine the neuronal response to fluctuating inputs. J Neurosci, 23(37):11628–40, 2003.

F. Gabbiani and H. Krapp. Spike-frequency adaptation and intrinsic properties of an identified, looming-sensitive neuron. J Neurophysiol, 96(6):2951–2962, 2006.

F. Gabbiani, H. Krapp, C. Koch, and G. Laurent. Multiplicative computation in a visual neuron sensitive to looming. Nature, 420(6913):320–324, 2002.

A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis. Chapman &

Hall/CRC, Boca Raton, FL, 1995.

H. C. Gerhardt and F. Huber. Acoustic Communication in Insects and Anurans. Chicago, IL. University Of Chicago Press, 2002.

D. C. Gillespie, I. Lampl, J. S. Anderson, and D. Ferster. Dynamics of the orientation-tuned membrane potential response in cat primary visual cortex.Nat Neurosci, 4(10):

1014–9, 2001.

V. Givois and G. S. Pollack. Sensory habituation of auditory receptor neurons: impli-cations for sound localization. J Exp Biol, 203(17):2529–2537, 2000.

T. Gollisch and A. V. M. Herz. Input-driven components of spike-frequency adaptation can be unmasked in vivo. J Neurosci, 24(34):7435–44, 2004.

M. Hardt and A. Watson. Distribution of input and output synapses on the central branches of bushcricket and cricket auditory afferent neurones: Immunocytochem-ical evidence for GABA and glutamate in different populations of presynaptic bou-tons. J Comp Neurol, 403(3):281–294, 1999.

J. Heitwerth, R. Kern, J. van Hateren, and M. Egelhaaf. Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system. J Neurophysiol, 94(3):1761–1769, 2005.

R. M. Hennig. Ascending auditory interneurons in the the cricketTeleogryllus commodus (WALKER): comparative physiology and direct connections with afferents. J Comp Physiol A, 163:135–143, 1988.

R. M. Hennig and T. Weber. Filtering of parameters of the calling song by cricket fe-males of two closely related species: a behavioural analysis. J Comp Physiol A, 180(6):

621–630, 1997.

R. M. Hennig, A. Franz, and A. Stumpner. Processing of auditory information in in-sects. Microsc Res Tech, 63:351–374, 2004.

K. J. Hildebrandt, J. Benda, and R. M. Hennig. The origin of adaptation in the auditory pathway of locusts is specific to cell type and function. J Neurosci, 29(8):2626, 2009.

G. R. Holt and C. Koch. Shunting inhibition does not have a divisive effect on firing rates. Neural Comput, 9(5):1001–13, 1997.

S. Hong, B. N. Lundstrom, and A. L. Fairhall. Intrinsic gain modulation and adaptive neural coding. PLoS Comput Biol, 4(7):e1000119, 2008.

Bibliography G. Horseman and F. Huber. Sound localisation in crickets: I. Contralateral inhibition of an ascending auditory interneuron AN1 in the cricketGryllus bimaculatus. J Comp Physiol A, 175:389–398, 1994a.

G. Horseman and F. Huber. Sound localisation in crickets: II. Modelling the role of a simple neuronal network in the prothoracic ganglion. J Comp Physiol A, 175:399–413, 1994b.

A. J. Hudspeth, Y. Choe, A. D. Mehta, and P. Martin. Putting ion channels to work:

mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc Natl Acad Sci USA, 97(22):11765–72, 2000.

K. Imaizumi and G. S. Pollack. Neural coding of sound frequency by cricket auditory receptors. J Neurosci, 19(4), 1999.

K. Imaizumi and G. S. Pollack. Neural representation of sound amplitude by func-tionally different auditory receptors in crickets. J Acoust Soc Am, 109 (3):1247–1260, 2001.

