• Keine Ergebnisse gefunden

Here we list the coupling coefficients of the fifth order amplitude equations Eq. (6.16).

giii = 0

N3h

N3h

N3h

N3h

eı~kj~x,( ˆL0)−1N3[e−ı~kj~x, eı~ki~x, e−ı~kk~x], eı~kk~xi + N3h

eı~kj~x,( ˆL0)−1N3[eı~ki~x, e−ı~kj~x, e−ı~kk~x], eı~kk~xi + N3h

e−ı~kj~x,( ˆL0)−1N3[eı~kj~x, eı~ki~x, eı~kk~x], e−ı~kk~xi + N3

h

e−ı~kj~x,( ˆL0)−1N3[eı~ki~x, eı~kj~x, eı~kk~x], e−ı~kk~xi + N3h

e−ı~kj~x,( ˆL0)−1N3[eı~kj~x, eı~ki~x, e−ı~kk~x], eı~kk~xi + N3

h

e−ı~kj~x,( ˆL0)−1N3[eı~ki~x, eı~kj~x, e−ı~kk~x], eı~kk~xi + N3h

( ˆL0)−1N3[e−ı~kj~x, eı~ki~x, eı~kk~x], eı~kj~x, e−ı~kk~xi + N3h

( ˆL0)−1N3[eı~ki~x, e−ı~kj~x, eı~kk~x], eı~kj~x, e−ı~kk~xi + N3h

( ˆL0)−1N3[e−ı~kj~x, eı~ki~x, e−ı~kk~x], eı~kj~x, eı~kk~xi + N3h

( ˆL0)−1N3[eı~ki~x, e−ı~kj~x, e−ı~kk~x], eı~kj~x, eı~kk~xi + N3h

( ˆL0)−1N3[eı~kj~x, eı~ki~x, eı~kk~x], e−ı~kj~x, e−ı~kk~xi + N3h

( ˆL0)−1N3[eı~ki~x, eı~kj~x, eı~kk~x], e−ı~kj~x, e−ı~kk~xi + N3

h

( ˆL0)−1N3[eı~kj~x, eı~ki~x, e−ı~kk~x], e−ı~kj~x, eı~kk~xi + N3h

( ˆL0)−1N3[eı~ki~x, eı~kj~x, e−ı~kk~x], e−ı~kj~x, eı~kk~xi

[1] A. J. Koch and H. Meinhardt, Biological pattern formation: From basic mechanisms to complex structures, Rev. Mod. Phys. 66(4) (1994).

[2] E. Bodenschatz, W. Pesch, and G. Ahlers, Recent Developments in Rayleigh-B´enard Convection, Annu. Rev. Fluid Mech. 32, 709–778 (2000).

[3] F. H. Busse, Non-linear properties of thermal convection, Rep. Prog. Phys.41 (1978).

[4] M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod.

Phys. 65, 851–1112 (1993).

[5] R. S. Bennink, V. Wong, A. M. Marino, D. L. Aronstein, and R. W. Boyd, Honeycomb pattern formation by Laser-Beam Filamentation in Atomic Sodium Vapor, Phys. Rev.

Lett.88(11), 113901 (2002).

[6] W. Zhang and J. Vinals, Pattern formation in weakly damped parametric surface waves, J. Fluid Mech. 336, 301–330 (1997).

[7] A. Kudrolli and J. P. Gollub, Patterns and spatiotemporal chaos in parametrically forced surface waves: a systematic survey at large aspect ratio, Physica D97, 133–154 (1996).

[8] J. H. Kaas, R. J. Nelson, M. Sur, C. S. Lin, and M. M. Merzenich, Multiple repre-sentations of the body within the primary somatosensory cortex of primates, Science 204(4392), 521–523 (1979).

[9] J. F. Olsen, E. I. Knudsen, and S. D. Esterly, Neural maps of interaural time and intensity differences in the optic tectum of the barn owl, J. Neurosci. 9, 2591–2605 (1989).

[10] D. L. Adams, L. C. Sincich, and J. C. Horton, Complete Pattern of Ocular Dominance Columns in Human Primary Visual Cortex, J. Neurosci.27(39), 10391–10403 (2007).

