• Keine Ergebnisse gefunden

2. Study 1: A consistent magnetic polarity stratigraphy of late Neogene to Quaternary fluvial

2.10. Conclusions

We show the fluvial sediments of the Heidelberg Basin were able to preserve the ancient geomagnetic field through geologic time. The carriers of the remanent magnetisation changed over time and depend on lithofacies. Generally, maghemite and/or magnetite are uncommonly the remanence carriers. The Iffezheim Formation is dominated by high-coercivity minerals (haematite, goethite), whereas the younger formations are characterised by sulphides (most likely greigite).

The Gauss-Matuyama boundary is clearly defined by changes in polarity in all three cores. The Matuyama-Brunhes boundary is undoubtedly detectable in the Heidelberg core. Its position in the Viernheim and Ludwigshafen cores can be roughly estimated from its relative position with respect to the lithostratigraphic boundaries. The subchrons of Jaramillo (C1r.1n) and Olduvai (C2n) are identified with a high probability. The major remaining uncertainty concerns the correlation of the sectors below the Gauss-Matuyama boundary. Age-depth plots suggest that the Heidelberg and Viernheim cores include the Gilbert Chron. Minimum ages of >5.235 Ma and >4.187 Ma are highly plausible for the base of the Viernheim and Heidelberg cores, respectively. The large-scale correlations should not be affected by small inaccuracies. The calculated accumulation rates of the most plausible models are on the order of 5.7-29.9 and 2.9-13.0 cm/ka in the Quaternary and Tertiary, respectively. These accumulation rates allow a quantification of the basin subsidence over timescales of ca. ≥ 1 Ma.

The obtained magnetic polarity stratigraphy provides the first exclusively palaeomagnetically based chronostratigraphic framework for the sequences of the northern URG and for fluvial Plio-Pleistocene sequences in western central Europe in general. This will enable consistent future correlation across central Europe. The change in magneto-mineralogy near to the Gauss-Matuyama boundary is an important proxy for the environmental (climatic) changes at approximately 2.58 Ma.

72

As already noted by Rolf et al. (2008), this worldwide climate change is marked by the initiation of Northern Hemisphere glaciation and is well documented in deep-sea sediments (Shackelton et al., 1984) and loess deposits in China (Heller and Liu, 1982). Further advances in the knowledge of superregional geological and palaeoclimatic developments can be expected from, for example, the correlation with the Plio/Pleistocene sites in the North Sea Basin (Zagwijn 1985; Maher and Hallam, 2005b, Westerhoff et al., 2008), the Pannonian Basin (Nádor et al., 2003) and the Po-Basin (Muttoni et al., 2007; Scardia et al., 2006).

Acknowledgements

The authors wish to thank the reviewer for his helpful comments. We thank Kathrin Worm, Lena Wallbrecht and Marianne Klick (Grubenhagen) and Manuela Weiss (Niederlippach) for the support in the laboratories. Dave Tanner’s (LIAG, Hannover) comments regarding the correct use of the English language were very helpful. The study is funded by the German Research Foundation DFG (RO2170/8-1 and HA2(RO2170/8-193/(RO2170/8-10-(RO2170/8-1).

References

APPEL, E., RÖSLER, W. and CORVINUS, G., 1991. Magnetostratigraphy of the Miocene‐Pleistocene Surai Khola Siwaliks in west Nepal. Geophysical Journal International, 105(1), 191-198.

BARTZ, J., 1953. Revision des Bohr-Profils der Heidelberger Radium-Sol-Therme. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, 101-125.

BARTZ, J., 1974. Die Mächtigkeit des Quartärs im Oberrheingraben. In: J.H. Illies and K. Fuchs (Eds.), Approaches to Taphrogenesis. Schweizerbart, Stuttgart, pp. 78-87.

BISWAS, D.K. et al., 1999. Magnetostratigraphy of Plio-Pleistocene sediments in a 1700-m core from Osaka Bay, southwestern Japan and short geomagnetic events in the middle Matuyama and early Brunhes chrons. Palaeogeography, Palaeoclimatology, Palaeoecology, 148(4), 233-248.

BLEIL, U. and VON DOBENECK, T., 1999. Geomagnetic events and relative paleointensity records - Clues to high resolution paleomagnetic chronostratigraphies of Late Quaternary marine sediments?

In: G. Fischer and G. Wefer (Eds.), Use of proxies in paleoceanography: Examples from the South Atlantic. Springer Verlag, Berlin, pp. 635-665.