N. J. Ingham and D. McAlpine. Spike-frequency adaptation in the inferior colliculus.J Neurophysiol, 91(2):632–45, 2004.

N. J. Ingham and D. McAlpine. GABAergic inhibition controls neural gain in inferior colliculus neurons sensitive to interaural time differences.J Neurosci, 25(26):6187–98, 2005.

P. Joris. Neural processing of amplitude-modulated sounds. Physiol Rev, 84(2):541–77, 2004.

P. Kara, P. Reinagel, and R. C. Reid. Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron, 27(3):635–46, 2000.

Y. Katz, J. E. Heiss, and I. Lampl. Cross-whisker adaptation of neurons in the rat barrel cortex. J Neurosci, 26(51):13363–72, 2006.

A. Kohn and J. A. Movshon. Neuronal adaptation to visual motion in area mt of the macaque. Neuron, 39(4):681–91, 2003.

R. Krahe and B. Ronacher. Long rise times of sound pulses in grasshopper songs im-prove the directionality cues received by the CNS from the auditory receptors. J Comp Physiol A, 173(4):425–434, 1993.

M. N. Kvale and C. E. Schreiner. Short-term adaptation of auditory receptive fields to dynamic stimuli. J Neurophysiol, 91(2):604–12, 2004.

L. Las, E. A. Stern, and I. Nelken. Representation of tone in fluctuating maskers in the ascending auditory system. J Neurosci, 25(6):1503–13, 2005.

S. B. Laughlin. A simple coding procedure enhances a neuron’s information capacity.

Z Naturforsch C, 36(9-10):910–2, 1981.

S. B. Laughlin. The role of sensory adaptation in the retina.J Exp Biol, 146:39–62, 1989.

Z. Li.Understanding ocular dominance from binocular dominance input statistics, chapter 1, pages 397–402. Kluwer Academic Publishers, Norwell, MA, 1995.

F. Libersat, J. Murray, and R. R. Hoy. Frequency as a releaser in the courtship song of two crickets, Gryllus bimaculatus(DE GEER) and Teleogryllus oceanicus: a neuroetho-logical analysis. J Comp Physiol A, 174:485–494, 1994.

R. Linsker. Self-organization in a perceptual network. Computer, 21:105–117, 1988.

H. Luksch, R. Khanbabaie, and R. Wessel. Synaptic dynamics mediate sensitivity to motion independent of stimulus details. Nat Neurosci, 7(4):380–388, 2004.

C. Ly and B. Doiron. Divisive gain modulation with dynamic stimuli in integrate-and-fire neurons. PLoS Comput Biol, 5(4):e1000365, 2009.

C. K. Machens, T. Gollisch, O. Kolesnikova, and A. Herz. Testing the efficiency of sensory coding with optimal stimulus ensembles. Neuron, 47(3):447–456, 2005.

D. J. C. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge Uni-versity Press, Cambridge, UK, 2003.

D. V. Madison and R. A. Nicoll. Control of the repetitive discharge of rat CA1 pyrami-dal neurones in vitro. J Physiol (Lond), 354:319–31, 1984.

A. K. Magnusson, T. J. Park, M. Pecka, B. Grothe, and U. Koch. Retrograde GABA signaling adjusts sound localization by balancing excitation and inhibition in the brainstem. Neuron, 59(1):125–37, 2008.

M. Maravall, R. Petersen, A. L. Fairhall, E. Arabzadeh, and M. Diamond. Shifts in coding properties and maintenance of information transmission during adaptation in barrel cortex. PLoS Biol, 5(2):324–334, 2007.

V. Marquart. Local interneurons mediating excitation and inhibition onto ascending neurons in the auditory pathway of grasshoppers. Naturwissenschaften, 72(1):42–44, 1985.

G. Marsat and G. S. Pollack. Differential temporal coding of rhythmically diverse acoustic signals by a single interneuron. J Neurophysiol, 92(2):939–48, 2004.

G. Marsat and G. S. Pollack. A behavioral role for feature detection by sensory bursts.

J Neurosci, 26(41):10542–10547, 2006.

