• Keine Ergebnisse gefunden

124

References

125

7 References

1. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nature Reviews Genetics 2010; 11(9):597-610.

2. Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and function.

Thrombosis and Haemostasis 2012; 107(4):605-10.

3. Ma JB, Ye K, Patel DJ. Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 2004; 429(6989):318-22.

4. Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA.

Nature 2004; 431(7006):343-9.

5. Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nature Reviews Genetics 2007; 8(3):173-84.

6. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;

136(2):215-33.

7. Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003; 115(2):209-16.

8. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 2005; 433(7027):769-73.

9. Yates LA, Norbury CJ, Gilbert RJ. The long and short of microRNA. Cell 2013;

153(3):516-9.

10. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nature Reviews Molecular Cell Biology 2005; 6(5):376-85.

11. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2):281-97.

12. Guzman-Villanueva D, El-Sherbiny IM, Herrera-Ruiz D, Vlassov AV, Smyth HD.

Formulation approaches to short interfering RNA and MicroRNA: challenges and implications. Journal of Pharmaceutical Sciences 2012; 101(11):4046-66.

13. Müller K, Wagner E. RNAi-based Nano-Oncologicals – Delivery and Clinical Applications. In: Alonso MJ, Garcia-Fuentes M, editors. Nano-Oncologicals: New Targeting and Delivery Approaches: Controlled Release Society and Springer; 2014;

245-68.

14. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411(6836):494-8.

15. Kim HJ, Kim A, Miyata K, Kataoka K. Recent progress in development of siRNA delivery vehicles for cancer therapy. Advanced Drug Delivery Reviews 2016; 104:61-77.

16. Hatakeyama H, Wu SY, Mangala LS, Lopez-Berestein G, Sood AK. Assessment of In Vivo siRNA Delivery in Cancer Mouse Models. Methods in Molecular Biology 2016;

1402:189-97.

17. Wu SY, Lopez-Berestein G, Calin GA, Sood AK. RNAi therapies: drugging the undruggable. Science Translational Medicine 2014; 6(240):240ps7.

18. Edinger D, Kläger R, Troiber C, Dohmen C, Wagner E. Gene Silencing and Antitumoral Effects of Eg5 or Ran siRNA Oligoaminoamide Polyplexes. Drug Delivery and Translational Research 2013; 4(1):84-95.

19. Bartlett DW, Davis ME. Insights into the kinetics of siRNA-mediated gene silencing from live-cell and live-animal bioluminescent imaging. Nucleic Acids Research 2006; 34(1):322-33.

20. Zimmermann TS, Lee AC, Akinc A, et al. RNAi-mediated gene silencing in non-human primates. Nature 2006; 441(7089):111-4.

21. Haussecker D. The Business of RNAi Therapeutics in 2012. Molecular Therapy-Nucleic Acids 2012; 1:e8.

126 22. Haussecker D, Kay MA. RNA interference. Drugging RNAi. Science 2015;

347(6226):1069-70.

23. Davis ME. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Molecular Pharmaceutics 2009; 6(3):659-68.

24. Davis ME, Zuckerman JE, Choi CH, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010; 464 1067-70.

25. Zuckerman JE, Davis ME. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nature Reviews Drug Discovery 2015; 14(12):843-56.

26. Santel A, Aleku M, Keil O, et al. A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Therapy 2006; 13(16):1222-34.

27. Aleku M, Schulz P, Keil O, et al. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Research 2008; 68(23):9788-98.

28. Schultheis B, Strumberg D, Santel A, et al. First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors.

Journal of Clinical Oncology 2014; 32(36):4141-8.

29. Schultheis B. SD, Kuhlmann J., Wolf M., Link K., Seufferlein, T., Kaufmann J., Gebhardt F., Bruyniks N., Pelzer U. A phase Ib/IIa study of combination therapy with gemcitabine and Atu027 in patients with locally advanced or metastatic pancreatic adenocarcinoma. Journal of Clinical Oncology 2016; 34:385.

