• Keine Ergebnisse gefunden

Conclusions and Outlook

Im Dokument From impact to resource (Seite 79-83)

6.2 Resource Use in the Context of Climate Change Mitigation - Effects of Complexity and Uncertainty

6.3.5 Conclusions and Outlook

Existing approaches to assessing C, which are used to analyze biomass conversion chains, have some critical issues to address. These include external effects, such as changes in the underlying assumptions. Robust indicators for decision support for biomass use are needed. We proposed Carbon Utilization Degree CUDe as an indicator that represents the efficient use of carbon as a production factor in biomass conversion processes for energetic and material use. This indicator could reflect a paradigm shift that CO2 is not a threat but a finite resource that requires suitable management. CUDe, as a supplementary indicator for existing methods, could aid in the design of policies for biomass transformation pathways by defining threshold values for efficient carbon use in conversion processes. The approach needs additional testing to prove its applicability even to more complex pathways than those provided in this manuscript.

Acknowledgments

English grammar and expressions were improved by AJE. Three anonymous reviewers provided helpful comments.

Author Contributions

Anja Hansen and Jörn Budde developed the idea and the methodological concept; Anja Hansen prepared the case studies, figures and wrote most of the paper. Jörn Budde, Yusuf Nadi Karatay and Annette Prochnow contributed to the discussion of the concept and to the organization and phrasing of the manuscript.

Conflicts of Interest

The authors declare no conflicts of interest.

Abbreviations

The following abbreviations are used in this manuscript:

C: Carbon

CF: Characterization factor CH4: Methane

CHP: Combined Heat and Power

Cemissions: Carbon in gaseous losses, e.g., in CO2 or CH4

Cin: Carbon content in biomass dry matter that enters the biomass conversion chain Cinter: Carbon in intermediate products

CO2: Carbon dioxide

Cproductive: Carbon that becomes productive in a wide anthropocentric view Cproducts: Carbon in final products and co-products

CSF: Carbon Stability Factor CUDe: Carbon Utilization Degree [%]

Cwaste: Carbon in waste, e.g., in production waste EU ETS: European Union Emissions Trading System GDP: Gross Domestic Product

GHG: Greenhouse Gas(es) GWP: Global Warming Potential(s) L.: Carl von Linné (botanical author citation) LCA: Life Cycle Assessment

NPP: Net Primary Production NEP: Net Ecosystem Production Appendix A

Table A1. Overview of some productivity approaches dealing with carbon. CUDe—Carbon Utilization Degree, CSF—Carbon Stability Factor, GDP—Gross Domestic Product, GHG—Greenhouse Gases, MACC—Marginal Abatement Cost Curves, NPP/NEP—Net Primary Productivity/Net

Ecosystem Productivity, S&P/IFCI—Standard & Poor’s International Finance Corporation Indexes.

Online http://www.mdpi.com/2071-1050/8/10/1028/htm (and as Table 4.6 in this document) 6.3.6 References

1. Brock, T.D.; Madigan, M.T.; Martinko; John M.; Parker, J. Biology of microorganisms: (1994): Biology of Microorganisms, Editions 7th, Englewood Cliffs, New Jersey, U.S.A. pp. 909, 7th ed; Prentice Hall International: London, 1994.

2. KTBL. Energiepflanzen - Daten für die Planung des Energiepflanzenanbaus; KTBL Kuratorium für Technik und Bauwesen in der Landwirtschaft: Darmstadt, Germany, 2006.

3. Reisinger, K.; Haslinger, C.; Herger, M.; Hofbauer, H. BIOBIB - A Database for biofuels; 1999. Available online:

http://cdmaster2.vt.tuwien.ac.at/biobib/sd112.html (accessed on 11 September, 2014).

4. Romanova, N. D.; Sazhin, A. F. Relationships between the cell volume and the carbon content of bacteria. Oceanology 2010, 50, 522–530, DOI: 10.1134/S0001437010040089.

5. Bi, Z.; He, B.B. Characterization of Microalgae for the Purpose of Biofuel Production. Trans.ASABE 2013, 1529–1539, DOI:

10.13031/trans.56.10090.

