• Keine Ergebnisse gefunden

Chapter 1 Background on DNA conductance

1.3 Review of experimental investigations of DNA conductance

1.3.2 Direct electrical transport measurement in DNA

1.3.2.5 Conformation dependence

Specifically, the experiments by Kasumov et al. 109 show that the interaction between DNA molecules and the substrate is a key parameter that determines the conducting or insulating behavior of DNA molecules. The surface force field can strongly deform the DNA molecule. This is also manifested in AFM imaging, where the measured height of the molecule is smaller than its “nominal height”113. This kind of deformation when DNA is positioned on a surface may be a reason for blocking the current along the molecule. Together with other works using different DNA binding protocols (free hanging DNA, surface bond DNA on mica, SiO2, or functionalized substrate), the results support this conclusion. Another important characteristic of DNA molecule is its remarkable expansibility when it is stretched due to the conformational change from the B conformation to the S conformation 114. This conformation change has been suggested by studying the force-distance curves and by simulations, however, its effect on DNA conductance has not been studied quantitatively. Therefore, a controllable method combining control of mechanical stress of the DNA molecule and electrical measurement is essential for studying the mechanism of charge transfer through DNA.

1.3.2.6 Coupling to the electrodes

A key experimental challenge in measuring DNA conductance lies in the attachment of a DNA bundle or single molecule to the electrodes. This has been made possible largely due to advances in nanotechnology. Electron-beam lithography is used to fabricate nanoelectrodes, atomic force microscopy (AFM) and low energy electron point source (LEEPS) microscopy are used to image the sample, and scanning tunneling microscopes (STM) can be utilized to induce a tunneling current.

In order to attach single DNA molecules to metal electrodes, a DNA oligomer-based ‘‘gluing’’ technique was developed in which sticky ends of DNA (single stranded ‘‘overhang’’ regions) are hybridized to short surface-bound oligomers 103, 104, 115. Similarly, DNA modified with thiol (SH) groups at the 5-ends can directly hybridize on gold or platinum electrodes 97. Another method of aligning DNA molecules between the leads is called ‘‘electrical field trappings.’’ An electric field between two electrodes polarizes a nearby molecule in a droplet of DNA solution, which is then attracted to the gap between the electrodes owing to the field gradient (Porath et al.,65; Cai et al.,116).

Recently,Cohen and co-workers developed a method to chemically bind two ends of DNA molecules (26 bp) to a metal substrate and a gold nanoparticle (GNP).

The authors then measured the current through DNA molecules with a conductive atomic force microscope (AFM) tip. They claimed that the observed signal was from a hybridized molecule. There are several doubts about the measurement technique.

First, there is a possibility of a tunneling current between the GNP and the gold substrate which are placed in a very close proximity of less than 5 nm. Second, the attachment of a single complementary strand to the GNP (10 nm diameter) and the charge transport through a single molecule in the presence of a packed monolayer of ssDNA on the gold substrate are indeed questionable. In addition, the high intrinsic conductance of buffer (TRIS, Tris(hydroxymethyl)methylamine) could overestimate the native electrical properties of DNA.

Nowadays a promising method is to use carbon nanotube (CNT) as electrodes to measure DNA conductance. The advantage of this technique is the formation of a covalent bond between each terminus of a DNA molecule and the functionalized end of a SWNT (single wall carbon nanotube) electrode. Establishment of a strong electronic coupling between the trapped DNA molecule and the CNT nanoelectrodes facilitates the charge transport through the system without the Coulomb blockade

effect.

In the work published by Watanabe et al.99, a short, single DNA molecule was laid on the surface and contacted with a triple-probe AFM consisting of 3 conductive CNTs. Two of them, 20 nm apart, served as source and drain terminal while another one served as a gate electrode, so that the current on the DNA length could be measured under a bias voltage (~2 V). A clear variation of the current due to the effect of the gate electrode, reproducibly forwards and backwards, is observed117.