D. McAlpine, D. Jiang, T. M. Shackleton, and A. R. Palmer. Responses of neurons in the inferior colliculus to dynamic interaural phase cues: evidence for a mechanism of binaural adaptation. J Neurophysiol, 83(3):1356–65, 2000.

M. D. McDonnell and N. G. Stocks. Maximally informative stimuli and tuning curves for sigmoidal rate-coding neurons and populations. Phys Rev Lett, 101(5):058103, 2008.

A. Moiseff, G. S. Pollack, and R. R. Hoy. Steering response of flying crickets to sound and ultrasound: mate attraction and predator avoidance. Proc Natl Acad Sci USA, 75 (8):4052–4056, 1978.

Bibliography M. Moore and D. Caspary. Strychnine blocks binaural inhibition in lateral superior

olivary neurons. J Neurosci, 3(1):237–242, 1983.

J. Nadal and N. Parga. Nonlinear neurons in the low-noise limit: a factorial code max-imizes information transfer. Network-Comp Neural, 1994.

K. I. Nagel and A. J. Doupe. Temporal processing and adaptation in the songbird auditory forebrain. Neuron, 51(6):845–59, 2006.

M. Nawrot, C. Boucsein, V. R. Molina, A. Riehle, A. Aertsen, and S. Rotter. Measure-ment of variability dynamics in cortical spike trains. J Neurosci Methods, 169(2):374–

390, 2008.

I. Nelken. Processing of complex stimuli and natural scenes in the auditory cortex.

Curr Opin Neurobiol, 14(4):474–480, 2004.

I. Nelken, Y. Rotman, and O. Yosef. Responses of auditory-cortex neurons to structural features of natural sounds. Nature, 397(6715):154–157, 1999.

M. Nelson. A mechanism for neuronal gain control by descending pathways. Neural Comput, 6(2):242–254, 1994.

D. Neuhofer, S. Wohlgemuth, A. Stumpner, and B. Ronacher. Evolutionarily conserved coding properties of auditory neurons across grasshopper species. Proc Roy Soc B-Biol Sci, 275(1646):1965–74, 2008.

J. E. Niven, J. C. Anderson, and S. B. Laughlin. Fly photoreceptors demonstrate energy-information trade-offs in neural coding. PLoS Biol, 5(4):829–840, 2007.

T. Nolen and R. R. Hoy. Initiation of behavior by single neurons: the role of behavioral context. Science, 226(4677):992–4, 1984.

T. Nolen and R. R. Hoy. Phonotaxis in flying crickets. II. Physiological mechanisms of two-tone suppression of the high frequency avoidance steering behavior by the calling song. J Comp Physiol A, 159(4):441–56, 1986.

T. Nolen and R. R. Hoy. Postsynaptic inhibition mediates high-frequency selectivity in the cricket Teleogryllus oceanicus: implications for flight phonotaxis behavior. J Neurosci, 7(7):2081–2096, 1987.

W. Ocker and B. Hedwig. Interneurones involved in stridulatory pattern generation in the grasshopperChorthippus mollis(CHARP.). J Exp Biol, 199(Pt 3):653–62, 1996.

I. Ohzawa, G. Sclar, and R. D. Freeman. Contrast gain control in the cat’s visual system.

J Neurophysiol, 54(3):651–667, 1985.

S. R. Olsen and R. I. Wilson. Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature, 452(7190):956–960, 2008.

D. Otte. Evolution of cricket songs. J Orthoptera Res, 1:25–29, 1992.

D. Otte and W. Cade. African Crickets (Gryllidea). 1.Teleogryllusof Eastern and South-ern Africa. Proc Natl Acad Sci USA, 135:102–127, 1983.

T. J. Park, A. Klug, M. Holinstat, and B. Grothe. Interaural level difference processing in the lateral superior olive and the inferior colliculus. J Neurophysiol, 92(1):289–301, 2004.