30. Tabernero J, Shapiro GI, LoRusso PM, et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discovery 2013; 3(4):406-17.

31. Bouchie A. First microRNA mimic enters clinic. Nature Biotechnology 2013;

31(7):577.

32. Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, Weidhaas JB, Bader AG, Slack FJ. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Molecular Therapy 2011; 19(6):1116-22.

33. Beg M.S. BA, Sachdev J., Ejadi S., Borad M., Kang Y., Lim H., Kim T., Bader A., Stoudemire J., Smith S., Kim S., Hong D. Abstract C43: Safety, tolerability, and clinical activity of MRX34, the first-in-class liposomal miR-34 mimic, in patients with advanced solid tumors. Molecular Cancer Therapeutics 2015; 14(12).

34. Beg M.S. BM, Sachdev J., Hong D.S., Smith S., Bader A., Stoudemire J., Kim S., Brenner A. Abstract CT327: Multicenter phase I study of MRX34, a first-in-class microRNA miR-34 mimic liposomal injection. Cancer Research 2014; 74(19 Suppl).

35. Yazbeck DR, Min KL, Damha MJ. Molecular requirements for degradation of a modified sense RNA strand by Escherichia coli ribonuclease H1. Nucleic Acids Research 2002; 30(14):3015-25.

36. Kanasty RL, Whitehead KA, Vegas AJ, Anderson DG. Action and reaction: the biological response to siRNA and its delivery vehicles. Molecular Therapy 2012;

20(3):513-24.

37. Soutschek J, Akinc A, Bramlage B, et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004; 432(7014):173-8.

38. Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L, Linsley PS.

Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. RNA 2006; 12(7):1179-87.

39. Birmingham A, Anderson EM, Reynolds A, et al. 3' UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nature Methods 2006; 3(3):199-204.

References

127 40. Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK. RNA interference in the clinic: challenges and future directions. Nature Reviews Cancer 2011;

11(1):59-67.

41. Medzhitov R, Janeway CA, Jr. Decoding the patterns of self and nonself by the innate immune system. Science 2002; 296(5566):298-300.

42. Rettig GR, Behlke MA. Progress toward in vivo use of siRNAs-II. Molecular Therapy 2012; 20(3):483-512.

43. Seth RB, Sun L, Chen ZJ. Antiviral innate immunity pathways. Cell Research 2006; 16(2):141-7.

44. Hornung V, Guenthner-Biller M, Bourquin C, et al. Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nature Medicine 2005; 11(3):263-70.

45. Kota J, Chivukula RR, O'Donnell KA, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137(6):1005-17.

46. Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nature Reviews Molecular Cell Biology 2007; 8(1):23-36.

47. Ku SH, Jo SD, Lee YK, Kim K, Kim SH. Chemical and structural modifications of RNAi therapeutics. Advanced Drug Delivery Reviews 2016; 104:16-28.

48. Behlke MA. Progress towards in vivo use of siRNAs. Molecular Therapy 2006;

13(4):644-70.

49. Judge AD, Sood V, Shaw JR, Fang D, McClintock K, MacLachlan I. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA.

Nature Biotechnology 2005; 23(4):457-62.

50. Bumcrot D, Manoharan M, Koteliansky V, Sah DW. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nature Chemical Biology 2006; 2(12):711-9.

51. Elmen J, Thonberg H, Ljungberg K, et al. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Research 2005;

33(1):439-47.

52. Obad S, dos Santos CO, Petri A, et al. Silencing of microRNA families by seed-targeting tiny LNAs. Nature Genetics 2011; 43(4):371-8.

53. Wolfrum C, Shi S, Jayaprakash KN, et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nature Biotechnology 2007; 25(10):1149-57.

54. Oberhauser B, Wagner E. Effective incorporation of 2'-O-methyl-oligoribonucleotides into liposomes and enhanced cell association through modification with thiocholesterol. Nucleic Acids Research 1992; 20(3):533-8.

55. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with 'antagomirs'. Nature 2005; 438(7068):685-9.