[11] E. Yacoub, N. Harel, and K. Ugurbil, High-field fMRI unveils orientation columns in humans, PNAS105(30), 10607–10612 (2008).

[12] V. Braitenberg and A. Sch¨utz, Cortex: Statistics and Geometry of Neuronal Connec-tivity, Springer, Berlin, 1998.

[13] A. Soward, Bifurcation and stability of finite amplitude convection in a rotating layer, Physica D14, 227–241 (1985).

[14] J. Lega, J. V. Moloney, and A. C. Newell, Swift-Hohenberg Equation for Lasers, Phys.

Rev. Lett.73, 2978 (1994).

[15] N. V. Swindale, A model for the formation of orientation columns, Proc. R. Soc. Lond.

B215, 211–230 (1982).

[16] M. Kaschube,Pattern Selection in the Visual Cortex, PhD thesis, G¨ottingen University, 2005.

[17] A. A. Koulakov and D. B. Chklovskii, Orientation Preference Patterns in Mammalian Visual Cortex: A Wire Length Minimization Approach, Neuron29(2), 519–527 (2001).

[18] F. Wolf and T. Geisel, Spontaneous pinwheel annihilation during visual development, Nature395, 73–78 (1998).

[19] H. Y. Lee, M. Yahyanejad, and M. Kardar, Symmetry considerations and development of pinwheels in visual maps, PNAS100(26), 16036–16040 (2003).

[20] M. W. Cho and S. Kim, Understanding Visual Map Formation through Vortex Dynam-ics of Spin Hamiltonian Models, Phys. Rev. Lett. 92(1), 018101 (2004).

[21] N. V. Swindale, Coverage and the design of striate cortex, Biol. Cybern.65, 415–424 (1991).

[22] N. V. Swindale, The development of topography in the visual cortex: A review of models, Network 7 (1996).

[23] N. V. Swindale, D. Shoham, A. Grinwald, T. Bonhoeffer, and M. H¨ubener, Visual cortex maps are optimized for uniform coverage, Nature Neuroscience3, 822–826 (2000).

[24] N. V. Swindale, How different feature spaces may be represented in cortical maps, Network: Comput. Neural Syst. 15, 217–242 (2004).

[25] A. A. Koulakov and D. B. Chklovskii, Direction of motion maps in the visual cortex:

a wire length minimization approach, Neurocomputing 44-46, 489–494 (2002).

[26] D. H. Hubel and T. N. Wiesel, Functional Architecture of Macaque Monkey Visual Cortex, Proc. R. Soc. London198, 1–59 (1977).

[27] F. Hoffs¨ummer, F. Wolf, T. Geisel, S. L¨owel, and K. E. Schmidt, Sequential Bifurcation and Dynamical Rearrangement of Columnar Patterns during Cortical Development, Comput. Neural. Syst. (1996).

[28] G. J. Goodhill and A. Cimponeriu, Analysis of the elastic net model applied to the formation of ocular dominance and orientation columns, Comput. Neural. Syst. 11, 153–168 (2000).

[29] M. A. Carreira-Perpinan, R. J. Lister, and G. J. Goodhill, A Computational Model for the Development of Multiple Maps in Primary Visual Cortex, Cereb. Cortex 15, 1222–1233 (2005).

[30] H. Yu, B. J. Farley, D. Z. Jin, and M. Sur, The Coordinated Mapping of Visual Space and Response Features in Visual Cortex, Neuron47, 267–280 (2005).

[31] E. Erwin, K. Obermayer, and K. Schulten, Models of Orientation and Ocular Dominance Columns in the Visual Cortex: A Critical Comparison, Neural Computation7(3), 425–

468 (1995).

[32] K. Obermayer, G. G. Blasdel, and K. Schulten, Statistical-mechanical analysis of self-organization and pattern formation during the development of visual maps, Phys. Rev.

A 45(10), 7568–7589 (1992).

[33] B. J. Farley, H. Yu, D. Z. Jin, and M. Sur, Alteration of Visual Input Results in a Coordinated Reorganization of Multiple Visual Cortex Maps, J. Neurosci. 27, 10299–

10310 (2007).