6. Jiankun, H.; Mingshan, S. Carbon Productivity Analysis to Address Global Climate Change. Chinese Journal of Population Resources and Environment 2011, 9, 9–15, DOI: 10.1080/10042857.2011.10685014.

7. nova-Institut für politische und ökologische Innovation GmbH. 5th Conference on Carbon Dioxide as Feedstock for Fuels, Chemistry and Polymers. Available online: http://co2-chemistry.eu/ (accessed on January 2016).

8. Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Using carbon dioxide as a building block in organic synthesis. Nature communications 2015, 6, 5933, DOI: 10.1038/ncomms6933.

9. Kortlever, R.; Shen, J.; Schouten, K.J.P.; Calle-Vallejo, F.; Koper, M.T.M. Catalysts and Reaction Pathways for the Electro-chemical Reduction of Carbon Dioxide. The journal of physical chemistry letters 2015, 6, 4073–4082, DOI:

10.1021/acs.jpclett.5b01559.

10. Editorial. Journal of CO2 Utilization 2013, 1, iii, DOI: 10.1016/S2212-9820(13)00020-6.

11. Science direct. Online Search, Search term in journals: "low carbon"; 2016. Available online: http://www.sciencedirect.com/

(accessed on 31 May, 2016).

12. Bosch, R.; van de Pol, Mattheüs; Philp, J. Policy: Define biomass sustainability. Nature 2015, 523, 526–527, DOI:

10.1038/523526a.

13. Koskela, S.; Mattila, T.; Antikainen, R.; Mäenpää, I. Identifying Key Sectors and Measures for a Transition towards a Low Resource Economy. Resources 2013, 2, 151–166, DOI: 10.3390/resources2030151.

14. Cherubini, F.; Strømman, A.H. Life cycle assessment of bioenergy systems: State of the art and future challenges.

Bioresource technology 2011, 102, 437–451, DOI: 10.1016/j.biortech.2010.08.010.

15. Searchinger, T.D.; Hamburg, S.P.; Melillo, J.; Chameides, W.; Havlik, P.; Kammen, D.M.; Likens, G.E.; Lubowski, R.N.;

Obersteiner, M.; Oppenheimer, M.; et al. Climate change. Fixing a critical climate accounting error. Science (New York, N.Y.) 2009, 326, 527–528, DOI: 10.1126/science.1178797.

16. Taheripour, F.; Hertel, T.W.; Tyner, W.E.; Beckman, J.F.; Birur, D.K. Biofuels and their by-products: Global economic and environmental implications. Biomass and Bioenergy 2010, 34, 278–289, DOI: 10.1016/j.biombioe.2009.10.017.

17. Rabl, A.; Benoist, A.; Dron, D.; Peuportier, B.; Spadaro, J.V.; Zoughaib, A. How to account for CO2 emissions from biomass in an LCA. Int J Life Cycle Assess 2007, 12, 281, DOI: 10.1065/lca2007.06.347.

18. Greenhouse Gas Protocol. Global Warming Potential Values, adapted from IPCC Fifth Assessment Report (AR5) 2014; 2016.

Available online: http://ghgprotocol.org/sites/default/files/ghgp/Global-Warming-Potential-Values%20(Feb%2016%202016).pdf (accessed on June 8th 2016).

19. Ott, K.; Thapa, P.P. Greifswald’s environmental ethics, From the work of the Michael Otto Professorship at Ernst Moritz Arndt University 1997-2002; 2003. Available online: https://doi.org/10.13140/2.1.2435.3604 (accessed on 31 May, 2016).

20. Hill, B. An introduction to economics: Concepts for students of agriculture and the rural sector, 4th ed; CABI: Oxfordshire, 2014.

21. Jackson, T. Least-cost greenhouse planning supply curves for global warming abatement. Energy Policy 1991, 19, 35–46, DOI: 10.1016/0301-4215(91)90075-Y.

22. Yang, H. Carbon efficiency, carbon reduction potential, and economic development in the People's Republic of China, A total factor production model; 2010. Available online: http://www.adb.org/sites/default/files/publication/27499/carbon-efficiency-prc.pdf (accessed on 13 January, 2016).

23. Kaya, Y.; Yokobori, K. Environment, Energy and Economy: Strategies for Sustainability; Bookwell Publications: Delhi, India, 1999.