BUNESS, H., GABRIEL, G. and ELLWANGER, D., 2008. The Heidelberg Basin drilling project: Geophysical pre-site surveys. E & G (Quaternary Science Journal), 57(3/4), 338-366.

CANDE, S.C. and KENT, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research: Solid Earth, 100(B4), 6093-6095.

CHADIMA, M. and HROUDA, F., 2006. Remasoft 3.0 a user-friendly paleomagnetic data browser and analyzer. Travaux Géophysiques, 27, 20-21.

COX, A., DOELL, R.R. and DALRYMPLE, G.B., 1963. Geomagnetic polarity epochs and Pleistocene geochronometry. Nature, 198(4885), 1049-1051.

73

COX, A., DOELL, R.R. and DALRYMPLE, G.B., 1964. Reversals of the earth's magnetic field. Science, 144(3626), 1537-1543.

DEAMER, G.A. and KODAMA, K.P., 1990. Compaction-induced inclination shallowing in synthetic and natural clay-rich sediments. Journal of Geophysical Research: Solid Earth, 95(B4), 4511-4529.

DEHNERT, A. and SCHLÜCHTER, C., 2008. Sediment burial dating using terrestrial cosmogenic nuclides.

E & G (Quaternary Science Journal), 57, 210-225.

DEHNERT, A. et al., 2011. Cosmogenic isotope burial dating of fluvial sediments from the Lower Rhine Embayment, Germany. Quaternary Geochronology, 6(3–4), 313-325.

DOEBEL, F., 1967. The Tertiary and Pleistocene sediments of the northern and central part of the Upper Rhinegraben. Abhandlungen des Geologischen Landesamt Baden-Württemberg, 6, 7.

DOEBEL, F. and OLBRECHT, W., 1974. An isobath map of the Tertiary base in the Rhinegraben. In: J.H.

Illies and K. Fuchs (Eds.), Approches to Taphrogenesis. Schweizerbart, Stuttgart, Germany, pp.

71-72.

ELLWANGER, D. and WIELAND-SCHUSTER, U., 2012. Fotodokumentation und Schichtenverzeichnis der Forschungsbohrungen Heidelberg UniNord I und II. LGRB-Informationen, 26, 25-86.

ELLWANGER, D. et al., 2008. Long sequence of Quaternary Rocks in the Heidelberg Basin Depocentre.

E & G (Quaternary Science Journal), 57(3/4), 316-337.

ELLWANGER, D., GABRIEL, G., HOSELMANN, C., WEIDENFELLER, M. and WIELANDT-SCHUSTER, U., 2010a. Mannheim-Formation, Litholex (online database). Federal Institute for Geosciences and Natural Resources (BGR), http://www.bgr.bund.de/litholex.

ELLWANGER, D. et al., 2010b. Iffezheim-Formation, Litholex (online database). Federal Institute for Geosciences and Natural Resources (BGR), http://www.bgr.bund.de/litholex.

ELWERATH_ERDGAS_UND_ERDÖL_GMBH, 1953. ERDOEL-, ERDGAS-, AUFSCHLUSSBOHRUNG SCHRIESHEIM-1, 1953. The Federal Institute for Geosciences and Natural Resources (BGR = Bundesanstalt für Geowissenschaften und Rohstoffe), Archive Hannover.

FASSBINDER, J.W. and STANJEK, H., 1994. Magnetic properties of biogenic soil greigite (Fe3S4).

Geophysical Research Letters, 21(22), 2349-2352.

FEZER, F., 1997. 220 m Altpleistozän im Heidelberger Loch. E & G (Quaternary Science Journal), 47, 145-153.

GABRIEL, G., ELLWANGER, D., HOSELMANN, C. and WEIDENFELLER, M., 2008. Preface: The Heidelberg Basin Drilling Project. E & G (Quaternary Science Journal), 57(3/4), 253-260.

GABRIEL, G., ELLWANGER, D., HOSELMANN, C., WEIDENFELLER, M. and WIELANDT-SCHUSTER, U., 2013. The Heidelberg Basin, Upper Rhine Graben (Germany): A unique archive of Quaternary sediments in Central Europe. Quaternary International, 292, 43-58.

GIBBARD, P. and LEWIN, J., 2009. River incision and terrace formation in the Late Cenozoic of Europe.

Tectonophysics, 474(1), 41-55.

HAGEDORN, E.-M. and BOENIGK, W., 2008. The Pliocene and Quaternary sedimentary and fluvial history in the Upper Rhine Graben based on heavy mineral analyses. Netherlands Journal of Geosciences, 87(1), 19-30.