56. Plank C, Oberhauser B, Mechtler K, Koch C, Wagner E. The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. The Journal of Biological Chemistry 1994; 269(17):12918-24.

57. Dohmen C, Edinger D, Frohlich T, et al. Nanosized multifunctional polyplexes for receptor-mediated siRNA delivery. ACS Nano 2012; 6(6):5198-208.

58. Gallas A, Alexander C, Davies MC, Puri S, Allen S. Chemistry and formulations for siRNA therapeutics. Chemical Society Reviews 2013:7983-97.

59. Zamecnik J, Vargova L, Homola A, Kodet R, Sykova E. Extracellular matrix glycoproteins and diffusion barriers in human astrocytic tumours. Neuropathology and Applied Neurobiology 2004; 30(4):338-50.

60. Shim MS, Kwon YJ. Efficient and targeted delivery of siRNA in vivo. The FEBS Journal 2010; 277(23):4814-27.

61. Wagner E. Biomaterials in RNAi therapeutics: quo vadis? Biomaterials Science 2013; (8):804-9.

62. Lächelt U, Wagner E. Nucleic Acid Therapeutics Using Polyplexes: A Journey of 50 Years (and Beyond). Chemical Reviews 2015; 115(19):11043-78.

128 63. Hartmann L, Krause E, Antonietti M, Borner HG. Solid-phase supported polymer synthesis of sequence-defined, multifunctional poly(amidoamines). Biomacromolecules 2006; 7(4):1239-44.

64. Schaffert D, Badgujar N, Wagner E. Novel Fmoc-polyamino acids for solid-phase synthesis of defined polyamidoamines. Organic Letters 2011; 13(7):1586-9.

65. Schaffert D, Troiber C, Salcher EE, et al. Solid-phase synthesis of sequence-defined T-, i-, and U-shape polymers for pDNA and siRNA delivery. Angewandte Chemie 2011; 50(38):8986-9.

66. Salcher EE, Kos P, Frohlich T, Badgujar N, Scheible M, Wagner E. Sequence-defined four-arm oligo(ethanamino)amides for pDNA and siRNA delivery: Impact of building blocks on efficacy. Journal of Controlled Release 2012; 164(3):380-6.

67. He D, Müller K, Krhac Levacic A, Kos P, Lachelt U, Wagner E. Combinatorial Optimization of Sequence-Defined Oligo(ethanamino)amides for Folate Receptor-Targeted pDNA and siRNA Delivery. Bioconjugate Chemistry 2016; 27(3):647–59.

68. Lee DJ, Kessel E, Edinger D, et al. Dual antitumoral potency of EG5 siRNA nanoplexes armed with cytotoxic bifunctional glutamyl-methotrexate targeting ligand.

Biomaterials 2016; 77:98-110.

69. Beckert L, Kostka L, Kessel E, Krhac Levacic A, Kostkova H, Etrych T, Lachelt U, Wagner E. Acid-labile pHPMA modification of four-arm oligoaminoamide pDNA polyplexes balances shielding and gene transfer activity in vitro and in vivo. European Journal of Pharmaceutics and Biopharmaceutics 2016; 105:85-96.

70. Kos P, Lachelt U, Herrmann A, et al. Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer. Nanoscale 2015; 7(12):5350-62.

71. Kwok A, Hart SL. Comparative structural and functional studies of nanoparticle formulations for DNA and siRNA delivery. Nanomedicine 2011; 7(2):210-9.

72. Scholz C, Wagner E. Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. Journal of Controlled Release 2012; 161(2):554-65.

73. Troiber C, Edinger D, Kos P, Schreiner L, Klager R, Herrmann A, Wagner E.

Stabilizing effect of tyrosine trimers on pDNA and siRNA polyplexes. Biomaterials 2013;

34(5):1624-33.

74. Troiber C, Kasper JC, Milani S, et al. Comparison of four different particle sizing methods for siRNA polyplex characterization. European Journal of Pharmaceutics and Biopharmaceutics 2012; 84(2):255-64.