Dissertation A. Hansen From Impact to Resource Results – Articles Section Results

24. Wang, P.-C.; Lee, Y.-M.; Chen, C.-Y. Estimation of Resource Productivity and Efficiency: An Extended Evaluation of Sustainability Related to Material Flow. Sustainability 2014, 6, 6070–6087, DOI: 10.3390/su6096070.

25. Ellen MacArthur Foundation; Granta Material Intelligence. Circularity Indicators, An Approach to Measuring Circularity.

Methodology; 2015. Available online: https://www.ellenmacarthurfoundation.org/assets/downloads/insight/Circularity-Indicators_Methodology_May2015.pdf (accessed on 21 June, 2016).

26. Kallis, G.; Kalush, M.; O.'Flynn, H.; Rossiter, J.; Ashford, N. “Friday off”: Reducing Working Hours in Europe. Sustainability 2013, 5, 1545–1567, DOI: 10.3390/su5041545.

27. ecoinvent Centre. ecoinvent data; 2016. Available online: www.ecoinvent.org.

28. Lucia, M. de; Assennato, D. Agricultural engineering in development: Post-harvest operations and management of foodgrains. Available online: http://www.fao.org/docrep/t0522e/T0522E04.htm; Food and Agriculture Organizations of the United Nations: Rome, 1994.

29. Carus, M.; Raschka, A.; Fehrenbach, H.; Rettenmaier, N.; Dammer, L.; Köppen, S.; Thöne, M.; Dobroschke, S.; Diekmann, L.;

Hermann, A.; et al. Environmental Innovation Policy – Greater resource efficiency and climate protection through the sustainable material use of biomass, Short version; 2014. Available online:

https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/texte_03_2014_druckfassung_uba_stofflich _abschlussbericht_kurz_englisch.pdf (accessed on 11 July, 2016).

30. Meyer-Aurich, A.; Schattauer, A.; Hellebrand, H.J.; Klauss, H.; Plöchl, M.; Berg, W. Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources. Renewable Energy 2012, 37, 277–284, DOI:

10.1016/j.renene.2011.06.030.

31. Zhang, W.; Liu, K.; Wang, J.; Shao, X.; Xu, M.; Li, J.; Wang, X.; Murphy, D.V. Relative contribution of maize and external manure amendment to soil carbon sequestration in a long-term intensive maize cropping system. Scientific reports 2015, 5, 10791, DOI: 10.1038/srep10791.

32. Herrmann, C.; Heiermann, M.; Idler, C. Effects of ensiling, silage additives and storage period on methane formation of biogas crops. Bioresource technology 2011, 102, 5153–5161, DOI: 10.1016/j.biortech.2011.01.012.

33. Murphy, J.; Braun, R.; Weiland, P.; Wellinger, A. Biogas from Crop Digestion. Available online: http://www.iea-bio-gas.net/files/daten-redaktion/download/publi-task37/Biogas%20from%20Crops_2011_Final.pdf (accessed on 13 June, 2016).

34. Liebetrau, J.; Reinelt, T.; Clemens, J.; Hafermann, C.; Friehe, J.; Weiland, P. Analysis of greenhouse gas emissions from 10 biogas plants within the agricultural sector. Water science and technology : a journal of the International Association on Water Pollution Research 2013, 67, 1370–1379, DOI: 10.2166/wst.2013.005.

35. Al Seadi, T.; Lukehurst, C.T. Quality management of digestate from biogas plants used as fertiliser; 2012. Available online:

http://www.iea-biogas.net/files/daten-redaktion/download/publi-task37/digestate_quality_web_new.pdf (accessed on 9 June, 2016).

36. Persson, M.; Jonsson, O.; Wellinger, A. Biogas Upgrading to Vehicle Fuel Standards and Grid Injection; 2006. Available online: http://www.iea-biogas.net/files/daten-redaktion/download/publi-task37/upgrading_report_final.pdf (accessed on 9 June, 2016).

37. Aschmann, V.; Effenberger, M.; Gronauer, A. Kohlenwasserstoffverbindungen im Abgas biogasbetriebener Blockheizkraft-werke. Landtechnik 2010, 65, 338–341, DOI: 10.15150/lt.2010.509.