Recently, Roy et al. 118 reported measurements of a single free-hanged DNA between a gap (about 27 nm) of SWNTs. In this method, dsDNA had about a 25-40 pA current (resistance is around 10GΩ, at 1 V), acting as a p-type channel, which could be checked with the gate voltage. In contrast, ssDNA carried a faible current of about 1 pA or less.

From these excellent works, it is clear that the connection between DNA and the electrodes have great influence on the measured conductance. Scientists are trying many different ways to achieve not only stable binding between them but also good electrical coupling. However, there is still no general methods which has been proved to be successful. This leads to a motivation of our work, as will be discussed in section 1.4.

1.3.2.7 Temperature dependence

Temperature could also play an important role in the conductance of DNA. In the work of Roy et al. 118, as we discussed before, the temperature dependent conductance of DNA showed a phonon induced conducting mechanism and an dsDNA melting effect. Another measurement carried out by Iqbal et al.119 with an 18-base thiolated

dsDNA in vacuum conditions between two Au electrodes. In this work, a dramatic decrease in conductance was observed after temperature increased from 300 to 400 K.

The conductance measurements by Tran et al.22 and Yoo et al.23, showing a strong temperature dependence at high temperatures and a weak temperature dependence at low temperatures, were explained by Yu and Song 120 and Cizek et al.27. They suggested activated hopping between neighboring bases at high T and variable-range hopping at low T, which gives good agreement with experiments when combined with thermal structural fluctuations. On the contrary, a different result was reported by Zalinge et al.112 on thiolated Poly(G)-Ploy(C)15 and Poly(A)-Ploy(T)15 DNA sample.

The conductance measurements were carried out between a gold tip and a Au(111)

electrode from room temperature to 70 0C in ambient conditions. The resistance was about 2GΩ and independent of the temperature. They explained the differences to the other works in that the medium has a great influence on the temperature dependence of DNA conductance. Moreover, their experimental result was consistent with the computations presented for the valence-band transmission spectra. By assuming a speed of sound in B-form DNA of 1900 ms-1 and a lattice constant of approximately 0.34 nm, the Debye temperature is estimated as 166 K. For this reason, DNA acoustic modes will significantly affect the conductance at low temperatures, but at room and higher temperature this effect will have no noticeable temperature dependence.

1.3.2.8 Humidity dependence

Terawaki et al.121 reported conductance of a DNA network in varying humidity.

They used a PCI-AFM (point-contact current-imaging atomic force microscope) tip as one electrode and Au on mica surface as another electrode. The distance between the electrodes was about 100nm and the DNA networks lied on the mica substrate. The measurement was carried out at room temperature with controlled humidity. Under dry conditions (0 % humidity), no difference was observed for the electrical current both of the DNA network and mica surface, whereas the electrical current along the DNA network was larger than that of the mica surface by 20 pA (resistance was about 200 GΩ at a bias voltage of 5 V under high humidity conditions of 60 %).

Moreover, in the work by Roy et al.118, as we discussed before, the resistance of DNA was higher in vacuum than in ambient (higher humidity expected). From the works we can see that the conductance increases with humidity for both single DNA and large DNA networks. The reason of this increase needs more discussion. It could be due to the structure changes of DNA in different humidity according to theory and other experiments. It could also be due to the contribution of the counterions or the water around the DNA in high humidity.

1.3.2.9 Effects of counterions and solvent shells

The experiment in solution should be conducted to study counter-ions and solvate shells effect on DNA conductance. In the work of Xu et al.106 and Tran et al.22 in which measurements were performed in phosphate buffer solution (100mM NaCl+10mM phosphate buffer, pH 7.0) ore lyophilized buffer (1mM tris-HCl, 1mM NaCl, 1mM EDTA, pH 7.5), the lowest resistance was measured compared to other

experiments, seeing from the Table I. The extremely high conductance can be assumed from the contribution from the counterions or the solvate shell around molecules. More detail of these works will be discussed in chapter 4.