[34] N. V. Swindale, How many maps are there in visual cortex?, Cereb. Cortex10, 633–634 (2000).

[35] J. A. Bednar and R. Miikkulainen, Joint maps for orientation, eye, and direction preference in a self-organizing model of V1, Neurocomputing 69(10-12), 1272–1276 (2006).

[36] H. Nakagama, T. Tani, and S. Tanaka, Theoretical and experimental studies of rela-tionship between pinwheel centers and ocular dominance columns in the visual cortex, Neuroscience Research 55(4), 370–382 (2006).

[37] S. Grossberg and S. J. Olson, Rules for the Cortical Map of Ocular Dominance and Orientation Columns, Neural Networks7, 883–894 (1994).

[38] D. M. Pierre, Modeling Orientation and Ocular Dominance Columns in the Visual Cortex, PhD thesis, MIT, 1997.

[39] W. H. Bosking, Y. Zhang, B. Schofield, and D. Fitzpatrick, Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex, J. Neurosci.

17(6), 2112–2127 (1997).

[40] K. S. Rockland and J. S. Lund, Widespread periodic intrinsic connections in the tree shrew visual cortex, Science 215, 1532–1534 (1982).

[41] L. C. Sincich and G. G. Blasdel, Oriented Axon Projections in Primary Visual Cortex of the Monkey, J. Neurosci. 21(12), 4416–4428 (2001).

[42] L. E. White, D. M. Coppola, and D. Fitzpatrick, The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex, Nature 411, 1049 (2001).

[43] M. Weliky and L. C. Katz, Functional mapping of horizontal connections in developing ferret visual cortex: experiments and modeling, J. Neurosci. 14, 7291–7305 (1994).

[44] C. D. Gilbert and T. N. Wiesel, Morphology and intracortical projections of functionally characterized neurons in the cat visual cortex, Nature280 (1979).

[45] C. D. Gilbert and T. N. Wiesel, Clustered intrinsic connections in cat visual cortex, J.

Neurosci. 3, 1116–1133 (1983).

[46] Z. F. Kisvarday, E. Toth, M. Rausch, and U. T. Eysel, Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat, Cerebral Cortex7, 605–618 (1997).

[47] E. M. Callaway and L. C. Katz, Emergence and Refinement of Clustered Horizontal Connections in Cat Striate Cortex, J. Neurosci. 10(4), 1134–1153 (1990).

[48] S. L¨owel and W. Singer, Selection of intrinsic horizontal connections in the visual cortex by correlated neuronal activity, Science255, 209–212 (1992).

[49] F. Wolf, Symmetry, Multistability and Long-Range Interactions in Brain Development, Phys. Rev. Lett.95, 208701 (2005).

[50] F. Wolf, Les houches 2003 lecture notes. Methods and Models in neurophysics, Elsevier, Amsterdam, 2005.

[51] D. Hannula, D. Simons, and N. J. Cohen, Imaging implicit perception: promise and pitfalls, Nature Reviews Neuroscience 6 (2005).

[52] O. Creutzfeldt, Cortex Cerebri: Performance, structural and functional organization of the cortex, Oxford University Press, 1995.

[53] S. LeVay and S. B. Nelson, Columnar organization of the visual cortex, inVision and Visual Dysfunction, pages 266–315, Macmillan, 1991.

[54] A. Das, Cortical Maps: Where theory meets experiments, Neuron47, 168–171 (2005).

[55] M. Kaschube, F. Wolf, M. Puhlmann, S. Rathjen, K. E. Schmidt, T. Geisel, and S. L¨owel, The pattern of ocular dominance columns in cat primary visual cortex:

Intra- and interindividual variability of column spacing and its dependence on genetic background, Eur. J. Neurosci.18, 3251–3266 (2003.).

[56] J. C. Horton and D. R. Hocking, Intrinsic Variability of Ocular Dominance Column Periodicity in Normal Macaque Monkeys, J. Neurosci. 16, 7228–7339 (1996).