HAHNE, J., ELLWANGER, D. and STRITZKE, R., 2008. Evidence for a Waalian thermomer pollen record from the research borehole Heidelberg UniNord, Upper Rhine Graben, Baden-Württemberg.

E & G (Quaternary Science Journal), 57(3/4), 403-410.

HELLER, F. and LIU, T.-S., 1982. Magnetostratigraphical dating of loess deposits in China. Nature, 300(5891), 431-433.

74

HORNG, C.-S., TORII, M., SHEA, K.-S. and KAO, S.-J., 1998. Inconsistent magnetic polarities between greigite- and pyrrhotite/magnetite-bearing marine sediments from the Tsailiao-chi section, southwestern Taiwan. Earth and Planetary Science Letters, 164(3–4), 467-481.

HOSELMANN, C., 2008. The Pliocene and Pleistocene fluvial evolution in the northern Upper Rhine Graben based on results of the research borehole at Viernheim (Hessen, Germany). E & G (Quaternary Science Journal), 57(3/4), 286-315.

HOSELMANN, C., ELLWANGER, D., GABRIEL, G., WEIDENFELLER, M. and WIELANDT-SCHUSTER, U., 2010. Viernheim-Formation, Litholex (online database). Federal Institute for Geosciences and Natural Resources (BGR), http://www.bgr.bund.de/litholex.

JOHNSON, N.M., JORDAN, T.E., JOHNSSON, P.A. and NAESER, C.W., 1986. Magnetic polarity stratigraphy, age and tectonic setting of fluvial sediments in an eastern Andean foreland basin, San Juan Province, Argentina. Foreland basins, 63-75.

JORDANOVA, D., JORDANOVA, N., PETROV, P. and TSACHEVA, T., 2010. Soil development of three Chernozem-like profiles from North Bulgaria revealed by magnetic studies. Catena, 83(2), 158-169.

KELLER, H.M. et al., 1977. Magnetic polarity stratigraphy of the Upper Siwalik deposits, Pabbi Hills, Pakistan. Earth and Planetary Science Letters, 36(1), 187-201.

KEMNA, H., 2008. A Revised Stratigraphy for the Pliocene and Lower Pleistocene Deposits of the Lower Rhine Embayment. Netherlands Journal of Geosciences, 87(1), 91-105.

KIRSCHVINK, J., 1980. The least-squares line and plane and the analysis of palaeomagnetic data.

Geophysical Journal International, 62(3), 699-718.

KNIPPING, M., 2008. Early and Middle Pleistocene pollen assemblages of deep core drillings in the northern Upper Rhine Graben, Germany. Netherlands Journal of Geosciences, 87(1), 51-65.

KODAMA, K.P., 1982. Magnetic effects of maghemitization of Plio‐Pleistocene marine sediments, northern California. Journal of Geophysical Research: Solid Earth (1978–2012), 87(B8), 7113-7125.

LAJ, C. and CHANNELL, J.E., 2007. Geomagnetic Excursions. In: G. Schubert (Ed.), Treatise on Geophysics. Elsevier, Amsterdam, pp. 373-416.

LAUER, T., FRECHEN, M., HOSELMANN, C. and TSUKAMOTO, S., 2010. Fluvial aggradation phases in the Upper Rhine Graben—new insights by quartz OSL dating. Proceedings of the Geologists' Association, 121(2), 154-161.

LAUER, T. et al., 2011. Infrared radiofluorescence (IR-RF) dating of middle pleistocene fluvial archives of the Heidelberg Basin (Southwest Germany). Geochronologia, 38(1), 23–33.

LEWIN, J. and MACKLIN, M.G., 2003. Preservation potential for Late Quaternary river alluvium. Journal of Quaternary Science, 18(2), 107-120.

LØVLIE, R., STØLE, G. and SPJELDNÆS, N., 1989. Magnetic polarity stratigraphy of Pliocene-Pleistocene marine sediments from Rhodos, eastern Mediterranean. Physics of The Earth and Planetary Interiors, 54(3), 340-352.

LOWRIE, W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters, 17(2), 159-162.

MAHER, B.A. and HALLAM, D.F., 2005a. Magnetic carriers and remanence mechanisms in magnetite‐

poor sediments of Pleistocene age, southern North Sea margin. Journal of Quaternary Science, 20(1), 79-94.