K. Pearson and R. Robertson. Interneurons co-activating hindleg flexor and extensor moto-neurons in the locust. J Comp Physiol A, 144:391–400, 1981.

J. L. Peña and M. Konishi. Auditory spatial receptive fields created by multiplication.

Science, 292(5515):249–52, 2001.

G. S. Pollack. Selective attention in an insect auditory neuron. J Neurosci, 8(7):2635–

2639, 1988.

G. S. Pollack. Who, what, where? Recognition and localization of acoustic signals by insects. Curr Opin Neurobiol, 10:763–767, 2000.

G. S. Pollack. Effect of the temporal pattern of contralateral inhibition on sound local-ization cues. J Neurosci, 25(26):6137–44, 2005.

G. S. Pollack and R. Martins. Flight and hearing: ultrasound sensitivity differs between flight-capable and flight-incapable morphs of a wing-dimorphic cricket species.J Exp Biol, 210:3160–3164, 2007.

J. F. A. Poulet and B. Hedwig. A corollary discharge maintains auditory sensitivity during sound production. Nature, 418(6900):872–876, 2002.

J. F. A. Poulet and B. Hedwig. A corollary discharge mechanism modulates central auditory processing in singing crickets. J Neurophysiol, 89(3):1528–1540, 2003.

S. A. Prescott and Y. D. Koninck. Gain control of firing rate by shunting inhibition:

Roles of synaptic noise and dendritic saturation.Proc Natl Acad Sci USA, 100(4):2076, 2003.

P. Prinz and B. Ronacher. Temporal modulation transfer functions in auditory receptor fibres of the locust (Locusta migratoria).J Comp Physiol A, 188(7):577–587, 2002.

D. L. Ringach and B. J. Malone. The operating point of the cortex: neurons as large deviation detectors. J Neurosci, 27(29):7673–83, 2007.

H. Römer. Die lnformationsverarbeitung tympanaler Rezeptorelemente von Locusta migratoria(Acrididae, Orthoptera).J Comp Physiol A, 109:101–122, 1976.

H. Römer and M. Krusch. A gain-control mechanism for processing of chorus sounds in the afferent auditory pathway of the bushcricketTettigonia viridissima (Orthoptera;

Tettigoniidae). J Comp Physiol A, 186(2):181–91, 2000.

H. Römer and V. Marquart. Morphology and physiology of auditory interneurons in the metathoracic ganglion of the locust. J Comp Physiol A, V155(2):249–262, 1984.

B. Ronacher and R. M. Hennig. Neuronal adaptation improves the recognition of tem-poral patterns in a grasshopper. J Comp Physiol A, 190(4):311–319, 2004.

Bibliography B. Ronacher and R. Krahe. Song recognition in the grasshopper chorthippus biguttulus is not impaired by shortening song signals: implications for neuronal encoding. J Comp Physiol A, 183(6):729–735, 1998.

C. M. Root, K. Masuyama, D. S. Green, L. E. Enell, D. R. Nässel, C.-H. Lee, and J. W.

Wang. A presynaptic gain control mechanism fine-tunes olfactory behavior. Neuron, 59(2):311, 2008.

J. Rothman, L. Cathala, V. Steuber, and R. Silver. Synaptic depression enables neuronal gain control. Nature, 457(7232):1015–1018, 2009.

P. Rudomin. In search of lost presynaptic inhibition.Exp Brain Res, 196(1):139–51, 2009.

M. B. Sachs and P. J. Abbas. Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. J Acoust Soc Am, 56(6):1835–47, 1974.

E. Salinas and P. Thier. Gain modulation: a major computational principle of the central nervous system. Neuron, 27(1):15–21, 2000.

A.-H. Samson and G. S. Pollack. Encoding of sound localization cues by an identified auditory interneuron: effects of stimulus temporal pattern. J Neurophysiol, 88(5):

2322–8, 2002.