[57] N. P. Issa, J. T. Trachtenberg, B. Chapman, K. R. Zahs, and M. P. Stryker, The Critical Period for Ocular Dominance Plasticity in the Ferret’s Visual Cortex, J. Neurosci.

19(16), 6965–6978 (1999).

[58] M. C. Crair, D. C. Gillespie, and M. P. Stryker, The Role of Visual Experience in the Development of Columns in Cat Visual Cortex, Science279, 556–570 (1998).

[59] M. Y. Frenkel and M. F. Bear, How Monocular Deprivation Shifts Ocular Dominance in Visual Cortex of Young Mice, Neuron44, 917–923 (2004).

[60] K. Ohki, S. Chung, P. Kara, M. H¨ubener, T. Bonhoeffer, and R. C. Reid, Highly ordered arrangement of single neurons in orientation pinwheels, Nature442(24), 925 (2006).

[61] N. D. Mermin, The topological theory of defects in ordered media, Rev. Mod. Phys.

51(3) (1979).

[62] K. Obermayer and G. G. Blasdel, Singularities in Primate Orientation Maps, Neural Computation 9, 555–575 (1997).

[63] S. C. Rao, L. J. Toth, and M. Sur, Optically imaged maps of orientation preference in primary visual cortex of cats and ferrets, J. Comp. Neurol. 387, 358–370 (1997).

[64] T. M¨uller, M. Stetter, M. H¨ubener, F. Sengpiel, T. Bonhoeffer, I. G¨odeke, B. Chap-man, S. L¨owel, and K. Obermayer, An Analysis of Orientation and Ocular Dominance Patterns in the Visual Cortex of Cats and Ferrets, Neural Computation 12, 2573–2595 (2000).

[65] A. Shmuel and A. Grinwald, Functional Organization for Direction of Motion and Its Relationship to Orientation Maps in Cat Area 18, J. Neurosci. 16(21), 6945–6964 (1996).

[66] Y. Li, D. Fitzpatrick, and L. E. White, The development of direction selectivity in ferret visual cortex requires early visual experience, Nature Neuroscience 9(5) (2006).

[67] N. P. Issa, C. Trepel, and M. P. Stryker, Spatial Frequency Maps in Cat Visual Cortex, J. Neurosci. 15, 8504–8514 (2000).

[68] M. H¨ubener, D. Shoham, A. Grinwald, and T. Bonhoeffer, Spatial Relationships among Three Columnar Systems in Cat Area 17, J. Neurosci. 17(23), 9270–9284 (1997).

[69] K. E. Schmidt, D.-S. Kim, W. Singer, T. Bonhoeffer, and S. L¨owel, Functional Speci-ficity of Long-Range Intrinsic and Interhemispheric Connections in the Visual Cortex of Strabismic Cats, J. Neurosci.17(14), 5480–5492 (1997).

[70] J. Matsubara, M. Cynader, and N. V. Swindale, Anatomical properties and physio-logical correlates of the intrinsic connections in cat area 18, J. Neurosci. 7, 1428–1446 (1987).

[71] T. Yoshioka, G. G. Blasdel, J. B. Levitt, and J. S. Lund, Relation between Patterns of Intrinsic Lateral Connectivity, Ocular Dominance, and Cytochrome Oxidase-Reactive Regions in Macaque Monkey Striate Cortex, Cerebral Cortex 6, 297–310 (1996).

[72] R. Malach, Y. Amir, M. Harel, and A. Grinwald, Relationship between intrinsic con-nections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex, Proc. Natl. Acad. Sci. U.S.A. 90, 10469–

10473 (1993).

[73] S. L¨owel, K. E. Schmidt, D.-S. Kim, F. Wolf, F. Hoffs¨ummer, W. Singer, and T. Bonho-effer, The layout of orientation and ocular dominance domains in area 17 of strabismic cats, Eur. J. Neurosci. 10, 2629–2643 (1998).

[74] M. C. Crair, E. S. Ruthazer, D. C. Gillespie, and M. P. Stryker, Ocular Dominance Peaks at Pinwheel Center Singularities of the Orientation Map in Cat Visual Cortex, J. Neurophysiol. 77, 3381–3385 (1997).