75

MAHER, B.A. and HALLAM, D.F., 2005b. Palaeomagnetic correlation and dating of Pli/Pleistocene sediments at the southern margins of the North Sea Basin. Journal of Quaternary Science, 20(1), 67-77.

MATMON, A., STOCK, G.M., GRANGER, D.E. and HOWARD, K.A., 2012. Dating of Pliocene Colorado River sediments: Implications for cosmogenic burial dating and the evolution of the lower Colorado River. Geological Society of America Bulletin, 124(3-4), 626-640.

MUTTONI, G. et al., 2007. Magnetostratigraphic dating of an intensification of glacial activity in the southern Italian Alps during Marine Isotope Stage 22. Quaternary Research, 67(1), 161-173.

NÁDOR, A., LANTOS, M., TÓTH-MAKK, Á. and THAMÓ-BOZSÓ, E., 2003. Milankovitch-scale multi-proxy records from fluvial sediments of the last 2.6 Ma, Pannonian Basin, Hungary. Quaternary Science Reviews, 22(20), 2157-2175.

NILSSON, A., LEE, Y.S., SNOWBALL, I. and HILL, M., 2013. Magnetostratigraphic importance of secondary chemical remanent magnetizations carried by greigite (Fe3S4) in Miocene sediments, New Jersey shelf (IODP Expedition 313). Geosphere, 9(3), 510-520.

OGG, G., 2012. Geomagnetic Polarity Time Scale. In: F.M. Gradstein, G. Ogg and M.D. Schmitz (Eds.), The Geologic Time Scale 2012 2-Volume Set. Elsevier.

OGG, J.G., OGG, G. and GRADSTEIN, F.M., 2008. The concise geologic time scale, 1.

OPDYKE, N.D. and CHANNELL, J. (Eds.), 1996. Magnetic Stratigraphy. International Geophysics Series, 64. Academic Press, Inc., San Diego, 346 pp.

ÖZDEMIR, Ö. and BANERJEE, S.K., 1984. High temperature stability of maghemite (γ-Fe2O3).

Geophysical Research Letters, 11(3), 161-164.

PAN, B., HU, Z., WANG, J., VANDENBERGHE, J. and HU, X., 2011. A magnetostratigraphic record of landscape development in the eastern Ordos Plateau, China: Transition from Late Miocene and Early Pliocene stacked sedimentation to Late Pliocene and Quaternary uplift and incision by the Yellow River. Geomorphology, 125(1), 225-238.

ROBERTS, A.P. and WEAVER, R., 2005. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth and Planetary Science Letters, 231(3-4), 263-277.

ROBERTS, A.P. and WINKLHOFER, M., 2004. Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magnetization lock-in modelling.

Earth and Planetary Science Letters, 227(3-4), 345-359.

ROLF, C., 2000. Das Kryogenmagnetometer im Magnetiklabor Grubenhagen. Geologisches Jahrbuch, E52, 161-188.

ROLF, C., HAMBACH, U. and WEIDENFELLER, M., 2008. Rock and palaeomagnetic evidence for the Plio-Pleistocene palaeoclimatic change recorded in Upper Rhine Graben sediments (Core Ludwigshafen Parkinsel). Netherlands Journal of Geosciences, 87(1), 41-50.

SALOMON, W., 1927. Die Erbohrung der Heidelberger Radium-Sol-Therme und ihre geologischen Verhältnisse. Abhandlungen der Heidelberger Akademie der Wissenschaften, 14, 1-105.

SCARDIA, G., MUTTONI, G. and SCIUNNACH, D., 2006. Subsurface magnetostratigraphy of Pleistocene sediments from the Po Plain (Italy): Constraints on rates of sedimentation and rock uplift.

Geological Society of America Bulletin, 118(11-12), 1299-1312.

SCHUMACHER, M.E., 2002. Upper Rhine Graben: Role of preexisting structures during rift evolution.

Tectonics, 21(1), 6-1-6-17.

SHACKLETON, N.J. et al., 1984. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature, 307(5952), 620-623.

76

SMYKATZ-KLOSS, W., 1974. Influence of the Chemical Composition on the Curie-Temperatures of Magnetites, Differential Thermal Analysis: Application and Results in Mineralogy. Minerals and Rocks. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 118-122.

SNOWBALL, I., 1997. Gyroremanent magnetization and the magnetic properties of greigite-bearing clays in southern Sweden. Geophysicsical Journal International, 129, 624-636.

