• Keine Ergebnisse gefunden

6 Surface regeneration and reusability of label-free DNA biosensors

6.4 Conclusions

In this work, the reusability of PAH-modified capacitive field-effect EIS sensors for the label-free electrical detection of ssDNA, in-solution- and on-chip-hybridized dsDNA has been investigated. For this, the formation of five bilayers of PAH/ssDNA or PAH/dsDNA as well as five triple layers of PAH/ssDNA-cDNA onto the EIS-gate surface was monitored by means of dynamic ConCap measurements. It has been demonstrated that via simple regeneration of the EIS-sensor surface by means of adsorption of a new PAH layer, the same biosensor could be reused for at least five DNA-detection measurements. The consecutive adsorption of oppositely charged PAH/ssDNA-, PAH/dsDNA- and PAH/ssDNA-cDNA layers leads to alternating shifts of the ConCap signal. The direction of the EIS-signal shifts depends on the charge sign of the outermost molecular layer and therefore, can be used as an indicator for the verification of successful DNA immobilization or hybridization processes.

In addition, an influence of the Debye-screening effect (which is considered as one of the important factors affecting the sensitivity of FEDs to the macromolecular charge) on the EIS signal has been studied by recording ConCap responses after surface-modification steps in buffer solutions with different ionic strength. The ConCap-signal changes induced by each modification step (i.e., PAH adsorption, immobilization of ssDNA or dsDNA

106 molecules and on-chip hybridization of cDNA) is increased with decreasing the ionic strength of the solution, due to the less efficient screening of the molecular charge of the PAH or DNA by counterions. The results of field-effect measurements were supported by fluorescence-microscopy experiments using PAH- and ssDNA molecules labeled with fluorescence dyes of FITC and FAM, respectively, as well as via staining of the in-solution- and on-chip-hybridized dsDNA with SG dye.

It is worth to note, although in this work, a multilayer PAH/DNA system has been studied, the capacitive EIS platform can be extended for the label-free electrical monitoring of formation of multilayers composed of other oppositely charged cationic/anionic macromolecular systems as well as charged nanoparticle/molecule inorganic/organic nanohybrids.

A

CKNOWLEDGEMENTS

The authors thank S. Scheja for technical support, H. Iken for wafer processing and C.

Metzger-Boddien, H. Busch for valuable discussions. The authors wish to acknowledge the German Federal Ministry of Education and Research for the financial support (project

“DiaCharge”, grant no.: 031A192D), Germany.

107

R

EFERENCES

[1] F. Wei, P.B. Lillehoj, C.M. Ho: DNA diagnostics: Nanotechnology-enhanced electrochemical detection of nucleic acids, Pediatr. Res. 67 (2010) 458–468.

[2] A. Sassolas, B.D. Leca-Bouvier, L.J. Blum: DNA biosensors and microarrays, Chem. Rev. 108 (2008) 109–139.

[3] W.W. Zhao, J.J. Xu, H.Y. Chen: Photoelectrochemical DNA biosensors, Chem.

Rev. 114 (2014) 7421–7441.

[4] A. Poghossian, M.J. Schöning: Label-free sensing of biomolecules with field-effect devices for clinical applications, Electroanal. 26 (2014) 1197–1213.

[5] C. Kataoka-Hamai, Y. Miyahara: Label-free detection of DNA by field-effect devices, IEEE Sens. J. 11 (2011) 3153–3160.

[6] B. Veigas, E. Fortunato, P.V. Baptista: Field effect sensors for nucleic acid detection: Recent advances and future perspectives, Sensors 15 (2015) 10380–

10398.

[7] C. Toumazou, T.S.L.K. Thay, P. Georgiou: A new era of semiconductor genetics using ion-sensitive field-effect transistors: The gene-sensitive integrated cell, Philos. Trans. R. Soc. A 372 (2014) 20130112-1–12.

[8] A. Poghossian, A. Baade, H. Emons, M.J. Schöning: Application of ISFETs for pH measurement in rain droplets, Sens. Actuators B 76 (2001) 634–638.

[9] J. Gun, M.J. Schöning, M.H. Abouzar, A. Poghossian, E. Katz: Field-effect nanoparticle-based glucose sensor on a chip: Amplification effect of coimmobilized redox species, Electroanal. 20 (2008) 1748–1753.

[10] C. Jimenez-Jorquera, J. Orozco, A. Baldi: ISFET based microsensors for environmental monitoring, Sensors 10 (2010) 61–83.

[11] A. Poghossian, M. Thust, M.J. Schöning, M. Müller-Veggian, P. Kordos, H.