[75] K. Obermayer and G. G. Blasdel, Geometry of orientation and ocular dominance columns in monkey striate cortex, J. Neurosci.13, 4114–4129 (1993).

[76] S. D. Van Hooser, A. J. Heimel, S. Chung, S. B. Nelson, and L. J. Toth, Orientation Selectivity without Orientation Maps in Visual Cortex of a Highly Visual Mammal, J.

Neurosci. 25(1), 19–28 (2005).

[77] J. C. Horton and D. R. Hocking, Anatomical Demonstration of Ocular Dominance Columns in Striate Cortex of the Squirrel Monkey, J. Neurosci. 16(17), 5510–5522 (1996).

[78] D. L. Adams and J. C. Horton, Capricious expression of cortical columns in the primate brain, Nature Neuroscience 6(2) (2003).

[79] M. Kaschube, F. Wolf, T. Geisel, and S. L¨owel, Genetic Influence on Quantitative Features of Neocortical Architecture, J. Neurosci. 22(16), 7206–7217 (2002).

[80] S. LeVay, M. Connolly, and D. C. Van Essen, The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey, J. Neurosci. 5, 486–501 (1985).

[81] M. Sur and C. A. Leamey, Development and Plasticity of cortical areas and networks, Nature Reviews Neuroscience 2, 251 (2001).

[82] L. E. White and D. Fitzpatrick, Vision and Cortical Map Development, Neuron56(2), 327–338 (2007).

[83] J. C. Crowley and L. C. Katz, Early Development of Ocular Dominance Columns, Science290(5495), 1321–1324 (2000).

[84] F. Sengpiel, P. Stawinski, and T. Bonhoeffer, Influence of experience on orientation maps in cat visual cortex, Nature Neuroscience 2(8) (1999).

[85] B. Chapman, M. D. Jacobson, H. O. Reiter, and M. P. Stryker, Ocular dominance shift in kitten visual cortex caused by imbalance in retinal electrical activity, Nature 324, 154–156 (1986).

[86] M. I. Law and M. Constantine-Paton, Eye-Specific Termination Bands in Tecta of Three-Eyed Frogs, Science202, 639–641 (1978).

[87] J. Sharma, A. Angelucci, and M. Sur, Induction of visual orientation modules in audi-tory cortex, Nature 404, 841–847 (2000).

[88] B. Godde, R. Leonhardt, S. M. Cords, and H. R. Dinse, Plasticity of Orientation preference maps in the visual cortex of adult cats, PNAS 99(9) (2002).

[89] B. Chapman, M. P. Stryker, and T. Bonhoeffer, Development of Orientation Preference Maps in Ferret Primary Visual Cortex, J. Neurosci.16(20), 6443–6453 (1996).

[90] J. C. Horton and D. R. Hocking, An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience, J. Neurosci.16, 1791–1807 (1996).

[91] T. N. Wiesel and D. H. Hubel, Ordered arrangement of orientation columns in monkeys lacking visual experience, J. Comp. Neurol. 158(3), 307–318 (1974).

[92] G. G. Blasdel, K. Obermayer, and L. Kiorpes, Organization of ocular dominance and orientation columns in the striate cortex of neonatal macaque monkeys, Visual Neuro-science 12, 589–603 (1995).

[93] S. LeVay, M. P. Stryker, and C. J. Shatz, Ocular dominance columns and their devel-opment in layer IV of the cat’s visual cortex: A quantitative study, J. Comp. Neurol.

179, 223–244 (1978).

[94] F. Wolf, K. Pawelzik, O. Scherf, T. Geisel, and S. L¨owel, How can squint change the spacing of ocular dominance columns?, J. Physiol. 94, 525–537 (2000).

[95] J. B. Swift and P. C. Hohenberg, Hydrodynamic fluctuations at the convective insta-bility, Phys. Rev. A15, 319–328 (1977).

[96] M. Schnabel, A Symmetry of the Visual World in the Architecture of the Visual Cortex, PhD thesis, G¨ottingen University, 2008.