1.4 Motivation and our work

1.4.1 Summary of former work

From the experimental works published before, we found a large variation in the results of the reported experiments, although most of them have been done by excellent scientists in the leading laboratories. Here, we list main factors that influence the DNA conductance in experiment, and we attempt to separate the sources of experimental uncertainties into these categories:

• Differences in the DNA molecules:

DNA sequence;

Length of the DNA molecule;

Character of the DNA molecule (e.g., bundles vs single molecules);

• Different environments around DNA molecules:

Influence of water and counterions;

Humidity, stretched state of DNA;

Interfacial character, e.g. free-standing or surface-bound (such as on mica or SiO2 surface);

• Electrical coupling between the electrode and DNA molecule:

The electrical-coupling strength between the molecule and the electrodes will determine whether a Coulomb blockade effect (weak coupling) or a mixing of energy states between the molecule and the electrodes (strong coupling) is measured. In the case of weak coupling, the size and chemical nature of the molecule between the electrodes will determine the relative contributions of Coulomb blockade phenomena and of the intrinsic energy gap of the molecule to the current-voltage spectra.

Control of these variables above is very important to get the true conductance of DNA. Some successes have been achieved to control the differences in structure, environment and coupling with electrode of DNA. However, while some experimental parameters are rather well controlled, there are still other important ones, like how many DNA molecules are actually bridging the electrodes, which are not.

Besides the contradictory results reported about the transport measurement with

DNA, more and more evidences accumulating from the direct electrical transport measurements show that it is possible to transport charge carriers along short single DNA molecules, DNA bundles and DNA networks, although the conductance from most experimental reports is rather poor. The motivation of this thesis is to improve the conductance of DNA-based nanoelectronic devices.

1.4.2 Our work

The challenge to improve measured conductance of DNA can be overcome in two ways, either to improve its bonds to electrodes or to improve its intrinsic conductance. In this thesis, we develop two strategies to achieve these goals.

We improve the attachment of DNA molecule to the gold electrodes by changing the position of thiol-group on terminal bases. In the former work by Kang et al. in our group, measurements of the conductance through a single or a small number of DNA molecules was carried out using mechanically controllable break-junctions (MCBJs).

The DNA molecules were terminated with thiol end-groups attached to the 5’end of the terminal bases. This chemical adsorption ensures good mechanical coupling of the molecules to the gold electrodes, and thus mechanical stretching of the molecule is possible before the molecule–metal bond breaks. However, by this method, the electrons from gold electrodes are coupled to the sugar backbone of DNA, instead directly coupled to the nucleotide bases in which the π-π stacking occurs. We solve this problem by synthesizing new nucleotides with a thiol-end group attached to the 5-position of terminal thymine bases. Synthesis of this new nucleotide and DNA samples are conducted by Bornemann et al. in chemistry department of our university.

We verify its adsorption on a gold surface by fluorescence microscopy and AFM. The conductance behavior is characterized with MCBJ in water, ambient and vacuum.

Detailed results and discussion about this part of work are shown in chapter 4.

To improve its intrinsic conductance, we employed DNA G-quadruple instead of the double-stranded structure. Such constructions can offer an improved stiffness and electronic overlap that may enhance the conductivity of the molecules. Details about G-quadruplex and its conductance measurement are shown in chapter 5.

Before going into the measurement of dsDNA and G-quadruplex, in chapter 2 the methods to fabricate the MCBJ and synthesis of all DNA samples are introduced.

Moreover, test of the MCBJ in water and buffer solution is presented in chapter 3. The results provide a fundamental and solid background to use MCBJ for conductance

measurement of various DNA molecules.

We end this thesis by a conclusion of DNA conductance based on our experiments and a prospect for further studies.