75. Fröhlich T, Edinger D, Kläger R, et al. Structure-activity relationships of siRNA carriers based on sequence-defined oligo (ethane amino) amides. Journal of Controlled Release 2012; 160(3):532-41.

76. Bloomfield VA. DNA condensation by multivalent cations. Biopolymers 1997;

44(3):269-82.

77. Baker A, Saltik M, Lehrmann H, Killisch I, Mautner V, Lamm G, Christofori G, Cotten M. Polyethylenimine (PEI) is a simple, inexpensive and effective reagent for condensing and linking plasmid DNA to adenovirus for gene delivery. Gene Therapy 1997; 4(8):773-82.

78. Lächelt U, Kos P, Mickler FM, Herrmann A, Salcher EE, Rodl W, Badgujar N, Brauchle C, Wagner E. Fine-tuning of proton sponges by precise diaminoethanes and histidines in pDNA polyplexes. Nanomedicine 2014; 10(1):35-44.

79. Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. The Biochemical journal 2004; 377(Pt 1):159-69.

80. Rejman J, Bragonzi A, Conese M. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Molecular Therapy 2005;

12(3):468-74.

References

129 81. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK.

Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Research 1995; 55(17):3752-6.

82. Fang J, Nakamura H, Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect.

Advanced Drug Delivery Reviews 2011; 63(3):136-51.

83. Ogris M, Steinlein P, Carotta S, Brunner S, Wagner E. DNA/polyethylenimine transfection particles: influence of ligands, polymer size, and PEGylation on internalization and gene expression. AAPS PharmSci 2001; 3(3):E21.

84. Wagner E, Cotten M, Foisner R, Birnstiel ML. Transferrin-polycation-DNA complexes: the effect of polycations on the structure of the complex and DNA delivery to cells. Proceedings of the National Academy of Sciences of the United States of America 1991; 88(10):4255-9.

85. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1):57-70.

86. Martin I, Dohmen C, Mas-Moruno C, et al. Solid-phase-assisted synthesis of targeting peptide-PEG-oligo(ethane amino)amides for receptor-mediated gene delivery.

Organic & Biomolecular Chemistry 2012; 10(16):3258-68.

87. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR, Jr., Kamen BA. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Research 1992; 52(12):3396-401.

88. Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer 1994; 73(9):2432-43.

89. Sudimack J, Lee RJ. Targeted drug delivery via the folate receptor. Advanced Drug Delivery Reviews 2000; 41(2):147-62.

90. Wang X, Shen F, Freisheim JH, Gentry LE, Ratnam M. Differential stereospecificities and affinities of folate receptor isoforms for folate compounds and antifolates. Biochemical Pharmacology 1992; 44(9):1898-901.

91. Antony AC. Folate receptors. Annual Review of Nutrition 1996; 16:501-21.

92. Matherly LH, Hou Z, Deng Y. Human reduced folate carrier: translation of basic biology to cancer etiology and therapy. Cancer Metastasis Reviews 2007; 26(1):111-28.

93. Zhao R, Min SH, Wang Y, Campanella E, Low PS, Goldman ID. A role for the proton-coupled folate transporter (PCFT-SLC46A1) in folate receptor-mediated endocytosis. The Journal of Biological Chemistry 2009; 284(7):4267-74.

94. Xia W, Low PS. Folate-targeted therapies for cancer. Journal of Medicinal Chemistry 2010; 53(19):6811-24.

95. Yang J, Chen H, Vlahov IR, Cheng JX, Low PS. Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging. Proceedings of the National Academy of Sciences of the United States of America 2006; 103(37):13872-7.

96. Lu Y, Low PS. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Advanced Drug Delivery Reviews 2002; 54(5):675-93.

97. Leamon CP, Pastan I, Low PS. Cytotoxicity of folate-Pseudomonas exotoxin conjugates toward tumor cells. Contribution of translocation domain. The Journal of Biological Chemistry 1993; 268(33):24847-54.