Lüth: Cross-sensitivity of a capacitive penicillin sensor combined with a diffusion barrier, Sens. Actuators B 68 (2000) 260–265.

[12] J.R. Siqueira, M.H. Abouzar, M. Bäcker, V. Zucolotto, A. Poghossian, O.N.

Oliveira, M.J. Schöning: Carbon nanotubes in nanostructured films: Potential application as amperometric and potentiometric field-effect (bio-)chemical sensors, Phys. Status Solidi A 206 (2009) 462–467.

[13] K. Nakazato: An integrated ISFET sensor array, Sensors 9 (2009) 8831–8851.

[14] C.S. Lee, S.K. Kim, M. Kim: Ion-sensitive field-effect transistor for biological sensing, Sensors 9 (2009) 7111–7131.

[15] A. Poghossian, M. Bäcker, D. Mayer, M.J. Schöning: Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids, Nanoscale 7 (2015) 1023–1031.

[16] N. Lu, A. Gao, P. Dai, T. Li, A. Wang, X. Gao, S. Song, C. Fan, Y. Wang: Ultra-sensitive nucleic acids detection with electrical nanosensors based on CMOS-compatible silicon nanowire field-effect transistors, Methods 63 (2013) 212–218.

[17] C. Wu, T. Bronder, A. Poghossian, C.F. Werner, M. Bäcker, M.J. Schöning:

Label-free electrical detection of DNA with a multi-spot LAPS: First step towards light-addressable DNA chips, Phys. Status Solidi A 211 (2014) 1423–1428.

108 [18] L. Bandiera, G. Cellere, S. Cagnin, A. De Toni, E. Zanoni, G. Lanfranchi, L.

Lorenzelli: A fully electronic sensor for the measurement of cDNA hybridization kinetics, Biosens. Bioelectron. 22 (2007) 2108–2114.

[19] S. Ingebrandt, A. Offenhäusser: Label-free detection of DNA using field-effect transistors, Phys. Status Solidi A 203 (2006) 3399–3411.

[20] S. Purushothaman, C. Toumazou, C.P. Ou: Protons and single nucleotide polymorphism detection: A simple use for the ion sensitive field effect transistor, Sens. Actuators B 114 (2006) 964–968.

[21] S. Ingebrandt, Y. Han, F. Nakamura, A. Poghossian, M.J. Schöning, A.

Offenhäusser: Label-free detection of single nucleotide polymorphisms utilizing the differential transfer function of field-effect transistors, Biosens. Bioelectron.

22 (2007) 2834–2840.

[22] M. Kamahori, Y. Ishige, M. Shimoda: Detection of DNA hybridization and extension reactions by an extended-gate field-effect transistor: Characterizations of immobilized DNA-probes and role of applying a superimposed high-frequency voltage onto a reference electrode, Biosens. Bioelectron. 23 (2008) 1046–1054.

[23] J.M. Rothberg, W. Hinz, T.M. Rearick, J. Schultz, W. Mileski, M. Davey, J.H.

Leamon, K. Johnson, M.J. Milgrew, M. Edwards, J. Hoon, J.F. Simons, D.

Marran, J.W. Myers, J.F. Davidson, A. Branting, J.R. Nobile, B.P. Puc, D. Light, T.A. Clark, M. Huber, J.T. Branciforte, I.B. Stoner, S.E. Cawley, M. Lyons, Y.

Fu, N. Homer, M. Sedova, X. Miao, B. Reed, J. Sabina, E. Feierstein, M. Schorn, M. Alanjary, E. Dimalanta, D. Dressman, R. Kasinskas, T. Sokolsky, J.A.

Fidanza, E. Namsaraev, K.J. McKernan, A. Williams, G.T. Roth, J. Bustillo: An integrated semiconductor device enabling non-optical genome sequencing, Nature 475 (2011) 348–352.

[24] T. Goda, M. Tabata, Y. Miyahara: Electrical and electrochemical monitoring of nucleic acid amplification, Bioeng. Biotechnol. 3 (2015) 1–7.

[25] C. Toumazou, L.M. Shepherd, S.C. Reed, G.I. Chen, A. Patel, D.M. Garner, C.J.A. Wang, C.P. Ou, K. Amin-Desai, P. Athanasiou, H. Bai, I.M.Q. Brizido, B.

Caldwell, D. Coomber-Alford, P. Georgiou, K.S. Jordan, J.C. Joyce, M. La Mura, D. Morley, S. Sathyavruthan, S. Temelso, R.E. Thomas, L. Zhang: Simultaneous DNA amplification and detection using a pH-sensing semiconductor system, Nat.