References

1. Eley, D. D.; Spivey, D. I. Trans. Faraday Soc 1962, 58, 411.

2. Koradi, R.; Billeter, M.; Wuthrich, K. J. Mol. Graphy. 1996, 14, 51-53.

3. Smith, S. B.; Cui, Y. J.; Bustamante, C. Science 1996, 271, 795-799.

4. Carpena, P.; Bernaola-Galvan, P.; Ivanov, P. C.; Stanley, H. E. Nature 2002, 418, 955-959.

5. Young, M. A.; Ravishanker, G.; Beveridge, D. L. Biophys. J. 1997, 73, 2313-2336.

6. Yi, J. Phys. Rev. B 2008, 77, 193109.

7. Slater, J. C.; Koster, G. F. Phys. Rev. 1954, 94, 1498.

8. Harrson, W. A., Electronic structure and the properties of solids Dover, New York: 1989.

9. Endres, R. G.; Cox, D. L.; Singh, R. R. P. Rev. Mod. Phys. 2004, 76, 195-214.

10. Marcus, R. A. J. Chem. Phys. 1956, 24, 966.

11. Marcus, R. A. J. Phys. Chem. B 1998, 102, 10071-10077.

12. Marcus, R. A.; Sutin, N. Biochim. Biophys. Acta 1985, 811, 265.

13. Bixon, M.; Giese, B.; Wessely, S.; Langenbacher, T.; Michel-Beyerle, M. E.; Jortner, J. Proc. Natl.

Acad. Sci. U. S. A. 1999, 96, 11713-11716.

14. Schuster, G. B. Acc. Chem. Res. 2000, 33, 253-260.

15. Conwell, E. M.; Rakhmanova, S. V. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 4556-4560.

16. Bixon, M.; Jortner, J. J. Am. Chem. Soc. 2001, 123, 12556-12567.

17. Jortner, J.; Bixon, M.; Langenbacher, T.; Michel-Beyerle, M. E. Proc. Natl. Acad. Sci. U. S. A.

1998, 95, 12759-12765.

18. Bixon, M.; Jortner, J. J. Phys. Chem. B 2000, 104, 3906-3913.

19. Cuniberti, G.; Craco, L.; Porath, D.; Dekker, C. Phys. Rev. B 2002, 65, 241314(R).

20. Wei, J. H.; Wang, L. X.; Chan, K. S.; Yan, Y. Phys. Rev. B 2005, 72, 064304.

21. Wang, H.; Lewis, J. P.; Sankey, O. F. Phys. Rev. Lett. 2004, 93, 016401.

22. Tran, P.; Alavi, B.; Gruner, G. Phys. Rev. Lett. 2000, 85, 1564-1567.

23. Yoo, K. H.; Ha, D. H.; Lee, J. O.; Park, J. W.; Kim, J.; Kim, J. J.; Lee, H. Y.; Kawai, T.; Choi, H. Y.

Phys. Rev. Lett. 2001, 87, 198102.

24. Ren, W.; Wang, J.; Ma, Z. S.; Guo, H. Phys. Rev. B 2005, 72, 035456.

25. Schmidt, B. B.; Hettler, M. H.; Schon, G. Phys. Rev. B 2007, 75, 115125.

26. Yu, Z. G.; Song, X. Y. Phys. Rev. Lett. 2001, 86, 6018-6021.

27. Cizek, J.; Martinez, A.; Ladik, J. J. Mol. Struct. 2003, 626, 77-80.

28. Komineas, S.; Kalosakas, G.; Bishop, A. R. Phys. Rev. E 2002, 65, 061905.

29. Schmidt, B. B.; Hettler, M. H.; Schon, G. Phys. Rev. B 2008, 77, 165337.

30. Roche, S.; Macia, E. Mod. Phys. Lett. B 2004, 18, 847-871.

31. Mehrez, H.; Anantram, M. P. Phys. Rev. B 2005, 71, 115405.

32. Albuquerque, E. L.; Vasconcelos, M. S.; Lyra, M. L.; de Moura, F. Phys. Rev. E 2005, 71, 021910.

33. Malyshev, A. V. Phys. Rev. Lett. 2007, 98, 096801.

34. Roche, S. Phys. Rev. Lett. 2003, 91, 108101

35. de Oliveira, B. P. W.; Albuquerque, E. L.; Vasconcelos, M. S. Surf. Sci. 2006, 600, 3770-3774.