38. FNR. Biogasaufbereitung (biogas upgrading); 2013. Available online: http://biogas.fnr.de/biogas-gewinnung/anlagentechnik/biogasaufbereitung/.

39. Chery, D.; Lair, V.; Cassir, M. Overview on CO2 Valorization: Challenge of Molten Carbonates. Front. Energy Res. 2015, 3, 5546, DOI: 10.3389/fenrg.2015.00043.

40. Götz, M.; Lefebvre, J.; Mörs, F.; McDaniel Koch, A.; Graf, F.; Bajohr, S.; Reimert, R.; Kolb, T. Renewable Power-to-Gas: A technological and economic review. Renewable Energy 2016, 85, 1371–1390, DOI: 10.1016/j.renene.2015.07.066.

41. Goulder, Lawrence H. , Schein, Andrew R. Carbon taxes versus cap and trade: A critical review. Clim. Change Econ. 2013, 04, 1350010, DOI: 10.1142/S2010007813500103.

42. EC. The EU Emissions Trading System (EU ETS); 2016. Available online: http://ec.europa.eu/clima/policies/ets/index_en.htm (accessed on 02.02.16.).

43. Searchinger, T.D. Biofuels and the need for additional carbon. Environ. Res. Lett. 2010, 5, 024007, DOI: 10.1088/1748-9326/5/2/024007.

44. Smith, K.A.; Searchinger, T.D. Crop-based biofuels and associated environmental concerns. Glob. Change Biol. Bioenergy 2012, 4, 479–484, DOI: 10.1111/j.1757-1707.2012.01182.x.

45. van Loo, S.; Koppejan, J., Eds. The handbook of biomass combustion and co-firing, 2nd ed; Earthscan: London, 2008.

46. European Commission. A policy framework for climate and energy in the period from 2020 to 2030; 2014. Available online:

http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52014DC0015&from=EN (accessed on 9 June, 2016).

47. European Commission. Climate Action Progress Report 2015, including the report on the functioning of the European carbon market and the report on the review of Directive 2009/31/EC on the geological storage of carbon dioxide. Available online: http://ec.europa.eu/clima/policies/strategies/progress/docs/progress_report_2015_en.pdf (accessed on 9 June, 2016).

48. Pansera, M.; Sarkar, S. Crafting Sustainable Development Solutions: Frugal Innovations of Grassroots Entrepreneurs.

Sustainability 2016, 8, 51, DOI: 10.3390/su8010051.

49. G7. Leadersʼ Declaration G7 Summit, 7-8 June 2015; 2015. Available online: https://sustainabledevelopment.un.org/content/

documents/7320LEADERS%20STATEMENT_FINAL_CLEAN.pdf (accessed on 2016, July 11).

50. European Council. European Council meeting (23 and 24 October 2014), Conclusions; 2014. Available online:

http://data.consilium.europa.eu/doc/document/ST-169-2014-INIT/en/pdf (accessed on 2016, July 11).

51. Lehtonen, M.; Sébastien, L.; Bauler, T. The multiple roles of sustainability indicators in informational governance: Between intended use and unanticipated influence. Current Opinion in Environmental Sustainability 2016, 18, 1–9, DOI:

10.1016/j.cosust.2015.05.009.

52. Runhaar, H. Tools for integrating environmental objectives into policy and practice: What works where? Environmental Impact Assessment Review 2016, 59, 1–9, DOI: 10.1016/j.eiar.2016.03.003.

53. Jakob, M.; Edenhofer, O. Green growth, degrowth, and the commons. Oxford Review of Economic Policy 2015, 30, 447–468, DOI: 10.1093/oxrep/gru026.

54. Geels, F.W.; Berkhout, F.; van Vuuren, D.P. Bridging analytical approaches for low-carbon transitions. Nature Climate change 2016, 6, 576–583, DOI: 10.1038/nclimate2980.

55. Robergé, J.-M.; Angelstam, P.E. Usefulness of the Umbrella Species Concept as a Conservation Tool. Conservation Biology 2004, 18, 76–85, DOI: 10.1111/j.1523-1739.2004.00450.x.

56. ISO 14040. Environmental management — Life cycle assessment — Principles and framework; Beuth Verlag: Berlin, 2006.

57. ISO 14044. Environmental management — Life cycle assessment — Requirements and guidelines; Beuth Verlag: Berlin, 2006.