Methods 10 (2013) 641–646.

[26] E. Salm, Y. Zhong, B. Reddy, C. Duarte-Guevara, V. Swaminathan, Y.S. Liu, R.

Bashir: Electrical detection of nucleic acid amplification using an on-chip quasi-reference electrode and a PVC REFET, Anal. Chem. 86 (2014) 6968–6975.

[27] B. Veigas, R. Branquinho, J.V. Pinto, P.J. Wojcik, R. Martins, E. Fortunato, P.V.

Baptista: Ion sensing (EIS) real-time quantitative monitorization of isothermal DNA amplification, Biosens. Bioelectron. 52 (2014) 50–55.

[28] G.M. Credo, X. Su, K. Wu, O.H. Elibol, D.J. Liu, B. Reddy, T.W. Tsai, B.R.

Dorvel, J.S. Daniels, R. Bashir, M. Varma: Label-free electrical detection of pyrophosphate generated from DNA polymerase reactions on field-effect devices, Analyst 137 (2012) 1351–1362.

109 [29] A. Poghossian, A. Cherstvy, S. Ingebrandt, A. Offenhäusser, M.J. Schöning:

Possibilities and limitations of label-free detection of DNA hybridization with field-effect-based devices, Sens. Actuators B 111–112 (2005) 470–480.

[30] Y. Liu, R.W. Dutton: Effects of charge screening and surface properties on signal transduction in field effect nanowire biosensors, J. Appl. Phys. 106 (2009) 014701-1–8.

[31] G.J. Zhang, G. Zhang, J.H. Chua, R.E. Chee, E.H. Wong, A. Agarwal, K.D.

Buddharaju, N. Singh, Z. Gao, N. Balasubramanian: DNA sensing by silicon nanowire: Charge layer distance dependence, Nano Lett. 8 (2008) 1066–1070.

[32] Y. Nishio, S. Uno, K. Nakazato: Three-dimensional simulation of DNA sensing by ion-sensitive field-effect transistor: Optimization of DNA position and orientation, Jpn. J. Appl. Phys. 52 (2013) 04CL01-1–8.

[33] S. Lai, M. Barbaro, A. Bonfiglio: The role of polarization-induced reorientation of DNA strands on organic field-effect transistor-based biosensors sensitivity at high ionic strength, Appl. Phys. Lett. 107 (2015) 103301-1–5.

[34] D. Braeken, G. Reekmans, C. Zhou, B. Van Meerbergen, G. Callewaert, G.

Borghs, C. Bartic: Electronic DNA hybridisation detection in low-ionic strength solutions, J. Exp. Nanosci. 3 (2008) 157–169.

[35] G.A. Evtugyn, T. Hianik: Layer-by-layer polyelectrolyte assembles involving DNA as a platform for DNA sensors, Curr. Anal. Chem. 7 (2011) 8–34.

[36] J. Fritz, E.B. Cooper, S. Gaudet, P.K. Sorger, S.R. Manalis: Electronic detection of DNA by its intrinsic molecular charge, Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 14142–14146.

[37] T.W. Lin, D. Kekuda, C.W. Chu: Label-free detection of DNA using novel organic-based electrolyte-insulator-semiconductor, Biosens. Bioelectron. 25 (2010) 2706–2710.

[38] C.S.J. Hou, N. Milovic, M. Godin, P.R. Russo, R. Chakrabarti, S.R. Manalis:

Label-free microelectronic PCR quantification, Anal. Chem. 78 (2006) 2526–

2531.

[39] C.S.J. Hou, M. Godin, K. Payer, R. Chakrabarti, S.R. Manalis: Integrated microelectronic device for label-free nucleic acid amplification and detection, Lab Chip 7 (2007) 347–354.

[40] T.S. Bronder, A. Poghossian, S. Scheja, C. Wu, M. Keusgen, D. Mewes, M.J.

Schöning: DNA immobilization and hybridization detection by the intrinsic molecular charge using capacitive field-effect sensors modified with a charged weak polyelectrolyte layer, ACS Appl. Mater. Interfaces 7 (2015) 20068–20075.

[41] T.S. Bronder, A. Poghossian, M. Keusgen, M.J. Schöning: Label-free detection of double-stranded DNA molecules with polyelectrolyte-modified capacitive field-effect sensors, Tech. Mess. 84 (2017) 628–634.