98. Yang T, Li B, Qi S, et al. Co-delivery of doxorubicin and Bmi1 siRNA by folate receptor targeted liposomes exhibits enhanced anti-tumor effects in vitro and in vivo.

Theranostics 2014; 4(11):1096-111.

99. Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. Journal of Controlled Release 2003; 91(1-2):103-13.

100. Gottschalk S, Cristiano RJ, Smith LC, Woo SL. Folate receptor mediated DNA delivery into tumor cells: potosomal disruption results in enhanced gene expression.

Gene Therapy 1994; 1(3):185-91.

130 101. Hofland HE, Masson C, Iginla S, Osetinsky I, Reddy JA, Leamon CP, Scherman D, Bessodes M, Wils P. Folate-targeted gene transfer in vivo. Molecular Therapy 2002;

5(6):739-44.

102. Lee DJ, He D, Kessel E, Padari K, Kempter S, Lachelt U, Radler JO, Pooga M, Wagner E. Tumoral gene silencing by receptor-targeted combinatorial siRNA polyplexes.

Journal of Controlled Release 2016:doi: 10.1016/j.jconrel.2016.06.011.

103. Liu L, Zheng M, Librizzi D, Renette T, Merkel OM, Kissel T. Efficient and Tumor Targeted siRNA Delivery by Polyethylenimine-graft-polycaprolactone-block-poly(ethylene glycol)-folate (PEI-PCL-PEG-Fol). Molecular Pharmaceutics 2016; 13(1):134-43.

104. Mickler FM, Mockl L, Ruthardt N, Ogris M, Wagner E, Brauchle C. Tuning nanoparticle uptake: live-cell imaging reveals two distinct endocytosis mechanisms mediated by natural and artificial EGFR targeting ligand. Nano letters 2012; 12(7):3417-23.

105. Blessing T, Kursa M, Holzhauser R, Kircheis R, Wagner E. Different strategies for formation of pegylated EGF-conjugated PEI/DNA complexes for targeted gene delivery.

Bioconjugate Chemistry 2001; 12(4):529-37.

106. de Bruin K, Ruthardt N, von Gersdorff K, Bausinger R, Wagner E, Ogris M, Brauchle C. Cellular dynamics of EGF receptor-targeted synthetic viruses. Molecular Therapy 2007; 15(7):1297-305.

107. Yarden Y. The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. European Journal of Cancer 2001; 37 Suppl 4:S3-8.

108. Nicholson RI, Gee JM, Harper ME. EGFR and cancer prognosis. European Journal of Cancer 2001; 37 Suppl 4:S9-15.

109. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Reviews Cancer 2005; 5(5):341-54.

110. Chong CR, Janne PA. The quest to overcome resistance to EGFR-targeted therapies in cancer. Nature Medicine 2013; 19(11):1389-400.

111. Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. The New England journal of medicine 2008; 358(11):1160-74.

112. Li Z, Zhao R, Wu X, Sun Y, Yao M, Li J, Xu Y, Gu J. Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2005; 19(14):1978-85.

113. Schafer A, Pahnke A, Schaffert D, et al. Disconnecting the yin and yang relation of epidermal growth factor receptor (EGFR)-mediated delivery: a fully synthetic, EGFR-targeted gene transfer system avoiding receptor activation. Human Gene Therapy 2011;

22(12):1463-73.

114. Abourbeh G, Shir A, Mishani E, Ogris M, Rodl W, Wagner E, Levitzki A. PolyIC GE11 polyplex inhibits EGFR-overexpressing tumors. IUBMB Life 2012; 64(4):324-30.

115. Wagner E. Strategies to improve DNA polyplexes for in vivo gene transfer: will

"artificial viruses" be the answer? Pharmaceutical Research 2004; 21(1):8-14.

116. Meyer M, Philipp A, Oskuee R, Schmidt C, Wagner E. Breathing life into polycations: functionalization with pH-responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. Journal of the American Chemical Society 2008; 130(11):3272-3.