[97] M. C. Cross and H. Greenside, Pattern Formation and Dynamics in Nonequilibrium Systems, Cambride University Press, 2009.

[98] V. Braitenberg and C. Braitenberg, Geometry of Orientation Columns in the Visual Cortex, Biol. Cybern. (33), 179–186 (1979).

[99] M. W. Cho and S. Kim, Different Ocular Dominance Map Formation Influenced by Orientation Preference Columns in Visual Cortices, Phys. Rev. Lett.94, 068701 (2005).

[100] M. Huang, Spatio-Temporal Dynamics of Pattern Formation in the Cerebral Cortex, PhD thesis, G¨ottingen University, 2009.

[101] A. Brabska-Barwinska and C. von der Malsburg, Establishment of a Scaffold for Orien-tation Maps in Primary Visual Cortex of Higher Mammals, J. Neurosci.28(1), 249–257 (2008).

[102] R. Durbin and G. J. Mitchison, A dimension reduction framework for understanding cortical maps, Nature 343, 644–647 (1990).

[103] A. Das and C. D. Gilbert, Distortions of visuotopic map match orientation singularities in primary visual cortex, Nature387, 594–598 (1997).

[104] G. J. Mitchison and N. V. Swindale, Can Hebbian Volume Learning Explain Disconti-nuities in Cortical Maps?, Neural Computation 11, 1519–1526 (1999).

[105] R. M. Gray, Toeplitz and Circulant matrices: A review, Communications and Infor-mation Theory2(3), 155–239 (2005).

[106] R. Lifshitz and D. M. Petrich, Theoretical Model for Faraday Waves with Multiple-Frequency Forcing, Phys. Rev. Lett.79(7), 1261–1264 (1997).

[107] J. C. Crowley and L. C. Katz, Development of ocular dominance columns in the absence of retinal input, Nature Neuroscience2, 1125–30 (1999).

[108] E. Bartfeld and A. Grinwald, Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex, PNAS89(24), 11905–11909 (1992).

[109] R. Engelmann, J. M. Crook, and S. L¨owel, Optical imaging of orientation and ocular dominance maps in area 17 of cats with convergent strabismus, Visual Neuroscience 19, 39–49 (2002).

[110] L. E. White, W. H. Bosking, and D. Fitzpatrick, Consistent mapping of orientation pref-erence across irregular functional domains in ferret visual cortex, Visual Neuroscience 18, 65–76 (2001).

[111] Y. Matsuda, K. Ohki, T. Saito, A. Ajima, and D.-S. Kim, Coincidence of ipsilateral ocular dominance peaks with orientation pinwheel centers in cat visual cortex, Neu-roReport 11(15), 3337–3343 (2000).

[112] F. Hoffs¨ummer, F. Wolf, T. Geisel, S. L¨owel, and K. E. Schmidt, Sequential bifurcation of orientation– and ocular dominance maps, page 535, Paris, 1995, EC2 & Cie.

[113] F. Hoffs¨ummer, F. Wolf, T. Geisel, K. E. Schmidt, and S. L¨owel, Sequential emergence of orientation– and ocular dominance maps, in Learning and Memory, Proceedings of the 23rd G¨ottingen Neurobiology Conference 1995, edited by N. Elsner and R. Menzel, page 97, Stutttgart, 1997, Thieme Verlag.

[114] M. I. Law and M. Constantine-Paton, Anatomy and Physiology of Experimentally Produced Striped Tecta, J. Neurosci. 1, 741–759 (1981).

[115] D. G. Jones, R. C. Van Sluyters, and K. M. Murphy, A Computational Model for the Overall Pattern of Ocular Dominance, J. Neurosci. 11(12), 3794–3808 (1991).

[116] D. Heide, Nonlinear Dynamics of Large Scale Patterns in the Visual Cortex, Master’s thesis, University Goettingen, 2005.

[117] B. A. Malomed, A. A. Nepomnyashchy, and M. I. Tribelsky, Two-dimensional quasiperi-odic structures in nonequilibrium systems, Zh. Eksp. Teor. Fiz.96, 684–700 (1989).