M. V. Sanchez-Vives, L. G. Nowak, and D. A. McCormick. Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro.J Neurosci, 20(11):4286–99, 2000a.

M. V. Sanchez-Vives, L. G. Nowak, and D. A. McCormick. Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. J Neurosci, 20(11):4267–85, 2000b.

J. Schul, M. Holderied, D. von Helversen, and O. von Helversen. Directional hearing in grasshoppers: neurophysiological testing of a bioacoustic model. J Exp Biol, 202 (Pt 2):121–33, 1999.

L. Schwabe and K. Obermayer. Adaptivity of tuning functions in a generic recurrent network model of a cortical hypercolumn. J Neurosci, 25(13):3323–32, 2005.

A. Selverston, H.-U. Kleindienst, and F. Huber. Synaptic connectivity between cricket auditory interneurons as studied by selective photoinactivation. J Neurosci, 5(5):

1283–1292, 1985.

T. O. Sharpee, H. Sugihara, A. V. Kurgansky, S. P. Rebrik, M. P. Stryker, and K. D. Miller.

Adaptive filtering enhances information transmission in visual cortex. Nature, 439 (7079):936–942, 2006.

E. Sobel and D. Tank. In vivoCa2+dynamics in a cricket auditory neuron: an example of chemical computation. Science, 263:863–826, 1994.

S. G. Solomon, J. W. Peirce, N. T. Dhruv, and P. Lennie. Profound contrast adaptation early in the visual pathway. Neuron, 42(1):155–62, 2004.

A. Stumpner and B. Ronacher. Auditory interneurones in the metathoracic ganglion of the grasshopperChorthippus biguttulus: I. Morphological and physiological charac-terization. J Exp Biol, 158(1):391–410, 1991.

A. Stumpner and B. Ronacher. Neurophysiological aspects of song pattern recognition and sound localization in grasshoppers. Am Zool, 34(6):696–705, 1994.

C. Sutherland, B. Doiron, and A. Longtin. Feedback-induced gain control in stochastic spiking networks. Biol Cybern, 100(6):475–89, 2009.

Y. Tadmor and D. J. Tolhurst. Calculating the contrasts that retinal ganglion cells and lgn neurones encounter in natural scenes. Vision Res, 40(22):3145–3157, 2000.

B. Todd. The identification of peaks in physiological signals. Comput Biomed Res, 32(4):

322–35, 1999.

P. Torkkeli, S.-I. Sekizawa, and A. French. Inactivation of Voltage-Activated Na+ Currents Contributes to Different Adaptation Properties of Paired Mechanosensory Neurons. J Neurophysiol, 85(4):1595–1602, 2001.

N. Ulanovsky. Processing of low-probability sounds by cortical neurons. Nat Neurosci, 6(4):391–8, 2003.

N. Ulanovsky, L. Las, D. Farkas, and I. Nelken. Multiple time scales of adaptation in auditory cortex neurons. J Neurosci, 24(46):10440–10453, 2004.

A. Vogel and B. Ronacher. Neural correlations increase between consecutive processing levels in the auditory system of locusts. J Neurophysiol, 97(5):3376–3385, 2007.

A. Vogel, R. M. Hennig, and B. Ronacher. Increase of neuronal response variability at higher processing levels as revealed by simultaneous recordings. J Neurophysiol, 93 (6):3548–3559, 2005.

D. von Helversen and J. Rheinlaender. Interaural intensity and time discrimination in an unrestraint grasshopper – a tentative behavioral-approach. J Comp Physiol A, 162 (3):333–340, 1988.

D. von Helversen and O. von Helversen. Acoustic pattern recognition and orientation in orthopteran insects: parrallel or serial processing. J Comp Physiol A, 177:767–774,

D. von Helversen and O. von Helversen. Acoustic pattern recognition and orientation in orthopteran insects: parrallel or serial processing. J Comp Physiol A, 177:767–774,