117. Whitehead KA, Langer R, Anderson DG. Knocking down barriers: advances in siRNA delivery. Nature Reviews Drug Discovery 2009; 8(2):129-38.

118. Lee M, Kim SW. Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharmaceutical Research 2005; 22(1):1-10.

119. Lee M, Kim SW. Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. PharmRes 2005; 22(1):1-10.

References

131 120. Hatakeyama H, Akita H, Harashima H. A multifunctional envelope type nano device (MEND) for gene delivery to tumours based on the EPR effect: A strategy for overcoming the PEG dilemma. Advanced Drug Delivery Reviews 2010; 63(3):152-60.

121. Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. European Journal of Cell Biology 2004; 83(3):97-111.

122. Walker GF, Fella C, Pelisek J, Fahrmeir J, Boeckle S, Ogris M, Wagner E.

Toward synthetic viruses: endosomal pH-triggered deshielding of targeted polyplexes greatly enhances gene transfer in vitro and in vivo. Molecular Therapy 2005; 11(3):418-25.

123. Maxfield FR, McGraw TE. Endocytic recycling. Nature Reviews Molecular Cell Biology 2004; 5(2):121-32.

124. Mellman I. The importance of being acid: the role of acidification in intracellular membrane traffic. The Journal of Experimental Biology 1992; 172:39-45.

125. Marshansky V. The V-ATPase a2-subunit as a putative endosomal pH-sensor.

Biochemical Society Transactions 2007; 35(Pt 5):1092-9.

126. Behr JP. The proton sponge: A trick to enter cells the viruses did not exploit.

Chimia 1997; 51(1-2):34-6.

127. Sonawane ND, Szoka FC, Jr., Verkman AS. Chloride Accumulation and Swelling in Endosomes Enhances DNA Transfer by Polyamine-DNA Polyplexes. The Journal of Biological Chemistry 2003; 278(45):44826-31.

128. Kos P, Wagner E. Polymers for siRNA Delivery: Combining precision with multifunctionality. Chimica Oggi - Chemistry Today 2013; 31(2):6-10.

129. Meyer M, Dohmen C, Philipp A, Kiener D, Maiwald G, Scheu C, Ogris M, Wagner E. Synthesis and Biological Evaluation of a Bioresponsive and Endosomolytic siRNA-Polymer Conjugate. Molecular Pharmaceutics 2009; 6(3):752-62.

130. Kresge. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1990; 359:710 - 2.

131. Argyo C. VW, Christoph Bräuchle, Thomas Bein. Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials 2014; 26(1):435–51.

132. Slowing, II, Vivero-Escoto JL, Wu CW, Lin VS. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Advanced Drug Delivery Reviews 2008; 60(11):1278-88.

133. Tang F, Li L, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Advanced Materials 2012; 24(12):1504-34.

134. Vallet-Regi M. RA, del Real R.P., Pérez-Pariente J. A New Property of MCM-41: 

Drug Delivery System. Chemistry of Materials 2001; 13(2):308–11.

135. Moulari B, Pertuit D, Pellequer Y, Lamprecht A. The targeting of surface modified silica nanoparticles to inflamed tissue in experimental colitis. Biomaterials 2008;

29(34):4554-60.

136. Zhao Y, Trewyn BG, Slowing, II, Lin VS. Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. Journal of the American Chemical Society 2009; 131(24):8398-400.

137. Lu J, Liong M, Li Z, Zink JI, Tamanoi F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals.

Small 2010; 6(16):1794-805.

138. Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink JI, Nel AE.

Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 2009;

3(10):3273-86.

139. Hom C, Lu J, Liong M, Luo H, Li Z, Zink JI, Tamanoi F. Mesoporous silica nanoparticles facilitate delivery of siRNA to shutdown signaling pathways in mammalian cells. Small 2010; 6(11):1185-90.

132 140. Li X, Xie QR, Zhang J, Xia W, Gu H. The packaging of siRNA within the mesoporous structure of silica nanoparticles. Biomaterials 2011; 32(35):9546-56.