36. Sponer, J.; Leszczynski, J.; Hobza, P. J. Phys. Chem. 1996, 100, 1965-1974.

37. Sponer, J.; Leszczynski, J.; Hobza, P. J. Phys. Chem. 1996, 100, 5590-5596.

38. Lee, M. K.; Shephard, M. J.; Risser, S. M.; Priyadarshy, S.; Paddon-Row, M. N.; Beratan, D. N. J.

Phys. Chem. A 2000, 104, 7593-7599.

39. Troisi, A.; Orlandi, G. Chem. Phys. Lett. 2001, 344, 509-518.

40. Lewis, F. D.; Wu, T. F.; Zhang, Y. F.; Letsinger, R. L.; Greenfield, S. R.; Wasielewski, M. R.

Science 1997, 277, 673-676.

41. Lewis, F. D.; Letsinger, R. L.; Wasielewski, M. R. Acc. Chem. Res. 2001, 34, 159-170.

42. SanchezPortal, D.; Ordejon, P.; Artacho, E.; Soler, J. M. Int. J. Quantum Chem. 1997, 65, 453-461.

43. de Pablo, P. J.; Moreno-Herrero, F.; Colchero, J.; Gomez-Herrero, J.; Herrero, P.; Baro, A. M.;

Ordejon, P.; Soler, J. M.; Artacho, E. Phys. Rev. Lett. 2000, 85, 4992-4995.