58. Hansen, A.; Budde, J.; Prochnow, A. Resource Usage Strategies and Trade-Offs between Cropland Demand, Fossil Fuel Consumption, and Greenhouse Gas Emissions—Building Insulation as an Example. Sustainability 2016, 8, 613, DOI:

10.3390/su8070613.

59. Melin, Y.; Petersson, H.; Egnell, G. Assessing carbon balance trade-offs between bioenergy and carbon sequestration of stumps at varying time scales and harvest intensities. Forest Ecology and Management 2010, 260, 536–542, DOI:

10.1016/j.foreco.2010.05.009.

60. Mantau, U. Wood flow analysis: Quantification of resource potentials, cascades and carbon effects. Biomass and Bioenergy 2015, 79, 28–38, DOI: 10.1016/j.biombioe.2014.08.013.

61. VDI. Cumulative energy demand (KEA) - Terms, definitions, methods of calculation; Beuth Verlag: Berlin, 2012. Available online: https://www.beuth.de/de/technische-regel/vdi-4600/143521324.

62. Hammond, J.; Shackley, S.; Sohi, S.; Brownsort, P. Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK. Energy Policy 2011, 39, 2646–2655, DOI: 10.1016/j.enpol.2011.02.033.

63. IPCC. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: "The Physical Science Basis"; 2007. Available online:

https://www.ipcc.ch/publications_and_data/ar4/wg1/en/contents.html.

64. Roy, J.; Saugier, B. Terrestrial Primary Productivity. In Terrestrial Global Productivity: Elsevier, 2001, pp. 1–6.

65. McKinsey Global Institute. The carbon productivity challenge: Curbing climate change and sustaining economic growth;

2008. Available online: http://www.mckinsey.com/insights/energy_resources_materials/the_carbon_productivity_challenge.

66. Cazalet, W.; Wong, K.Q. Green Beta: Carbon Efficiency Investing; 2015. Available online:

https://www.bnymellon.com/_global-assets/pdf/our-thinking/business-insights/green-beta-carbon-efficiency-investing.pdf (accessed on 15 March, 2016).

67. AVA-CO2. Technology, Hydrothermal carbonisation (HTC); 2016. Available online: http://www.ava-co2.com/web/pages/en/technology/hydrothermal-carbonization.php (accessed on 15 March, 2016).

68. Enkvist, P.-A.; Nauclér, T.; Rosander, J. A cost curve for greenhouse gas reduction, A global study of the size and cost of measures to reduce greenhouse gas emissions yields important insights for businesses and policy makers; 2007.

69. Kesicki, F.; Ekins, P. Marginal abatement cost curves: A call for caution. Climate Policy 2012, 12, 219–236, DOI:

10.1080/14693062.2011.582347.

70. S&P Dow Jones Indices. S&P/IFCI Carbon Efficient Index, Methodology; 2016. Available online: http://www.ifc.org/wps/

wcm/connect/4e600a8048855921820cd26a6515bb18/Factsheet_SP_IFCI_Carbon_Efficient_Index.pdf?MOD=AJPERES (accessed on 15 March, 2016).

71. Guest, G.; Bright, R.M.; Cherubini, F.; Strømman, A.H. Consistent quantification of climate impacts due to biogenic carbon storage across a range of bio-product systems. Environmental Impact Assessment Review 2013, 43, 21–30, DOI:

10.1016/j.eiar.2013.05.002.

72. Shackley, S.; Carter, S.; Knowles, T.; Middelink, E.; Haefele, S.; Haszeldine, S. Sustainable gasification–biochar systems?: A case-study of rice-husk gasification in Cambodia, Part II: Field trial results, carbon abatement, economic assessment and conclusions. Energy Policy 2012, 41, 618–623, DOI: 10.1016/j.enpol.2011.11.023.

73. Boodhoo, K.; Harvey, A. Process Intensification Technologies for Green Chemistry: Engineering Solutions for Sustainable Chemical Processing; Wiley, 2013.

Dissertation A. Hansen From Impact to Resource Discussion

7 Discussion

7.1 Need for a Systemic Approach of Biomass Usage for Climate Change

Im Dokument From impact to resource (Seite 79-83)