[42] C.S. Wu, T. Bronder, A. Poghossian, C.F. Werner, M.J. Schöning: Label-free detection of DNA using a light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer, Nanoscale 7 (2015) 6143–6150.

[43] C. Wu, A. Poghossian, T.S. Bronder, M.J. Schöning: Sensing of double-stranded DNA molecules by their intrinsic molecular charge using the light-addressable potentiometric sensor, Sens. Actuators B 229 (2016) 506–512.

110 [44] A. Poghossian, T.S. Bronder, S. Scheja, C. Wu, T. Weinand, C.

Metzger-Boddien, M. Keusgen, M.J. Schöning: Label-free electrostatic detection of DNA amplification by PCR using capacitive field-effect devices, Procedia Eng. 168 (2016) 514–517.

[45] T.S. Bronder, M.P. Jessing, A. Poghossian, M. Keusgen, M.J. Schöning:

Detection of PCR-amplified tuberculosis DNA fragments with polyelectrolyte-modified field-effect sensors, Anal. Chem. 90 (2018) 7747–7753.

[46] J.A. Goode, J.V.H. Rushworth, P.A. Millner: Biosensor regeneration: A review of common techniques and outcomes, Langmuir 31 (2015) 6267–6276.

[47] M. Morga, Z. Adamczyk: Monolayers of cationic polyelectrolytes on mica – electrokinetic studies, J. Colloid Interface Sci. 407 (2013) 196–204.

[48] A. Poghossian: Determination of the pHpzc of insulators surface from capacitance–voltage characteristics of MIS and EIS structures, Sens. Actuators B 44 (1997) 551–553.

[49] R.E.G. van Hal, J.C.T. Eijkel, P. Bergveld: A general model to describe the electrostatic potential at electrolyte oxide interfaces, Adv. Colloid Interface Sci.

69 (1996) 31–62.

[50] G. Decher, M. Eckle, J. Schmitt, B. Struth: Layer-by-layer assembled multicomposite films, Curr. Opin. Colloid Interface Sci. 3 (1998) 32–39.

[51] A. Poghossian, M. Weil, A.G. Cherstvy, M.J. Schöning: Electrical monitoring of polyelectrolyte multilayer formation by means of capacitive field-effect devices, Anal. Bioanal. Chem. 405 (2013) 6425–6436.

[52] D. Xiang, K. Zhai, W. Xiang, L. Wang: Highly sensitive fluorescence quantitative detection of specific DNA sequences with molecular beacons and nucleic acid dye SYBR Green I, Talanta 129 (2014) 249–253.

[53] F.J. Green: The Sigma-Aldrich Handbook of Stains, Dyes, and Indicators, Aldrich Chemical Co., Milwaukee (1990).

[54] N. Otsu: A threshold selection method from gray-level histograms, IEEE T. Syst.

Man. Cybern. 9 (1979) 62–66.

[55] O. Holub, S.T. Ferreira: Quantitative histogram analysis of images, Comput.

Phys. Commun. 175 (2006) 620–623.

[56] P.A. Neff, A. Naji, C. Ecker, B. Nickel, R. Klitzing, A.R. Bausch: Electrical detection of self-assembled polyelectrolyte multilayers by a thin film resistor, Macromolecules 39 (2006) 463–466.

[57] P.A. Neff, B.K. Wunderlich, R. Klitzing, A.R. Bausch: Formation and dielectric properties of polyelectrolyte multilayers studied by a silicon-on-insulator based thin film resistor, Langmuir 23 (2007) 4048–4052.

[58] P. Bergveld: A critical evaluation of direct electrical protein detection methods, Biosens. Bioelectron. 6 (1991) 55–72.

[59] A. Poghossian, S. Ingebrandt, M.H. Abouzar, M.J. Schöning: Label-free detection of charged macromolecules by using a field-effect-based sensor platform: Experiments and possible mechanisms of signal generation, Appl.

Phys. A 87 (2007) 517–524.

111 [60] K.I. Chen, B.R. Li, Y.T. Chen: Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation, Nano Today 6 (2011) 131–154.

[61] E. Stern, R. Wagner, F.J. Sigworth, R. Breaker, T.M. Fahmy, M.A. Reed:

Importance of the Debye screening length on nanowire field effect transistor sensors, Nano Lett. 7 (2007) 3405–3409.

[62] T. Goda, A.B. Singi, Y. Maeda, A. Matsumoto, M. Torimura, H. Aoki, Y.

Miyahara: Label-free potentiometry for detecting DNA hybridization using peptide nucleic acid and DNA probes, Sensors 13 (2013) 2267–2278.

112