44. Macia, E. Phys. Rev. B 2007, 76, 245123.

45. Voityuk, A. A.; Siriwong, K.; Rosch, N. Phys. Chem. Chem. Phys. 2001, 3, 5421-5425.

46. Adessi, C.; Walch, S.; Anantram, M. P. Phys. Rev. B 2003, 67, 081405.

47. Davies, O. R.; Inglesfield, J. E. Phys. Rev. B 2004, 69, 195110.

48. Maragakis, P.; Barnett, R. L.; Kaxiras, E.; Elstner, M.; Frauenheim, T. Phys. Rev. B 2002, 66, 241104.

49. Taniguchi, M.; Kawai, T. Phys. Rev. E 2004, 70, 011913.

50. Warman, J. M.; deHaas, M. P.; Rupprecht, A. Chem. Phys. Lett. 1996, 249, 319-322.

51. Chandrasekaran, R.; Arnott, S. J. Biomol. Struct. Dyn. 1996, 13, 1015-1027.

52. Ordejon, P.; Artacho, E.; Soler, J. M. Phys. Rev. B 1996, 53, 10441-10444.

53. Artacho, E.; Machado, M.; Sanchez-Portal, D.; Ordejon, P.; Soler, J. M. Mol. Phys. 2003, 101, 1587-1594.

54. Konrad, M. W.; Bolonick, J. I. J. Am. Chem. Soc. 1996, 118, 10989-10994.

55. Lebrun, A.; Lavery, R. Nucleic Acids Res. 1996, 24, 2260-2267.

56. Kosikov, K. M.; Gorin, A. A.; Zhurkin, V. B.; Olson, W. K. J. Mol. Biol. 1999, 289, 1301-1326.

57. Arnott, S.; Hukins, D. Biochem. biophys. Res. com. 1972, 47, 1504-1509.

58. Endres, R. G.; Cox, D. L.; Singh, R. R. P.; Pati, S. K. Phys. Rev. Lett. 2002, 88, 166601.

59. Song, C.; Xia, Y. Y.; Zhao, M. W.; Liu, X. D.; Li, J. L.; Li, L. J. Phys. Chem. Chem. Phys. 2008, 10, 5077-5082.

60. Song, B.; Elstner, M.; Cuniberti, G. Nano Lett. 2008, 8, 3217-3220.

61. Alexander, A. V.; Joshua, J.; Bixon, M.; Notker, R. J. Chem. Phys. 2001, 114, 5614-5620.

62. Mallajosyula, S. S.; Datta, A.; Pati, S. K. Synth. Met. 2005, 155, 398.

63. Voityuk, A. A.; Jortner, J.; Bixon, M.; Rösch, N. J. Chem.Phys. 2001, 114, 5614.

64. Hawke, L. G. D.; Kalosakas, G.; Simserides, C. arXiv:0908 1248v1 [physics.bio-ph] 2009.

65. Porath, D.; Bezryadin, A.; de Vries, S.; Dekker, C. Nature 2000, 403, 635-638.

66. Calzolari, A.; Felice, R. D.; Molinari, E. Appl. Phys. Lett. 2002, 80, 3331-3333.

67. A Calzolari, R. D. F., E Molinari, A Garbesi Applied Physics Letters 2002 80, 3331.

68. Basko, D. M.; Conwell, E. M. Phys. Rev. Lett. 2002, 88, 098102

69. Alexandre, S. S.; Artacho, E.; Soler, J. M.; Chacham, H. Phys. Rev. Lett. 2003, 91, 108105.

70. Gervasio, F. L.; Carloni, P.; Parrinello, M. Phys. Rev. Lett. 2002, 89, 108102

71. Mantz, Y. A.; Gervasio, F. L.; Laino, T.; Parrinello, M. Phys. Rev. Lett. 2007, 99, 058104.

72. Barnett, R. N.; Cleveland, C. L.; Joy, A.; Landman, U.; Schuster, G. B. Science 2001, 294, 567-571.

73. Woiczikowski, P. B.; Kubař, T.; Gutiérrez, R.; Caetano, R. A.; Cuniberti, G.; Elstner, M. J. Chem.

Phys. 2009, 130, 215104.

74. Murphy, C. J.; Arkin, M. R.; Jenkins, Y.; Ghatlia, N. D.; Bossmann, S. H.; Turro, N. J.; Barton, J.

K. Science 1993, 262, 1025-1029.

75. Hall, D. B.; Holmlin, R. E.; Barton, J. K. Nature 1996, 382, 731-735.

76. Dandliker, P. J.; Holmlin, R. E.; Barton, J. K. Science 1997, 275, 1465-1468.

77. Kelley, S. O.; Barton, J. K., Radical migration through the DNA helix: Chemistry at a distance. In Metal Ions In Biological Systems, Vol 36, 1999; Vol. 36, pp 211-249.

78. Rajski, S. R.; Jackson, B. A.; Barton, J. K. Mutation Research-Fundamental And Molecular Mechanisms Of Mutagenesis 2000, 447, 49-72.

79. Mortusewicz, O.; Schermelleh, L.; Walter, J.; Cardoso, M. C.; Leonhardt, H. Proc. Natl. Acad. Sci.

U. S. A. 2005, 102, 8905-8909.

80. Heller, A. Faraday Discuss. 2000, 1-13.

81. Oneill, P.; Fielden, E. M., Primary Free-Radical Processes In Dna. In Advances In Radiation Biology, Vol 17, 1993; Vol. 17, pp 53-120.

82. Retel, J.; Hoebee, B.; Braun, J. E. F.; Lutgerink, J. T.; Vandenakker, E.; Wanamarta, A. H.; Joenje, H.; Lafleur, M. V. M. Mutat. Res. 1993, 299, 165-182.

83. Turro, N. J.; Barton, J. K. J. Biol. Inorg. Chem. 1998, 3, 201-209.

84. Lewis, F. D.; Wu, T. F.; Liu, X. Y.; Letsinger, R. L.; Greenfield, S. R.; Miller, S. E.; Wasielewski, M. R. J. Am. Chem. Soc. 2000, 122, 2889-2902.

85. Grinstaff, M. W. Angew. Chem. Int. Ed. 1999, 38, 3629-3635.

86. Barbara, P. F.; Olson, E. J. C., In Electron Transfer-From Isolated Molecules To Biomolecules, 1999; Vol. 107, pp 647-676.