[118] A. M. Rucklidge and W. J. Rucklidge, Convergence properties of the 8,10 and 12 mode representations of quasipatterns, Physica D178, 62–82 (2003).

[119] F. Wolf, Strukturbildung in der Entwicklung des visuellen Kortex, PhD thesis, Goethe University, Frankfurt, 1999.

[120] P. Mannevile, Dissipative Structures and Weak Turbulence, Academic Press, 1990.

[121] L. Reichl, S. L¨owel, and F. Wolf, Pinwheel stabilization by ocular dominance segrega-tion, Phys. Rev. Lett. 102, 208101 (2009).

[122] G. Afshar, Simulation and Analysis of Neuronal Pattern Formation in the Visual Cortex, Master’s thesis, G¨ottingen University, 2009.

[123] S. L¨owel and W. Singer, Tangential intracortical pathways and the development of iso-orientation bands in cat striate cortex, Brain Research 56(1), 99–106 (1990).

[124] M. C. Cross and A. C. Newell, Convection patterns in large aspect ratio systems, Physica D10, 299–328 (1984).

[125] P. N. Brown and Y. Saad, Hybrid Krylov Methods for Nonlinear Systems of Equations, J. Sci. and Stat. Comput.11, 450–481 (1990).

[126] D. J. E. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, 1983.

[127] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, PETSc Web page, 2001.

[128] W. H. Press, Numerical recipes in C: The art of scientific computing, Cambridge University Press, 1992.

After all those years, there is a long list of people who contributed in some way to this thesis, for which I would like to express thanks.

I thank Theo Geisel for giving me the opportunity to work in his group. He provided excellent working conditions and heads an vigorous institute with a great atmosphere.

I would like to thank my supervisor Fred Wolf. He provided me with many helpful suggestions, important advice and gave me the freedom to pursue own ideas. His en-thusiasm on the project often helped me to overcome doubts and frustration.

I also wish to thank Siegrid L¨owel for helpful suggestions and many biological insights.

I would like to thank the map folks: Ghazaleh Afshar, Matthias Kaschube, Michael Schnabel, Min Huang, and Wolfgang Keil. In particular, I would like to thank Dominik Heide for his constant help with numerical problems. I thank Dmitry Tsigankov for interesting discussions and re-establishing the ’map club’.

I thank Oliver Bendix with whom I shared a room for all these years. Oliver has always a helping hand and found quick solutions whenever I felt in trouble with linux. Owing to him I learned a lot of science beyond the borders of my own work.

Denny Fliegner and Yorck-Fabian Beensen provided me assistance in numerous com-puter problems.

I thank Corinna Trautsch, Katharina Jeremias, Regina Wunderlich, Tanja Gindele, and Tobias Niemann for management and support.

I thank Michelle Monteforte and Hecke Degering for critically reading the manuscript.

Thanks to all the members of the Department of Nonlinear Dynamics.

I owe many thanks to friends for their patience in the past years.

I would like to thank my family for their constant support.

Finally, I want to thank Jasmin Held. Without her understanding, help, and encour-agement this study would not have been completed.

Name: Lars Reichl Geburtsdatum: 26. Oktober 1976

Geburtsort: Sinsheim

Staatsangeh¨origkeit: deutsch

Familienstand: ledig

Ausbildung

6/1997 Abitur, Willy-Hellpach-Schule, Heidelberg 10/1998–12/2003 Studium der Physik,

Ruprecht-Karls-Universit¨at, Heidelberg

10/2000 Vordiplom in Physik

12/2002–12/2003 Diplomarbeit, Institut f¨ur theoretische Physik, Ruprecht-Karls-Universit¨at, Heidelberg

Titel der Arbeit: “Composite gauge fields and localization in extra dimensions”

12/2003 Diplom in Physik

seit 05/2004 Wissenschaftlicher Mitarbeiter am Max Planck Institut f¨ur Dynamik und Selbstorganisation, G¨ottingen

seit 04/2005 Promotionsstudium, Institut f¨ur Nichtlineare Dynamik, Georg-August-Universit¨at, G¨ottingen

G¨ottingen, 5. April 2010