SPASSOV, S., HELLER, F., EVANS, M.E., YUE, L.P. and VON DOBENECK, T., 2003. A lock-in model for the complex Matuyama-Brunhes boundary record of the loess/palaeosol sequence at Lingtai (Central Chinese Loess Plateau). Geophysical Journal International, 155(2), 350-366.

SUN, D., AN, Z., SHAW, J., BLOEMENDAL, J. and SUN, Y., 1998. Magnetostratigraphy and palaeoclimatic significance of Late Tertiary aeolian sequences in the Chinese Loess Plateau. Geophysical Journal International, 134(1), 207-212.

TARLING, D.H., 1983. Magnetic mineralogy and magnetic identification of minerals, Palaeomagnetism.

Springer, pp. 35-50.

TORII, M., FUKUMA, K., HORNG, C.S. and LEE, T.Q., 1996. Magnetic discrimination of pyrrhotite‐and greigite‐bearing sediment samples. Geophysical Research Letters, 23(14), 1813-1816.

VAN BAAK, C. et al., 2013. A magnetostratigraphic time frame for Plio-Pleistocene transgressions in the South Caspian Basin, Azerbaijan. Global and Planetary Change, 103, 119-134.

VAN MONTFRANS, H.M., 1971. Palaeomagnetic dating in the North Sea basin. Earth and Planetary Science Letters, 11(1), 226-235.

VASILIEV, I. et al., 2008. Putative greigite magnetofossils from the Pliocene epoch. Nature Geoscience, 1(11), 782-786.

VINCENT, E., WRIGHT, J., CHEVALLIER, R. and MATHIEU, S., 1957. Heating experiments on some natural titaniferous magnetites. Mineral. Mag, 31(239), 624-655.

WEDEL, J., 2008. Pleistocene molluscs from research boreholes in the Heidelberg Basin. E & G (Quaternary Science Journal), 57(3/4), 382-402.

WEIDENFELLER, M., ELLWANGER, D., GABRIEL, G., HOSELMANN, C. and WIELANDT-SCHUSTER, U., 2010. Ludwigshafen-Formation, Litholex (online database). Federal Institute for Geosciences and Natural Resources (BGR), http://www.bgr.bund.de/litholex.

WEIDENFELLER, M. and KNIPPING, M., 2008. Correlation of Pleistocene sediments from boreholes in the Ludwigshafen area, western Heidelberg Basin. E & G (Quaternary Science Journal), 57(3/4), 270-285.

WESTERHOFF, W., KEMNA, H. and BOENIGK, W., 2008. The confluence area of Rhine, Meuse, and Belgian rivers: Late Pliocene and Early Pleistocene fluvial history of the northern lower Rhine Embyment. Netherlands Journal of Geosciences, 87(1), 107-125.

ZAGWIJN, W., 1957. Vegetation, climate and time-correlations in the early Pleistocene of Europe.

ZIJDERVELD, J., 1967. AC demagnetization of rocks: analysis of results. Methods in paleomagnetism, 3, 254.

ZIJDERVELD, J., COLLINSON, D., CREER, K. and RUNCORN, S., 1967. AC demagnetization of rocks:

analysis of results. Methods in paleomagnetism, 1, 254-286.

77

Remarks to study 1

The magnetic polarity stratigraphy of the Heidelberg core contradicts the results of the pollen stratigraphy published by (Hahne et al., 2008, 2012) but is in line with the pollen analysis of core P36 (performed by Dr. Knipping, University of Hohenheim, pers. com.) and the Viernheim core (performed by Dr. Heumann, University of Bonn, pers. com.). The data obtained from palynological analyses, heavy mineral analyses and the magnetic polarity stratigraphy were viewed and compared in a meeting at the University of Bonn at the beginning of 2014. The palynologists (Dr. Knipping, Dr. Heumann, and Dr.

Hahne), a geologist and heavy mineral specialist (Dr. Hoselmann from the geological survey of Hesse), and I discussed these topics, and the discussion was moderated by Prof. Dr. Litt. During the meeting, the difference between the ages obtained by pollen analysis of the Heidelberg core and the remaining age results was found to represent a matter of interpretation, and a consensus was reached. Two weeks after this meeting, scientists from the geological survey of Baden-Wuertemberg informed the group that the consensus was invalid because certain arguments were not applied by Dr. Hahne. To the authors’ knowledge, this disagreement remains to the present day, though no further work on this question has yet been published. The question of the stratigraphic classification is thus summarised in section 4.4.

78

79

3. Study 2: A mineral magnetic characterization of the Plio-Pleistocene