87. Turro NJ, B. J. J Biol Inorg Chem. 1998, 3, 201.

88. Murphy CJ, A. M., Jenkins Y, Ghatlia ND, Bossman S, Turro NJ, Barton JK. Science 1993, 262, 1025.

89. Lewis, F. D.; Kalgutkar, R. S.; Wu, Y. S.; Liu, X. Y.; Liu, J. Q.; Hayes, R. T.; Miller, S. E.;

Wasielewski, M. R. J. Am. Chem. Soc. 2000, 122, 12346-12351.

90. Bixon, M.; Jortner, J., Electron transfer - From isolated molecules to biomolecules. In Electron Transfer-From Isolated Molecules To Biomolecules, Pt 1, 1999; Vol. 106, pp 35-202.

91. Brauns, E. B.; Murphy, C. J.; Berg, M. A. J. Am. Chem. Soc. 1998, 120, 2449-2456.

92. Keren, K.; Krueger, M.; Gilad, R.; Ben-Yoseph, G.; Sivan, U.; Braun, E. Science 2002, 297, 72-75.

93. Henderson, P. T.; Jones, D.; Hampikian, G.; Kan, Y. Z.; Schuster, G. B. Proc. Natl. Acad. Sci. U. S.

A. 1999, 96, 8353-8358.

94. Porath, D.; Bezryadin, A.; de Vries, S.; Dekker, C. Electronic Properties Of Novel Materials-Molecular Nanostructures 2000, 544, 452-456.

95. Zhang, R. Y.; Pang, D. W.; Zhang, Z. L.; Yan, J. W.; Yao, J. L.; Tian, Z. Q.; Mao, B. W.; Sun, S. G.

J. Phys. Chem. B 2002, 106, 11233-11239.

96. Fink, H. W. Cell. Mol. Life Sci. 2001, 58, 1-3.

97. Storm, A. J.; van Noort, J.; de Vries, S.; Dekker, C. Appl. Phys. Lett. 2001, 79, 3881-3883.

98. Kasumov, A. Y.; Kociak, M.; Gueron, S.; Reulet, B.; Volkov, V. T.; Klinov, D. V.; Bouchiat, H.

Science 2001, 291, 280-282.

99. Watanabe, H.; Manabe, C.; Shigematsu, T.; Shimotani, K.; Shimizu, M. Appl. Phys. Lett. 2001, 79, 2462-2464.

100. Shigematsu, T.; Shimotani, K.; Manabe, C.; Watanabe, H.; Shimizu, M. J. Chem. Phys. 2003, 118, 4245-4252.

101. Zhang, Y.; Austin, R. H.; Kraeft, J.; Cox, E. C.; Ong, N. P. Phys. Rev. Lett. 2002, 89, 198102.

102. Rakitin, A.; Aich, P.; Papadopoulos, C.; Kobzar, Y.; Vedeneev, A. S.; Lee, J. S.; Xu, J. M. Phys.

Rev. Lett. 2001, 86, 3670-3673.

103. Hartzell, B.; McCord, B.; Asare, D.; Chen, H.; Heremans, J. J.; Soghomonian, V. Appl. Phys. Lett.

2003, 82, 4800-4802.

104. Hartzell, B.; McCord, B.; Asare, D.; Chen, H.; Heremans, J. J.; Soghomonian, V. J. Appl. Phys.

2003, 94, 2764-2766.

105. Hong, S. M.; Jauregui, L. A.; Rangel, N. L.; Cao, H.; Day, B. S.; Norton, M. L.; Sinitskii, A. S.;

Seminario, J. M. J. Chem. Phys. 2008, 128.

106. Xu, B. Q.; Zhang, P. M.; Li, X. L.; Tao, N. J. Nano Lett. 2004, 4, 1105-1108.

107. Wierzbinski, E.; Arndt, J.; Hammond, W.; Slowinski, K. Langmuir 2006, 22, 2426-2429.

108. Kasumov, A. Y.; Kociak, M.; Gueron, S.; Reulet, B.; Volkov, V. T.; Klinov, D. V.; Bouchiat, H.

Science 2001, 291, 280-282.