141. Ashley CE, Carnes EC, Epler KE, et al. Delivery of small interfering RNA by peptide-targeted mesoporous silica nanoparticle-supported lipid bilayers. ACS Nano 2012; 6(3):2174-88.

142. Chen AM, Zhang M, Wei D, Stueber D, Taratula O, Minko T, He H. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small 2009; 5(23):2673-7.

143. Meng H, Mai WX, Zhang H, et al. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano 2013; 7(2):994-1005.

144. Klein PM, Müller K, Gutmann C, et al. Twin disulfides as opportunity for improving stability and transfection efficiency of oligoaminoethane polyplexes. Journal of Controlled Release 2015; 205:109-19.

145. Zhang CY, Kos P, Müller K, Schrimpf W, Troiber C, Lachelt U, Scholz C, Lamb DC, Wagner E. Native chemical ligation for conversion of sequence-defined oligomers into targeted pDNA and siRNA carriers. Journal of Controlled Release 2014; 180:42-50.

146. Müller K, Kessel E, Klein PM, Höhn M, Wagner E. Post-PEGylation of siRNA Lipo-oligoamino Amide Polyplexes Using Tetra-glutamylated Folic Acid as Ligand for Receptor-Targeted Delivery. Molecular Pharmaceutics 2016; 13(7):2332-45.

147. Müller K, Klein PM, Heissig P, Roidl A, Wagner E. EGF receptor targeted lipo-oligocation polyplexes for antitumoral siRNA and miRNA delivery. Nanotechnology 2016;

27(46):464001.

148. Möller K, Müller K, Engelke H, Brauchle C, Wagner E, Bein T. Highly efficient siRNA delivery from core-shell mesoporous silica nanoparticles with multifunctional polymer caps. Nanoscale 2016; 8(7):4007-19.

149. Schaffert D, Kiss M, Rodl W, Shir A, Levitzki A, Ogris M, Wagner E. Poly(I:C)-mediated tumor growth suppression in receptor overexpressing tumors using EGF-polyethylene glycol-linear polyethylenimine as carrier. Pharmaceutical Research 2011;

28(4):731-41.

150. Fröhlich T, Edinger D, Klager R, et al. Structure-activity relationships of siRNA carriers based on sequence-defined oligo (ethane amino) amides. Journal of Controlled Release 2012; 160(3):532-41.

151. Wu C, Leroux JC, Gauthier MA. Twin disulfides for orthogonal disulfide pairing and the directed folding of multicyclic peptides. Nature Chemistry 2012; 4(12):1044-9.

152. Dawson PE, Muir TW, Clark-Lewis I, Kent SB. Synthesis of proteins by native chemical ligation. Science 1994; 266(5186):776-9.

153. Byun E, Kim J, Kang SM, Lee H, Bang D, Lee H. Surface PEGylation via native chemical ligation. Bioconjugate Chemistry 2011; 22(1):4-8.

154. Dawson PE, Kent SB. Synthesis of native proteins by chemical ligation. Annual Review of Biochemistry 2000; 69:923-60.

155. Blanco-Canosa JB, Dawson PE. An efficient Fmoc-SPPS approach for the generation of thioester peptide precursors for use in native chemical ligation.

Angewandte Chemie 2008; 47(36):6851-5.

156. Ogris M, Walker G, Blessing T, Kircheis R, Wolschek M, Wagner E. Tumor-targeted gene therapy: strategies for the preparation of ligand-polyethylene glycol-polyethylenimine/DNA complexes. Journal of Controlled Release 2003; 91(1-2):173-81.

157. Fella C, Walker GF, Ogris M, Wagner E. Amine-reactive pyridylhydrazone-based PEG reagents for pH-reversible PEI polyplex shielding. European Journal of Pharmaceutical Sciences 2008; 34(4-5):309-20.

158. Ogris M, Brunner S, Schuller S, Kircheis R, Wagner E. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Therapy 1999;

6(4):595-605.