109. Kasumov, A. Y.; Klinov, D. V.; Roche, P. E.; Gueron, S.; Bouchiat, H. Appl. Phys. Lett. 2004, 84, 1007.

110. Cai, L. T.; Tabata, H.; Kawai, T. Appl. Phys. Lett. 2000, 77, 3105-3106.

111. Tanaka, K.; Tengeiji, A.; Kato, T.; Toyama, N.; Shionoya, M. Science 2003, 299, 1212-1213.

112. van Zalinge, H.; Schiffrin, D. J.; Bates, A. D.; Starikov, E. B.; Wenzel, W.; Nichols, R. J. Angew.

Chem. Int. Ed. 2006, 45, 5499-5502.

113. Bockrath, M.; Markovic, N.; Shepard, A.; Tinkham, M.; Gurevich, L.; Kouwenhoven, L. P.; Wu, M. S. W.; Sohn, L. L. Nano Lett. 2002, 2, 187-190.

114. Bustamante, C.; Bryant, Z.; Smith, S. B. Nature 2003, 421, 423-427.

115. Zhang, Y.; Austin, R. H.; Kraeft, J.; Cox, E. C.; Ong, N. P. Phys. Rev. Lett. 2002, 89, 198102.

116. Cai, L. T.; Tabata, H.; Kawai, T. Nanotechnology 2001, 12, 211-216.

117. Shimotani, K.; Shigematsu, T.; Manabe, C.; Watanabe, H.; Shimizu, M. J. Chem. Phys. 2003, 118, 8016-8022.

118. Roy, S.; Vedala, H.; Roy, A. D.; Kim, D. H.; Doud, M.; Mathee, K.; Shin, H. K.; Shimamoto, N.;

Prasad, V.; Choi, W. Nano Lett. 2008, 8, 26-30.

119. Iqbal, S. M.; Balasundaram, G.; Ghosh, S.; Bergstrom, D. E.; Bashir, R. Appl. Phys. Lett. 2005, 86, 153901.

120. Yu, C. J.; Yowanto, H.; Wan, Y. J.; Meade, T. J.; Chong, Y.; Strong, M.; Donilon, L. H.; Kayyem, J.

F.; Gozin, M.; Blackburn, G. F. J. Am. Chem. Soc. 2000, 122, 6767-6768.

121. Terawaki, A.; Otsuka, Y.; Lee, H. Y.; Matsumoto, T.; Tanaka, H.; Kawai, T. Appl. Phys. Lett. 2005, 86, 113901.

Group DNA sample Electrodes Method Ions Environment Results

Yielded no observable current up to 10 V The resistance >1013

Ohmic behavior IVs, sustained up to 40 mV The resistance in the MΩ range

3 Porath et al. (2000) Single

nA range current was observed beyond a threshold voltage of 0.5-1V

At RT and ambient: 600 nm length yields a resistance about 100 MΩ and 16 μm length yields a about 10 GΩ

The overall temperature dependence suggested two contributions to the transport, a weakly temperature dependent response at low temperature and a strongly temperature dependent contribution at high temperatures.

The magnitude of the conductivity at room temperature and above depends on the chemical surroundings of the double helix with a buffer environment leading to larger conductivity

5 de Pablo et al.

Length 70 nm mica Ambient The resistance is about 200 MΩ

L=100 nm linear ohmic IV behavior.

The resistance is about 10 GΩ at 4 V

Clear length-dependent conductivity that was about an order of magnitude larger for the Poly(G)-Poly(C) than Poly(A)-Poly(T).

7 Rakitin et al. (2001) λ-DNA /M-DNA Length 16 μm

Au Free hanging Na+ RT vacuum

Metallic like conduction through M-DNA (The resistance is about 200MΩ) in contrast, measurements on λ-DNA (The

resistance is about 1 GΩ at 2 V) give evidence of semi- conducting behavior with a few hundred meV band gap.

8 Storm et al. (2001) Single/small

The resistance is about 10TΩ at 10V.

The resistance is about 10TΩ at 10V.